首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Enoate reductase present in Clostridium kluyveri and Clostridium spec. La 1 could be detected in three strains of C. tyrobutyricum and ten clostridia belonging to the groups of proteolytic and saccharolytic or proteolytic species, respectively. In C. pasteurianum, C. butyricum and C. propionicum enoate reductase could not be found even after growth on (E)-2-butenoate. A 2-oxo-carboxylate reductase was present in rather low activities in the non-proteolytic clostridia which produce enoate reductase. High activities (up to 10 U/mg protein) of 2-oxo-carboxylate reductase were found in six of ten proteolytic clostridia. The substrate specificities of the enoate reductase and the 2-oxo-carboxylate reductases from the proteolytic clostridia were determined with different alpha, beta-unsaturated carboxylates (enoates) and 2-oxo-carboxylates, respectively. Enoates as well as 2-oxo-carboxylates are intermediates of the pathway by which amino acids are degraded. An explanation is offered for the long known but not understood fact that in the Stickland reaction isoleucine always acts as an electron donor and leucine and phenylalanine can be electron acceptors as well as donors. Peptostreptococcus anaerobius converting some amino acids to the same products as C. sporogenes did this also with the intermediates which were found for the reductive deamination of amino acids in C. sporogenes, however, in crude extracts reduction of enoates occurred only in an activated form.  相似文献   

2.
When grown on formate, formate-CO, and methanol-CO, Butyribacterium methylotrophicum contained high levels of tetrahydrofolate (H4folate) and required enzymes, carbon monoxide dehydrogenase, formate dehydrogenase, and hydrogenase. The activities of methylene-H4folate reductase were comparable to other H4 folate activities (which ranged from 0.55 to 9.28 mumol/min per mg of protein) when measured by an improved procedure. The H4folate activities in formate-grown cells were twice those found in formate-CO-grown cells. This result correlated with a growth yield on formate that was one-half that on formate-CO. The stoichiometry of the formyl-H4folate synthetase reaction was 1 mol of ATP per 1 mol of formate. The methylene-H4folate dehydrogenase was NAD+ dependent. We conclude that B. methylotrophicum utilizes these enzymes in homoacetogenic catabolism.  相似文献   

3.
The enzyme activities of Clostridium La 1 and Clostridium kluyveri involved in the stereospecific hydrogenation of ,-unsaturated carbonyl compounds with hydrogen gas were measured. In C. La 1 the specific activities of hydrogenase and enoate reductase depended heavily on the growth phase and the composition of the medium. During growth in batch cultures on 70 mM crotonate the specific activity of hydrogenase increased and then dropped to about 10% of its maximum value, whereas the activity of enoate reductase reached its maximum in cells of the stationary phase. Under certain conditions during growth the activity ratio hydrogenase: enoate reductase changed from 120 to 1. Thus, the rate limiting enzyme for the hydrogenation can be either the hydrogenase or the enoate reductase, depending on the growth conditions of the cells.The specific activities of ferredoxin-NAD reductase and butyryl-CoA dehydrogenase increased 3-4-fold during growth on crotonate. By turbidostatic experiments it was shown that at constant input of high crotonate concentrations (200 mM) the enoate reductase activity was almost completely suppressed; it increased steadily with decreasing crotonate down to an input concentration of 35 mM.Glucose as carbon source led to high hydrogenase and negligible enoate reductase activities. The latter could be induced by changing the carbon source of the medium from glucose to crotonate. Tetracycline inhibited the formation of enoate reductase.A series of other carbon sources was tested. They can be divided into ones which result in high hydrogenase and rather low enoate reductase activities and others which cause the reverse effect.When the Fe2+ concentration in crotonate medium was growth limiting, cells with relatively high hydrogenase activity and very low enoate reductase activity in the stationary phase were obtained. At Fe2+ concentrations above 3·10-7 M enoate reductase increased and hydrogenase activity reached its minimum. The ratio of activities changes by a factor of about 200. In a similar way the dependence of enzyme activities on the concentration of sulfate was studied.In batch cultures of Clostridium kluyveri a similar opposite time course of enoate reductase and hydrogenase was found.The possible physiological significance of this behavior is discussed.Non Standard Abbreviations O.D.578 Optical density at 578 nm Dedicated to Professor Dr. O. Kandler on the occasion of his 60th birthday  相似文献   

4.
The role of selenium and molybdenum in the metabolism of Escherichia coli was explored by growing cells in a simple salts medium and examining the metabolic consequences of altering the concentration of molybdenum and selenium compounds in the medium. The addition of tungstate increased the molybdate deficiency of this medium, as reflected by lowered levels of enzyme systems previously recognized to require compounds of molybdenum and selenium for their formation [formate-dependent oxygen reduction, formate dehydrogenase (FDH) (EC 1.2.2.1), and nitrate reductase (EC 1.9.6.1)]. The requirement for selenium and molybdenum appears to be unique to the enzymes of formate and nitrate metabolism since molybdate- and selenite-deficient medium had no effect on the level of several dehydrogenase and oxidase systems, for which the electron donors were reduced nicotinamide adenine dinucleotide, succinate, d- or l-lactate, and glycerol. In addition, no effect was observed on the growth rate or cell yield with any carbon source tested (glucose, glycerol, dl-lactate, acetate, succinate, and l-malate) when the medium was deficient in molybdenum and selenium. dl-Selenocystine was about as effective as selenite in stimulating the formation of formate dehydrogenase, whereas dl-selenomethionine was only 1% as effective. In aerobic cells, an amount of FDH was formed such that 3,200 or 3,800 moles of formate were oxidized per min per mole of added selenium (added as dl-selenocystine or selenite, respectively).  相似文献   

5.
Parametric equations describing the total reaction rate in an electrochemical cell containing free enoate reductase are presented and their use in determining optimal cell and electrode dimensions discussed. Immobilized enoate reductase from Clostridium tyrobutyricum DSM 1460 was used for the repetitive stereospecific reduction of (E)-2-methyl-3-phenyl-2-propenoate and (E)-2-methyl-2-butenoate to their respective (R)-enantiomeric saturated products. The reducing equivalents were provided by electrochemically regenerated methylviologen. The enzyme immobilized in calcium alginate was used in two different systems: (a) on cellulose filters packed into a reactor outside the electrochemical cell, and (b) in the electrochemical cell on a carbon felt electrode soaked with the enzyme and alginate before it was cross-linked with calcium ions.Cyclic voltammetry indicated that the ionotropic gel increased the concentration of methylviologen close to the electrode surface. Via immobilization the half life of enoate reductase in the electrochemical cell increased from about 8–350 h of continuous operation.  相似文献   

6.
When Escherichia coli was grown on medium containing 10 mM tungstate the formation of active formate dehydrogenase, nitrate reductase, and the complete formate-nitrate electron transport pathway was inhibited. Incubation of the tungstate-grown cells with 1 mM molybdate in the presence of chloramphenicol led to the rapid activation of both formate dehydrogenase and nitrate reductase, and, after a considerable lag, the complete electron transport pathway. Protein bands which corresponded to formate dehydrogenase and nitrate reductase were identified on polyacrylamide gels containing Triton X-100 after the activities were released from the membrane fraction and partially purified Cytochrome b1 was associated with the protein band corresponding to formate dehydrogenase but was not found elsewhere on the gels. When a similar fraction was prepared from cells grown on 10 mM tungstate, an inactive band corresponding to formate dehydrogenase was not observed on polyacrylamide gels; rather, a new faster migrating band was present. Cytochrome b1 was not associated with this band nor was it found anywhere else on the gels. This new band disappeared when the tungstate-grown cells were incubated with molybdate in the presence of chloramphenicol. The formate dehydrogenase activity which was formed, as well as a corresponding protein band, appeared at the original position on the gels. Cytochrome b1 was again associated with this band. The protein band which corresponded to nitrate reductase also was severely depressed in the tungstate-grown cells and a new faster migrating band appeared on the polyacrylamide gels. Upon activation of the nitrate reductase by incubation of the cells with molybdate, the new band diminished and protein reappeared at the original position. Most of the nitrate reductase activity which was formed appeared at the original position of nitrate reductase on gels although some was present at the position of the inactive band formed by tungstate-grown cells. Apparently, inactive forms of both formate dehydrogenase and nitrate reductase accumulate during growth on tungstate which are electrophoretically distinct from the active enzymes. Activation by molybdate results in molecular changes which include the reassociation of cytochrome b1 with formate dehydrogenase and restoration of both enzymes to their original electrophoretic mobilities.  相似文献   

7.
Summary The rate of the bio-electrochemical conversion of crotonic acid into butyric acid by enoate reductase is dependent on the type of viologen used. This illustrates that the reaction between enzyme and mediator, rather than the reaction between enzyme and crotonic acid, is rate limiting. Thus for bio-electrochemical conversion of enoates into saturated chiral acids immobilization of enoate reductase is beneficial from a kinetic point of view. The highest rate constant (k'=7.0×106 M−1.s−1) was measured using mono-N-(aminopropyl) viologen.  相似文献   

8.
The effects of adding molybdate and selenite to a glucose-minimal salts medium on the formation of enzymes involved in the anaerobic metabolism of formate and nitrate in Escherichia coli have been studied. When cells were grown anaerobically in the presence of nitrate, molybdate stimulated the formation of nitrate reductase and a b-type cytochrome, resulting in cells that had the capacity for active nitrate reduction in the absence of formate dehydrogenase. Under the same conditions, selenite in addition to molybdate was required for forming the enzyme system which permits formate to serve as an effective electron donor for nitrate reduction. When cells were grown anaerobically on a glucose-minimal salts medium without nitrate, active hydrogen production from formate as well as formate dehydrogenase activity depended on the presence of both selenite and molybdate. The effects of these metals on the formation of formate dehydrogenase was blocked by chloramphenicol, suggesting that protein synthesis is required for the increases observed. It is proposed that the same formate dehydrogenase is involved in nitrate reduction, hydrogen production, and in aerobic formate oxidation.  相似文献   

9.
Efficient cofactor regeneration and reuse are highly desired for many important biotransformation applications. Here we show for the first time that cofactor NAD(H) covalently attached to micro particles, which can be easily recovered and reused, effectively mediated multistep reactions catalyzed by enzymes that were also immobilized with the micro particles. Such an immobilized enzyme-cofactor catalytic system was examined for the production of methanol from CO(2) with in situ cofactor regeneration. Four enzymes including formate, formaldehyde, alcohol, and glutamate dehydrogenases were coimmobilized using the same particles as that used for cofactor immobilization (enzymes and cofactor were immobilized separately). Reactions were performed by bubbling CO(2) in a suspension solution of the particle-attached enzymes and cofactor. It appeared that the collision among the particles afforded sufficient interactions between the cofactor and enzymes, and thus enabled the sequential transformation of CO(2) to methanol along with cofactor regeneration. For a 30-min batch reaction, a productivity of 0.02 micromol methanol/h/g-enzyme was achieved. That was lower than but comparable to the 0.04 micromol methanol/h/g-enzyme observed for free enzymes and cofactor at the same reaction conditions. The immobilized system showed fairly good stabilities in reusing. Over 80% of their original productivity was retained after 11 reusing cycles, with a cumulative methanol yield based on the amount of cofactor reached 127%. That was a promising enhancement in cofactor utilization as compared to the single-batch yield of 12% observed with free enzymes and free cofactor.  相似文献   

10.
Degradation of microbiodies in the methanolutilizing yeastCandida boidinii was mainly studies by electron microscopical observation. The yeast cells precultured on methanol medium contained five to six microbodies per section and showed high activities of alcohol oxidase, catalase, formaldehyde dehydrogenase and formate dehydrogenase. When the precultured cells were transferred into an ethanol medium the number of microbodies and concomitantly the activities of alcohol oxidase and catalase decreased. After 6 h of cultivation microbodies were hardly detected. Also the activity of alcohol oxidase was not measurable and catalase activity was reduced to one tenth, whereas the activities of formaldehyde dehydrogenase and formate dehydrogenase decreased only to about 70%. Experiments with methanol-grown cells transferred into an ethanol medium without nitrogen source indicated that the inactivation of alcohol oxidase and catalase does not require protein synthesis. However, the reappearance of these enzymes is presumably due to de novo protein synthesis as shown by experiments with cycloheximide.  相似文献   

11.
Incorporation of the electron-transport enzymes of Vibrio succinogenes into liposomes was used to investigate the question of whether, in this organism, a cytochrome b is involved in electron transport from formate to fumarate on the formate side of menaquinone. (1) Formate dehydrogenase lacking cytochrome b was prepared by splitting the cytochrome from the formate dehydrogenase complex. The enzyme consisted of two different subunits (Mr 110 000 and 20 000), catalyzed the reduction of 2,3-dimethyl-1,4-naphthoquinone by formate, and could be incorporated into liposomes. (2) The modified enzyme did not restore electron transport from formate to fumarate when incorporated into liposomes together with vitamin K-1 (instead of menaquinone) and fumarate reductase complex. In contrast, restoration was observed in liposomes that contained formate dehydrogenase with cytochrome b (Em = -224 mV), in addition to the subunits mentioned above (formate dehydrogenase complex). (3) In the liposomes containing formate dehydrogenase complex and fumarate reductase complex, the response of the cytochrome b of the formate dehydrogenase complex was consistent with its interaction on the formate side of menaquinone in a linear sequence of the components. The low-potential cytochrome b associated with fumarate reductase complex was not reducible by formate under any condition. It is concluded that the low-potential cytochrome b of the formate dehydrogenase complex is an essential component in the electron transport from formate to menaquinone. The low-potential cytochrome b of the fumarate reductase complex could not replace the former cytochrome in restoring electron-transport activity.  相似文献   

12.
Summary The levels of several redox enzymes in a chlorate-resistant mutant of Proteus mirabilis, which is partially affected in the formation of formate hydrogenlyase, thiosulfate reductase and tetrathionate reductase, were compared with those of the wild type. The composition of the electron transport system of both strains was almost the same in cells grown aerobically, but very different in cells grown anaerobically. In the mutant, the cytochrome content increased twofold, whereas the level of the anaerobic enzymes is strongly diminished. The anaerobic formation of electron transport components in the mutant was, in contrast to that of the wild type, not influenced significantly by azide. During anaerobic growth with nitrate low levels of a functional nitrate reductase system were formed in the mutant. Under these conditions the formation of formate dehydrogenase, formate hydrogenlyase, formate oxidase, thiosulfate reductase, tetrathionate reductase, cytochrome b563,5 and partly that of cytochrome a2, was repressed. The repressive effect of nitrate, however, was completely abolished by azide. Therefore, it seems likely that a functional nitrate reductase system, rather than nitrate, controls the formation of the enzymes repressible by nitrate.  相似文献   

13.
When Escherichia coli was grown in the presence of tungstate, inactive forms of two molybdoenzymes, nitrate reductase and formate dehydrogenase, accumulated and were converted to their active forms upon incubation of cell suspensions with molybdate and chloramphenicol. The conversion to the active enzymes did not occur in cell extracts. When incubated with [(99)Mo]molybdate and chloramphenicol, the tungstate-grown cells incorporated (99)Mo into protein components which were released from membranes by procedures used to release nitrate reductase and formate dehydrogenase and which migrated with these activities on polyacrylamide gels. Although neither activity was formed during incubation of the crude extract with molybdate, (99)Mo was incorporated into protein components which were released from the membrane fraction under the same conditions and were similar to the active enzymes in their electrophoretic properties. The in vitro incorporation of (99)Mo occurred specifically into these components and was equal to or greater than the amount incorporated in vivo under the same conditions. Molybdenum in preformed, active nitrate reductase and formate dehydrogenase did not exchange with [(99)Mo]molybdate, demonstrating that the observed incorporation depended on the demolybdo forms of the enzymes. We conclude that molybdate may be incorporated into the demolybdo forms both in vivo and in vitro; some unknown additional factor or step, required for active enzyme formation, occurs in vivo but not in vitro under the conditions employed.  相似文献   

14.
Summary A preliminary study of formate production from CO plus H2O using the intact cells ofMethanosarcina barkeri was conducted. Formate production from CO gas required the participation of three enzymes, CO dehydrogenase, hydrogenase and formate dehydrogenase. Hypophosphite inhibited formate formation from CO plus H2O by about 80%. In this system, 9 g/l of formate could be obtained from CO gas after 48 h of incubation at 37°C, pH 8.0.  相似文献   

15.
Several NAD(P)+-dependent hydroxysteroid dehydrogenases, namely 3α-hydroxysteroid dehydrogenase, β-hydroxysteroid dehydrogenase, 7α-hydroxysteroid dehydrogenase, and 12α-hydroxysteroid dehydrogenase were separately immobilized on nylon tubes for the continuous-flow automated assay of hydroxysteroids. 3α-Hydroxysteroid dehydrogenase was also immobilized on pore glass. Spectrophotometric monitoring in the visible region, where blank values were markedly reduced, was achieved through the Meldola blue catalyzed transfer of hydrogen from NAD(P)H to a tetrazolium salt. Nylon-tube-immobilized enzymes maintained 45–55% of the original activity after 1 month of intermittent use. The operational range, using the “end point” approach, was 1–25 nmol of steroid and the assay speed 10–15 samples/h. Reliable results were obtained in the determination of 3α-hydroxysteroids and 3β,17β-hydroxysteroids in urine and total bile acids in serum.  相似文献   

16.
甲醛脱氢酶(formaldehyde dehydrogenase,ADH)与甲酸脱氢酶(formate dehydrogenase,FDH)是甲醛氧化途径的两个关键酶.恶臭假单胞菌(Pseudomonas putida)的PADH是一种不依赖谷胱甘肽可以把游离甲醛直接氧化为甲酸的脱氢酶,博伊丁假丝酵母菌(Candida boidinii)的FDH在有NAD+存在时可以把甲酸氧化为二氧化碳.以基因组DNA为模板用PCR方法,从P.putida中扩增出PADH基因的编码区(padh),从C.boidinii中扩增出FDH的编码区(fdh),然后亚克隆到pET-28a(+)中分别构建这两个基因的原核表达载体pET-28a-padh和pET-28a-fdh,转化大肠杆菌,利用IPTG诱导重组蛋白PADH和FDH的表达.通过优化条件使重组蛋白的表达量占菌体总蛋白的70%以上,通过亲和层析法纯化出可溶性PADH和FDH重组蛋白.对重组蛋白的生化特性分析结果表明:PADH在最适反应温度50℃的活性为1.95 U/mg;FDH在最适反应温度40℃的活性为0.376 U/mg.所表达的重组蛋白与之前报道过的相比,具有更好的热稳定性和更广的温度适应范围.将PADH、FDH两个重组蛋白及辅因子NAD+固定到聚丙烯酰胺载体基质上,对固定化酶甲醛吸收效果的初步分析结果显示固定化酶对空气中的甲醛有一定的吸收效果,说明这两种酶被固定后具有开发成治理甲醛污染环保产品的潜力.  相似文献   

17.
G. Unden  A. Kröger 《BBA》1983,725(2):325-331
Incorporation of the electron-transport enzymes of Vibrio succinogenes into liposomes was used to investigate the question of whether, in this organism, a cytochrome b is involved in electron transport from formate to fumarate on the formate side of menaquinone. (1) Formate dehydrogenase lacking cytochrome b was prepared by splitting the cytochrome from the formate dehydrogenase complex. The enzyme consisted of two different subunits (Mr 110 000 and 20 000), catalyzed the reduction of 2,3-dimethyl-1,4-naphthoquinone by formate, and could be incorporated into liposomes. (2) The modified enzyme did not restore electron transport from formate to fumarate when incorporated into liposomes together with vitamin K-1 (instead of menaquinone) and fumarate reductase complex. In contrast, restoration was observed in liposomes that contained formate dehydrogenase with cytochrome b (Em = ?224 mV), in addition to the subunits mentioned above (formate dehydrogenase complex). (3) In the liposomes containing formate dehydrogenase complex and fumarate reductase complex, the response of the cytochrome b of the formate dehydrogenase complex was consistent with its interaction on the formate side of menaquinone in a linear sequence of the components. The low-potential cytochrome b associated with fumarate reductase complex was not reducible by formate under any condition. It is concluded that the low-potential cytochrome b of the formate dehydrogenase complex is an essential component in the electron transport from formate to menaquinone. The low-potential cytochrome b of the fumarate reductase complex could not replace the former cytochrome in restoring electron-transport activity.  相似文献   

18.
Graphene oxide‐based nanomaterials are promising for enzyme immobilization due to the possibilities of functionalizing surface. Polyethylenimine‐grafted graphene oxide was constructed as a novel scaffold for immobilization of formate dehydrogenase. Compared with free formate dehydrogenase and graphene oxide adsorbed formate dehydrogenase, thermostability, storage stability, and reusability of polyethylenimine‐grafted graphene oxide‐formate dehydrogenase were enhanced. Typically, polyethylenimine‐grafted graphene oxide‐formate dehydrogenase remained 47.4% activity after eight times’ repeat reaction. The immobilized capacity of the polyethylenimine‐grafted graphene oxide was 2.4‐folds of that of graphene oxide. Morphological and functional analysis of polyethylenimine‐grafted graphene oxide‐formate dehydrogenase was performed and the assembling mechanism based on multi‐level interactions was studied. Consequently, this practical and facile strategy will likely find applications in biosynthesis, biosensing, and biomedical engineering.  相似文献   

19.
Hydrogenase and fumarate reductase isolated from Wolinella succinogenes were incorporated into liposomes containing menaquinone. The two enzymes were found to be oriented solely to the outside of the resulting proteoliposomes. The proteoliposomes catalyzed fumarate reduction by H2 which generated an electrical proton potential (Delta(psi) = 0.19 V, negative inside) in the same direction as that generated by fumarate respiration in cells of W. succinogenes. The H+/e ratio brought about by fumarate reduction with H2 in proteoliposomes in the presence of valinomycin and external K+ was approximately 1. The same Delta(psi) and H+/e ratio was associated with the reduction of 2,3-dimethyl-1,4-naphthoquinone (DMN) by H2 in proteoliposomes containing menaquinone and hydrogenase with or without fumarate reductase. Proteoliposomes containing menaquinone and fumarate reductase with or without hydrogenase catalyzed fumarate reduction by DMNH2 which did not generate a Delta(psi). Incorporation of formate dehydrogenase together with fumarate reductase and menaquinone resulted in proteoliposomes catalyzing the reduction of fumarate or DMN by formate. Both reactions generated a Delta(psi) of 0.13 V (negative inside). The H+/e ratio of formate oxidation by menaquinone or DMN was close to 1. The results demonstrate for the first time that coupled fumarate respiration can be restored in liposomes using the well characterized electron transport enzymes isolated from W. succinogenes. The results support the view that Delta(psi) generation is coupled to menaquinone reduction by H2 or formate, but not to menaquinol oxidation by fumarate. Delta(psi) generation is probably caused by proton uptake from the cytoplasmic side of the membrane during menaquinone reduction, and by the coupled release of protons from H2 or formate oxidation on the periplasmic side. This mechanism is supported by the properties of two hydrogenase mutants of W. succinogenes which indicate that the site of quinone reduction is close to the cytoplasmic surface of the membrane.  相似文献   

20.
Wolinella succinogenes can grow at the expense of sulphur reduction by formate. The enzymes involved in the catalysis of this catabolic reaction have been investigated. From the results the following conclusions are drawn: 1. The enzyme isolated as a sulphide dehydrogenase from the cytoplasmic membrane of W. succinogenes is the functional sulphur reductase that operates in the electron transport from formate to sulphur. 2. The enzyme (Mr 200,000) consists essentially of one type of subunit with the Mr 85,000 and contains equal amounts of free iron and sulphide (120 mol/g protein), but no heme. It represents the first functional sulphur reductase ever isolated. 3. The electron transport chain catalyzing sulphur reduction by formate consists merely of formate dehydrogenase and sulphur reductase. A lipophilic quinone which mediates the transfer of electrons between enzymes in other chains, is apparently not involved. This is the first known example of a phosphorylative electron transport chain that operates without a quinone. 4. The same formate dehydrogenase appears to operate in the electron transport both with sulphur and with fumarate as the terminal electron acceptor in W. succinogenes.Abbreviations DMN 2,3-Dimethyl-1,4-naphthoquinone - DTT dithiothreitol - MK menaquinone (vitamin K2) - PMSF phenylmethane sulfonylfluoride - Tricine N-[2-hydroxy-1,1-bis(hydroxymethyl)ethyl]-glycine - Tea triethanolamine - Hepes 4-(2-hydroxyethyl)-1-piperazineethane sulfonate Dedicated to Professor F. Schneider (Philipps-Universität Marburg) on the occasion of his 60th birthday  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号