首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Trophic patterns of omnivorous freshwater shrimps, Exopalaemon modestus and Macrobrachium nipponensis, were investigated in two shallow eutrophic lakes by using stable isotope analysis. δ15N and δ13C of M. nipponensis and E. modestus increased with increasing body weight, which might be attributed to larger individuals ingesting organisms that feed higher up the food chain and/or increased assimilation of benthic food items with enriched isotopic signatures. Of the freshwater shrimps occurring in the studied lakes, those from Lake Taihu had significantly elevated δ15N and δ13C values (4.3‰ and 1.8‰, respectively) compared with those from the less eutrophic Lake Chaohu, indicating that the isotopic signature might partially reflect the trophic states of their habitats. Mixing model results suggested that the benthic food web provides the primary carbon source for both shrimp species, and that E. modestus assimilated relatively more pelagic food sources than M. nipponensis in these lakes. Handling editor: S. Wellekens  相似文献   

2.
An enclosure experiment was conducted in July–September 2001 in subtropical eutrophic Lake Donghu (China) to test a hypothesis that a moderate cyanobacterial biomass would have a positive effect on small-sized cladocerans. Eight enclosures (12.5 m3) were arranged with different nutrient concentrations using the lake water, tap water, and sediment from Lake Donghu. Microcystis blooms appeared in enclosures with higher nutrient concentrations and the average fresh weight biomass of Microcystis spp. ranged from 4.6 to 30.4 mg l?1 during the bloom period. Three cladocerans (Moina micrura, Diaphanosoma brachyurum, and Ceriodaphnia cornuta) and two cyclopoids (Mesocyclops dissimilis and Thermocyclops taihokuensis) dominated the crustacean plankton community during the experimental period. The C. cornuta biomass constituted the greatest percentage (55.9–90.0%) of cladoceran biomass in the Microcystis bloom treatments. When the Microcystis biomass increased, the average biomass of C. cornuta increased and the biomass of M. micrura and D. brachyurum decreased, whereas the cyclopoid biomass did not change significantly. The total biomass of cladoceran and crustacean plankton were significantly positively correlated with the Microcystis biomass. Our results indicate that a moderate biomass of Microcystis spp. can favor crustacean plankton to some extent and, furthermore, may impact food web structures in a eutrophic lake.  相似文献   

3.
Non-diazotrophic Microcystis and filamentous N2-fixing Aphanizomenon and Dolichospermum (formerly Anabaena) co-occur or successively dominate freshwaters globally. Previous studies indicate that dual nitrogen (N) and phosphorus (P) reduction is needed to control cyanobacterial blooms; however, N limitation may cause replacement of non-N2-fixing by N2-fixing taxa. To evaluate potentially counterproductive scenarios, the effects of temperature, nutrients, and zooplankton on the spatio-temporal variations of cyanobacteria were investigated in three large, shallow eutrophic lakes in China. The results illustrate that the community composition of cyanobacteria is primarily driven by physical factors and the zooplankton community, and their interactions. Niche differentiation between Microcystis and two N2-fixing taxa in Lake Taihu and Lake Chaohu was observed, whereas small temperature fluctuations in Lake Dianchi supported co-dominance. Through structural equation modelling, predictor variables were aggregated into ‘composites’ representing their combined effects on species-specific biomass. The model results showed that Microcystis biomass was affected by water temperature and P concentrations across the studied lakes. The biomass of two filamentous taxa, by contrast, exhibited lake-specific responses. Understanding of driving forces of the succession and competition among bloom-forming cyanobacteria will help to guide lake restoration in the context of climate warming and N:P stoichiometry imbalances.  相似文献   

4.
Lake Taihu is a large, shallow, and eutrophic lake in China. It has provided local communities with valuable fisheries for centuries, but little is known of the trophodynamics, or of its faunal communities. Carbon and nitrogen isotopic composition was used to assess its trophic pathways and the food web structure [food sources and trophic levels (TL)]. Basal food sources were distinguishable based on their δ13C values, ranging from −27.2 to −15.2‰. Consumers were also well separated in δ13C (−26.9 to −17.9‰ for invertebrates and −25.7 to −18.1‰ for fishes), which allowed for an effective discrimination of carbon sources between these fauna. An average trophic enrichment factor of 3.4‰ was used to calculate the TLs based on δ15N of zooplankton, with results indicating a food web having four TLs. Although δ15N values overlap and cover a large range within trophic compartments, the isotopic signatures of the species assessed revealed a general trend of 15N enrichment with increasing TL. Stable isotope signatures were also used to establish a general food web scheme in which five main trophic pathways were analyzed.  相似文献   

5.
Silver and bighead carp were stocked in a large pen to control the nuisance cyanobacterial blooms in Meiliang Bay of Lake Taihu. Plankton abundance and water quality were investigated about once a week from 9 May to 7 July in 2005. Biomass of both total crustacean zooplankton and cladocerans was significantly suppressed by the predation of pen-cultured fishes. There was a significant negative correlation between the N:P weight ratio and phytoplankton biomass. The size-selective predation by the two carps had no effect on the biomass of green alga Ulothrix sp. It may be attributed to the low fish stocking density (less than 40 g m−3) before June. When Microcystis dominated in the water of fish pen, the pen-cultured carps effectively suppressed the biomass of Microcystis, as indicated by the significant decline of chlorophyll a in the >38 μm fractions of the fish pen. Based on the results of our experiment and previous other studies, we conclude that silver and bighead carp are two efficient biomanipulation tools to control cyanobacterial (Microcystis) blooms in the tropical/subtropical eutrophic waters. Moreover, we should maintain an enough stocking density for an effective control of phytoplankton biomass.  相似文献   

6.
Toxic cyanobacterial blooms can strongly affect freshwater food web structures. However, little is known about how the patchy occurrence of blooms within systems affects the spatial distribution of zooplankton communities. We studied this by analysing zooplankton community structures in comparison with the spatially distinct distribution of a toxic Microcystis bloom in a small, shallow, eutrophic lake. While toxic Microcystis was present at all sites, there were large spatial differences in the level of cyanobacterial biomass and in the zooplankton communities; sites with persistently low cyanobacterial biomass displayed a higher biomass of adult Daphnia and higher zooplankton diversity than sites with persistently high cyanobacterial biomass. While wind was the most likely reason for the spatially distinct occurrence of the bloom, our data indicate that it was the differences in cyanobacterial biomass that caused spatial differences in the zooplankton community structures. Overall, our study suggests that even in small systems with extensive blooms ‘refuge sites’ exist that allow large grazers to persist, which can be an important mechanism for a successful re-establishment of the biodiversity in an ecosystem after periods of cyanobacterial blooms.  相似文献   

7.
Lake Erie is the most socioeconomically important and productive of the Laurentian (North American) Great Lakes. Since the mid-1990s cyanobacterial blooms dominated primarily by Microcystis have emerged to become annual, late summer events in the western basin of Lake Erie yet the effects of these blooms on food web dynamics and zooplankton grazing are unclear. From 2005 to 2007, grazing rates of cultured (Daphnia pulex) and natural assemblages of mesozooplankton and microzooplankton on five autotrophic populations were quantified during cyanobacterial blooms in western Lake Erie. While all groups of zooplankton grazed on all prey groups investigated, the grazing rates of natural and cultured mesozooplankton were inversely correlated with abundances of potentially toxic cyanobacteria (Microcystis, Anabaena, and Cylindrospermopsis; p < 0.05) while those of the in situ microzooplankton community were not. Microzooplankton grazed more rapidly and consistently on all groups of phytoplankton, including cyanobacteria, compared to both groups of mesozooplankton. Cyanobacteria displayed more rapid intrinsic cellular growth rates than other phytoplankton groups under enhanced nutrient concentrations suggesting that future nutrient loading to Lake Erie could exacerbate cyanobacterial blooms. In sum, while grazing rates of mesozooplankton are slowed by cyanobacterial blooms in the western basin of Lake Erie, microzooplankton are likely to play an important role in the top-down control of these blooms; this control could be weakened by any future increases in nutrient loads to Lake Erie.  相似文献   

8.
Iron (Fe) is an essential micronutrient for algal growth and can be a potential limiting nutrient in aquatic system, especially regions that exhibits nitrogen (N) limitation. Using short-term nutrient addition bioassays, we evaluated the potential role that iron might play in modifying the response of Microcystis spp. to the anthropogenic phosphorus (P) and N enrichment in hypereutrophic Lake Taihu, the third largest freshwater lake in China. Three nutrient enrichment experiments involving additions of N (as NO3 ?) and P (as PO4 3?) with and without Fe were conducted during 2009?C2010 in Meiliang Bay, a region characterized by summer cyanobacterial (Microcystis spp.) blooms, and East Taihu, a region largely free of cyanobacterial blooms and dominated by macrophytes. In Meiliang Bay, Fe addition alone did not significantly increase Microcystis spp. biomass. However, Fe addition occasionally increased the stimulatory effect of N and P additions on Microcystis spp., indicating that Fe was not a primary limiting nutrient for Microcystis spp. growth. Occasionally Fe was co-limiting with N and P in this region. In East Taihu, the addition of Fe alone significantly stimulated Microcystis spp. growth, while addition of N and/or P had no effects on growth, indicating that Fe was a primary limiting nutrient in East Taihu. The combined addition of Fe and N resulted in a growth response similar to Fe alone, while combined addition of Fe and P yielded greater biomass increases than the addition of Fe alone. This indicated that in East Taihu, N was not limiting and Fe and P supplies facilitated Microcystis spp. growth. These results reflect differential availabilities and limitations of N, P, and Fe in distinct regions of Taihu. The potential role of Fe in eutrophication dynamics of large, regionally complex lakes like Taihu requires further attention.  相似文献   

9.
Cyanobacterial blooms in eutrophic lakes are severe environmental problems worldwide. To characterize the spatiotemporal heterogeneity of cyanobacterial blooms, a high-throughput method is necessary for the specific detection of cyanobacteria. In this study, the cyanobacterial composition of three eutrophic waters in China (Taihu Lake, Dongqian Lake, and Dongzhen Reservoir) was determined by pyrosequencing the cpcBA intergenic spacer (cpcBA-IGS) of cyanobacteria. A total of 2585 OTUs were obtained from the normalized cpcBA-IGS sequence dataset at a distance of 0.05. The 238 most abundant OTUs contained 92% of the total sequences and were classified into six cyanobacterial groups. The water samples of Taihu Lake were dominated by Microcystis, mixed Nostocales species, Synechococcus, and unclassified cyanobacteria. Besides, all the samples from Taihu Lake were clustered together in the dendrogram based on shared abundant OTUs. The cyanobacterial diversity in Dongqian Lake was dramatically decreased after sediment dredging and Synechococcus became exclusively dominant in this lake. The genus Synechococcus was also dominant in the surface water of Dongzhen Reservoir, while phylogenetically diverse cyanobacteria coexisted at a depth of 10 m in this reservoir. In summary, targeted deep sequencing based on cpcBA-IGS revealed a large diversity of bloom-forming cyanobacteria in eutrophic lakes and spatiotemporal changes in the composition of cyanobacterial communities. The genus Microcystis was the most abundant bloom-forming cyanobacteria in eutrophic lakes, while Synechococcus could be exclusively dominant under appropriate environmental conditions.  相似文献   

10.
Small-bodied cladocerans and cyclopoid copepods are becoming increasingly dominant over large crustacean zooplankton in eutrophic waters where they often coexist with cyanobacterial blooms. However, relatively little is known about their algal diet preferences. We studied grazing selectivity of small crustaceans (the cyclopoid copepods Mesocyclops leuckarti, Thermocyclops oithonoides, Cyclops kolensis, and the cladocerans Daphnia cucullata, Chydorus sphaericus, Bosmina spp.) by liquid chromatographic analyses of phytoplankton marker pigments in the shallow, highly eutrophic Lake Võrtsjärv (Estonia) during a seasonal cycle. Copepods (mainly C. kolensis) preferably consumed cryptophytes (identified by the marker pigment alloxanthin in gut contents) during colder periods, while they preferred small non-filamentous diatoms and green algae (identified mainly by diatoxanthin and lutein, respectively) from May to September. All studied cladoceran species showed highest selectivity towards colonial cyanobacteria (identified by canthaxanthin). For small C. sphaericus, commonly occuring in the pelagic zone of eutrophic lakes, colonial cyanobacteria can be their major food source, supporting their coexistence with cyanobacterial blooms. Pigments characteristic of filamentous cyanobacteria and diatoms (zeaxanthin and fucoxanthin, respectively), algae dominating in Võrtsjärv, were also found in the grazers’ diet but were generally avoided by the crustaceans commonly dominating the zooplankton assemblage. Together these results suggest that the co-occurring small-bodied cyclopoid and cladoceran species have markedly different algal diets and that the cladocera represent the main trophic link transferring cyanobacterial carbon to the food web in a highly eutrophic lake.  相似文献   

11.
Lake Taihu, the third largest freshwater lake in China, suffers from harmful cyanobacteria blooms caused by Microcystis spp., which do not fix nitrogen (N). Reduced N (i.e., NH4+, urea and other labile organic N compounds) is an important factor affecting the growth of Microcystis. As the world use of urea as fertilizer has escalated during the past decades, an understanding of how urea cycling relates to blooms of Microcystis is critical to predicting, controlling and alleviating the problem. In this study, the cycling rates of urea-N in Lake Taihu ranged from non-detectable to 1.37 μmol N L−1 h−1 for regeneration, and from 0.042 μmol N L−1 h−1 to 2.27 μmol N L−1 h−1 for potential urea-N removal. The fate of urea-N differed between light and dark incubations. Increased 15NH4+ accumulated and higher quantities of the removed urea-15N remained in the 15NH4+ form were detected in the dark than in the light. A follow-up incubation experiment with 15N-urea confirmed that Microcystis can grow on urea but its effects on urea dynamics were minor, indicating that Microcystis was not the major factor causing the observed fates of urea under different light conditions in Lake Taihu. Bacterial community composition and predicted functional gene data suggested that heterotrophic bacteria metabolized urea, even though Microcystis spp. was the dominant bloom organism.  相似文献   

12.
Cyanobacterial blooms in freshwaters have become one of the most widespread of environmental problems and threaten water resources worldwide. Previous studies on cyanobacteria in Lake Taihu often collected samples from one site (like Meiliang Bay or Zhushan Bay) and focused on the variation in patterns or abundance of Microcystis during the blooming season. However, the distribution of cyanobacteria in Lake Taihu shows differing pattern in various seasons. In this study, water samples were collected monthly for one year at five sites in Lake Taihu with different trophic status and a physicochemical analysis and denaturing gradient gel electrophoresis (DGGE) were conducted. DGGE fingerprint analysis showed that Microcystis (7/35 bands) and Synechococcus (12/35 bands) were the two most dominant genera present during the study period at all five sites. Cyanobium (3/35 bands) was the third most common genus which has seldom been previously reported in Lake Taihu. Redundancy analysis (RDA) indicated that the cyanobacterial community structure was significantly correlated with NO3--N, CODMn, and NH4+-N in the winter and spring, whereas it was correlated with water temperature in the summer and autumn. Limiting the nutrient input (especially of N and C loading) in Lake Taihu would be a key factor in controlling the growth of different genera of cyanobacteria.  相似文献   

13.
This paper studied the sources of food and the trophic levels of silver and bighead carps using stable isotopes (δ13C and δ15N) analysis in Lake Qiandao and Lake Taihu. The δ13C values of POM and phytoplankton indicated that Particulate Organic Matter (POM) is of terrestrial origin in LQ and phytoplankton origin in LT. The different signature of δ15N of phytoplankton and POM also showed the different extent of anthropogenic impacts on the two lakes, with higher impacts in LT than in LQ. In LQ the trophic levels of silver and bighead carps were significantly different (2.48 ± 0.19 and 2.66 ± 0.19, respectively), while in LT the difference was not significant (2.15 ± 1.54 and 2.36 ± 0.38, respectively). Using a mixing model, we found that silver and bighead carps consumed a major proportion on phytoplankton and/or POM in both lakes with higher contribution of phytoplankton in more eutrophic lake. Silver and bighead carps had clear differentiation in food resources with silver carp more on POM and bighead more on zooplankton in deep and mesotrophic lakes. Contrary to this, both carps fed primarily on phytoplankton (and POM) and may have more niche overlaps in shallow and eutrophic lakes.  相似文献   

14.
Blue-green algal blooms formed by Microcystis and Oscillatoria often occur in shallow eutrophic lakes, such as Lake Taihu (China) and Lake Kasumigaura (Japan). Growth characteristics and competitions between Microcystis aeruginosa and Oscillatoria mougeotii were investigated using lake simulator systems (microcosms) at various temperatures. Oscillatoria was the superior competitor, which suppressed Microcystis, when temperature was <20°C, whereas the opposite phenomenon occurred at 30°C. Oscillatoria had a long exponential phase (20 day) and a low growth rate of 0.22 day−1 and 0.20 day−1 at 15°C and 20°C, respectively, whereas Microcystis had a shorter exponential phase (2–3 days) at 30°C and a higher growth rate (0.86 day−1). Interactions between the algae were stronger and more complex in the lake simulator system than flask systems. Algal growth in the lake simulator system was susceptible to light attenuation and pH change, and algae biomasses were lower than those in flasks. The outcome of competition between Microcystis and Oscillatoria at different temperatures agrees with field observations of algal communities in Lake Taihu, indicating that temperature is a significant factor affecting competition between Microcystis and Oscillatoria in shallow, eutrophic lakes.  相似文献   

15.
Nitrogen (N) and phosphorus (P) over-enrichment has accelerated eutrophication and promoted cyanobacterial blooms worldwide. The colonial bloom-forming cyanobacterial genus Microcystis is covered by sheaths which can protect cells from zooplankton grazing, viral or bacterial attack and other potential negative environmental factors. This provides a competitive advantage over other phytoplankton species. However, the mechanism of Microcystis colony formation is not clear. Here we report the influence of N, P and pH on Microcystis growth and colony formation in field simulation experiments in Lake Taihu (China). N addition to lake water maintained Microcystis colony size, promoted growth of total phytoplankton, and increased Microcystis proportion as part of total phytoplankton biomass. Increases in P did not promote growth but led to smaller colonies, and had no significant impact on the proportion of Microcystis in the community. N and P addition together promoted phytoplankton growth much more than only adding N. TN and TP concentrations lower than about TN 7.75–13.95 mg L−1 and TP 0.41–0.74 mg L−1 mainly promoted the growth of large Microcystis colonies, but higher concentrations than this promoted the formation of single cells. There was a strong inverse relationship between pH and colony size in the N&P treatments suggesting CO2 limitation may have induced colonies to become smaller. It appears that Microcystis colony formation is an adaptation to provide the organisms adverse conditions such as nutrient deficiencies or CO2 limitation induced by increased pH level associated with rapidly proliferating blooms.  相似文献   

16.
The natural abundance of stable isotopes (δ13C and δ1315N) was determined for components of the pelagic food web in Loch Ness, a deep oligotrophic lake in northern Scotland, and compared with values from the inflow rivers and the catchment vegetation. Phytoplankton δ13C was low compared to values reported from other lakes, possibly reflecting a high use of 13C-depleted carbon dioxide from respired organic matter before further isotopic fractionation during photosynthesis. Phytoplankton δ13C was appreciably lower than that of dissolved and particulate organic matter (DOM and POM) in the loch. The DOM and POM were evidently overwhelmingly of allochthonous origin and ultimately derived from terrestrial plant detritus. The distinctive δ13C values for phytoplankton and detritus in the loch allowed the use of food sources by grazing crustacean zooplankton to be assessed, and the contributions of phytoplankton carbon and detrital carbon to zooplankton total body carbon appeared to be about equal. Comparison of δ13C and δ15N values for zooplankton and fish allowed assessment of trophic structure in the loch. The very high dependence of the pelagic food web in Loch Ness on allochthonous organic matter inputs from the catchment may be exceptional in a large lake, but has important implications for our understanding of lake ecosystem processes as well as for lake management.  相似文献   

17.
Oneida Lake is a shallow, eutrophic lake with a well-established cyanobacterial population with reported toxic blooms containing hepatotoxic microcystins (MC). Peak bloom events from the summers of 2002 and 2003 were analyzed to determine the principal cyanobacterial genera containing microcystin synthetase (mcy) genes. Sequence analysis of a partial mcyA amplicon targeting Microcystis, Anabaena and Planktothrix sp. indicated that Microcystis sp. was the dominant mcy genotype. This Microcystis clade was split into two distinct sub-clades. Bloom events contained members of both sub-clades with the higher MC concentrations found when both sub-clades were present in near equal proportions. The proportion of Microcystis containing the mcyD gene ranged from 0 to 37% of the total Microcystis population as determined by quantitative PCR (qPCR). The total concentration of Microcystis containing mcyD genes was linearly related to the concentration of MCs (r2 = 0.63). The relationship between mcy genotype and physiochemical variables was examined to determine the factor(s) controlling the periodicity in MC production in Oneida Lake. Multivariate statistical analyses, used to correlate the continuous-response variables, revealed a strong relationship between chlorophyll a, MCs and total Microcystis.  相似文献   

18.
Previous studies of Pyramid Lake, Nevada, led to the hypothesis that detritus could be an important food source for zooplankton because abundance of palatable algal species did not seem to be enough to support the zooplankton community throughout the year. Furthermore, a large portion of the annual primary productivity was attributed to a nonpalatable blue-green alga, Nodularia spumigena. We felt this alga became important to the Pyramid Lake aquatic community upon death, as edible detritus and a source of new nitrogen. Changes in pelagic detritus concentrations and microbial standing crops were monitored to determine the availability of these potential foods. Epilimnetic particulate organic carbon (POC) was primarily living phytoplankton. During holomixis and following spring primary production, hypolimnetic POC was 60–97% detrital, but these profundal POC concentrations were low (ca 650 µg l-1). Detritus-bacteria aggregates were observed only following the September cyanophyte bloom. Although pelagic detritus availability for zooplankton was low, bacterial populations were sufficient to be at least a supplemental food source. Bacteria numbers ranged from 0.50 106 to 24.7 106 ml-1 and increased in response to photosynthetic peaks. Microbial diversity, contribution to POC, and particle association were notable after July. The percentage of living carbon (assessed with ATP measurements) attributable to bacteria was highest in late summer and fall hypolimnetic samples. Patterns of change in organic phosphorus and nitrogen, the presence of a nitrogen-fixing cyanophyte, the N:P ratio, and results of other research demonstrated that non-nitrogen-fixing algae of Pyramid Lake are limited by inorganic nitrogen. The importance of N. spumigena to the aquatic community appeared to be as a source of new nitrogen, rather than as a forage; its mineralization is critical for the growth of palatable diatoms and green algae following winter mixing.  相似文献   

19.
Lake Taihu has been severely eutrophied during the last few decades and dense cyanobacterial blooms have led to a decrease in phytoplankton diversity. The cyanobacterial blooms in Lake Taihu were mainly composed of unicellular colony-forming Microcystis and filamentous heterocystous Dolichospermum (formerly known as planktonic species of Anabaena). In contrast to that of Microcystis spp., the fundamental knowledge about diversity, abundance and dynamics of Dolichospermum populations in Lake Taihu is lacking. The present study was conducted to understand genotypic distribution, dynamics and succession of Dolichospermum populations in Lake Taihu. By sequencing 688 internal transcribed spacer (ITS) regions between the 16S and 23S rRNA genes of Dolichospermum, we were able to confirm that all the sequences were Dolichospermum rather than Aphanizomenon. 118 different genotypes were identified from the obtained sequences, and two genotypes (W-type and L-type) were found to dominate in the lake, representing 36.6% and 26.2% of the total sequences, respectively. These two dominant genotypes of Dolichospermum displayed the significant seasonal pattern. Stepwise regressions analysis revealed that water temperature was associated with the two dominant genotypes. The combined results implied the possible existence of ecotypes in bloom-forming cyanobacteria, probably triggered by water temperature in the lake.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号