首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A chimeric CaHAK1–LeHAK5 transporter with only 15 amino acids of CaHAK1 in the N-terminus mediates high-affinity K+ uptake in yeast cells. Kinetic and expression analyses strongly suggest that LeHAK5 mediates a significant proportion of the high-affinity K+ uptake shown by K+-starved tomato (Solanum lycopersicum) plants. The development of high-affinity K+ uptake, putatively mediated by LeHAK5, was correlated with increased LeHAK5 mRNA levels and a more negative electrical potential difference across the plasma membrane of root epidermal and cortical cells. However, this increase in high-affinity K+ uptake was not correlated with the root K+ content. Thus, (i) growth conditions that result in a hyperpolarized root plasma membrane potential, such as K+ starvation or growth in the presence of NH4 +, but which do not decrease the K+ content, lead to increased LeHAK5 expression; (ii) the presence of NaCl in the growth solution, which prevents the hyperpolarization induced by K+ starvation, also prevents LeHAK5 expression. Moreover, once the gene is induced, depolarization of the plasma membrane potential then produces a decrease in the LeHAK5 mRNA. On the basis of these results, we propose that the plant membrane electrical potential plays a role in the regulation of the expression of this gene encoding a high-affinity K+ transporter.  相似文献   

2.
Although plant phosphate uptake is reduced by low soil temperature, arbuscular mycorrhizal (AM) fungi are responsible for P uptake in many plants. We investigated growth and carbon allocation of the AM fungus Glomus mosseae and a host plant (Plantago lanceolata) under reduced soil temperature. Plants were grown in compartmented microcosm units to determine the impact on both fungus and roots of a constant 2.7 °C reduction in soil temperature for 16 d. C allocation was measured using two (13)CO(2) pulse labels. Although root growth was reduced by cooling, AM colonization, growth and respiration of the extraradical mycelium (ERM) and allocation of assimilated (13)C to the ERM were all unaffected; the frequency of arbuscules increased. In contrast, root respiration and (13)C content and plant P and Zn content were all reduced by cooling. Cooling had less effect on N and K, and none on Ca and Mg content. The AM fungus G. mosseae was more able to sustain activity in cooled soil than were the roots of P. lanceolata, and so enhanced plant P content under a realistic degree of soil cooling that reduced plant growth. AM fungi may therefore be an effective means to promote plant nutrition under low soil temperatures.  相似文献   

3.
The effect of the host plant on the efficacy of Verticillium chlamydosporium as a biological control agent for root-knot nematodes was investigated in four experiments. The growth of the fungus in the rhizosphere differed significantly with different plant species, the brassicas kale and cabbage supporting the most extensive colonization. The presence of nematodes in roots increased the growth of the fungus on most plants, and this effect was associated with the emergence of egg masses on the root surface; the presence of Meloidogyne incognita did not stimulate growth of the fungus in the rhizosphere until 5 weeks after the addition of infective juveniles to soil. The susceptibility of the plant host to M. incognita attack influenced the numbers of nematode eggs parasitized by the fungus. The control of the nematode was less effective on tomato roots, which produced large galls as a result of nematode infection compared with control on potato roots where galls were smaller, despite the greater abundance of the fungus in the rhizosphere of tomato plants. In large galls, a significant proportion of the egg masses remained embedded in the roots and was isolated from the fungus which was confined to the rhizosphere. Hence, the plant species has a marked effect on the efficacy of V. chlamydosporium as a biological control agent.  相似文献   

4.
Members of the fungal genus Trichoderma stimulate growth and reinforce plant immunity. Nevertheless, how fungal signaling elements mediate the establishment of a successful Trichoderma?plant interaction is largely unknown. In this work, we analyzed growth, root architecture and defense in an Arabidopsis?Trichoderma co‐cultivation system, including the wild‐type (WT) strain of the fungus and mutants affected in NADPH oxidase. Global gene expression profiles were assessed in both the plant and the fungus during the establishment of the interaction. Trichoderma atroviride WT improved root branching and growth of seedling as previously reported. This effect diminished in co‐cultivation with the ?nox1, ?nox2 and ?noxR null mutants. The data gathered of the Arabidopsis interaction with the ?noxR strain showed that the seedlings had a heightened immune response linked to jasmonic acid in roots and shoots. In the fungus, we observed repression of genes involved in complex carbohydrate degradation in the presence of the plant before contact. However, in the absence of NoxR, such repression was lost, apparently due to a poor ability to adequately utilize simple carbon sources such as sucrose, a typical plant exudate. Our results unveiled the critical role played by the Trichoderma NoxR in the establishment of a fine‐tuned communication between the plant and the fungus even before physical contact. In this dialog, the fungus appears to respond to the plant by adjusting its metabolism, while in the plant, fungal perception determines a delicate growth?defense balance.  相似文献   

5.
The interaction between Meloidogyne incognita (race 2) and Rhizoctonia solani (AG 4) in a root rot disease complex of green beans (Phaseolus vulgaris) was examined in a greenhouse pot experiment. Three week-old seedlings (cv. Contender) were inoculated with the nematode and/or the fungus in different combinations and sequences. Two months after last nematode inoculation, the test was terminated and data were recorded. The synchronized inoculation by both pathogens (N + F) increased the index of Rhizoctonia root rot and the number of root galls; and suppressed plant growth, compared to controls. However, the severity of root rot and suppression of plant growth were greater and more evident when inoculation by the nematode preceded the fungus (N  F) by two weeks. Nematode reproduction (eggs/g root) was adversely affected by the presence of the fungus except by the synchronized inoculation. When inoculation by nematode preceded the fungus, plant growth was severely suppressed and roots were highly damaged and rotted leading to a decrease of root galls and eggs.  相似文献   

6.
The growth response of the hyphae of mycorrhizal fungi has been determined, both when plant and fungus together and when only the fungus was exposed to a temperature change. Two host plant species, Plantago lanceolata and Holcus lanatus, were grown separately in pots inoculated with the mycorrhizal fungus Glomus mosseae at 20/18 degrees C (day/night); half of the pots were then transferred to 12/10 degrees C. Plant and fungal growth were determined at six sequential destructive harvests. A second experiment investigated the direct effect of temperature on the length of the extra-radical mycelium (ERM) of three mycorrhizal fungal species. Growth boxes were divided in two equal compartments by a 20 micro m mesh, allowing only the ERM and not roots to grow into a fungal compartment, which was either heated (+8 degrees C) or kept at ambient temperature. ERM length (LERM) was determined on five sampling dates. Growth of H. lanatus was little affected by temperature, whereas growth of P. lanceolata increased with temperature, and both specific leaf area (SLA) and specific root length (SRL) increased independently of plant size. Percentage of colonized root (LRC) and LERM were positively correlated with temperature when in symbiosis with P. lanceolata, but differences in LRC were a function of plant biomass. Colonization was very low in H. lanatus roots and there was no significant temperature effect. In the fungal compartment LERM increased over time and was greatest for Glomus mosseae. Heating the fungal compartment significantly increased LERM in two of the three species but did not affect LRC. However, it significantly increased SRL of roots in the plant compartment, suggesting that the fungus plays a regulatory role in the growth dynamics of the symbiosis. These temperature responses have implications for modelling carbon dynamics under global climate change.  相似文献   

7.
During infection, fungal pathogens activate virulence mechanisms, such as host adhesion, penetration and invasive growth. In the vascular wilt fungus Fusarium oxysporum, the mitogen-activated protein kinase Fmk1 is required for plant infection and controls processes such as cellophane penetration, vegetative hyphal fusion, or root adhesion. Here, we show that these virulence-related functions are repressed by the preferred nitrogen source ammonium and restored by treatment with l-methionine sulfoximine or rapamycin, two specific inhibitors of Gln synthetase and the protein kinase TOR, respectively. Deletion of the bZIP protein MeaB also resulted in nitrogen source–independent activation of virulence mechanisms. Activation of these functions did not require the global nitrogen regulator AreA, suggesting that MeaB-mediated repression of virulence functions does not act through inhibition of AreA. Tomato plants (Solanum lycopersicum) supplied with ammonium rather than nitrate showed a significant reduction in vascular wilt symptoms when infected with the wild type but not with the ΔmeaB strain. Nitrogen source also affected invasive growth in the rice blast fungus Magnaporthe oryzae and the wheat head blight pathogen Fusarium graminearum. We propose that a conserved nitrogen-responsive pathway might operate via TOR and MeaB to control virulence in plant pathogenic fungi.  相似文献   

8.
Mycorrhizal fungus colonization of roots may modify plant metal acquisition and tolerance. In the present study, the contribution of the extraradical mycelium of an arbuscular mycorrhizal (AM) fungus, Glomus mosseae (BEG 107), to the uptake of metal cations (Cu, Zn, Cd and Ni) by cucumber (Cucumis sativus) plants was determined. The influence of the amount of P supplied to the hyphae on the acquisition and partitioning of metal cations in the mycorrhizal plants was also investigated. Pots with three compartments were used to separate root and root-free hyphal growing zones. The shoot concentration of Cd and Ni was decreased in mycorrhizal plants compared to non-mycorrhizal plants. In contrast, shoot Zn and Cu concentrations were increased in mycorrhizal plants. High P supply to hyphae resulted in decreased root Cu concentrations and shoot Cd and Ni concentrations in mycorrhizal plants. These results confirm that some elements required for plant growth (P, Zn, Cu) are taken up by mycorrhizal hyphae and are then transported to the plants. Conversely, Cd and Ni were transported in much smaller amounts by hyphae to the plant, so that arbuscular mycorrhizal fungus colonization could partly protect plants from toxic effects of these elements. Selective uptake and transport of plant essential elements over non-essential elements by AM hyphae, increased growth of mycorrhizal plants, and metal accumulation in the root may all contribute to the successful growth of mycorrhizal plants on metal-rich substrates. These effects are stimulated when hyphae can access sufficient P in soil.  相似文献   

9.
The root endophytic fungus Heteroconium chaetospira was isolated from roots of Chinese cabbage grown in field soil in Japan. This fungus penetrates through the outer epidermal cells of its host, passes into the inner cortex, and grows throughout the cortical cells, including those of the root tip region, without causing apparent pathogenic symptoms. There are no ultrastructural signs of host resistance responses. H. chaetospira has been recovered from 19 plant species in which there was no disruption of host growth. H. chaetospira has a symbiotic association with Chinese cabbage. The fungus provides nitrogen in exchange for carbon. These associations are beneficial for the inoculated plants, as demonstrated by increased growth rate. When used as a preinoculum, H. chaetospira suppresses the incidence of clubroot and Verticillium yellows when the test plant is post-inoculated with the causal agents of these diseases. H. chaetospira is an effective biocontrol agent against clubroot in Chinese cabbage at a low to moderate soil moisture range and a pathogen resting spore density of 10(5) resting spores per gram of soil in situ. Disease caused by Pseudomonas syringae pv. macricola and Alternaria brassicae on leaves can be suppressed by treatment with H. chaetospira. The fungus persists in the roots and induces systemic resistance to the foliar disease.  相似文献   

10.
Piriformospora indica , an endophytic fungus of the Sebacinaceae family, colonizes the roots of a wide variety of plant species and promotes their growth, in a manner similar to arbuscular mycorrhizal fungi. The results of the present study demonstrate that the fungus interacts also with the non-mycorrhizal host Arabidopsis thaliana and promotes its growth. The interaction is detectable by the appearance of a strong autofluorescence in the roots, followed by the colonization of root cells by fungal hyphae and the generation of chlamydospores. Promotion of root growth was detectable even before noticeable root colonization. Membrane-associated proteins from control roots and roots after cultivation with P. indica were separated by two-dimensional gel-electrophoresis and identified by electrospray ionization mass spectrometry and tandem mass spectrometry. Differences were found in the expression of glucosidase II, beta-glucosidase PYK10, two glutathione- S -transferases and several so-far uncharacterized proteins. Based on conserved domains present in the latter proteins their possible roles in plant–microbe interaction are predicted. Taken together, the present results suggest that the interaction of Arabidopsis thaliana with P. indica is a powerful model system to study beneficial plant–microbe interaction at the molecular level. Furthermore, the successful accommodation of the fungus in the root cells is preceded by protein modifications in the endoplasmatic reticulum as well as at the plasma membrane of the host.  相似文献   

11.
A rhizosphere fungus was isolated from roots of chilli plants and identified as Aspergillus spp. PPA1. The fungus was tested for its ability to promote the growth of cucumber plants in a pot experiment. Cucumber seeds were sown in sterilised field soil amended with wheat grain inoculum (WGI) of PPA 1 at the rate of 0.5, 1 and 1.5% w/w, and plants were grown for 21 days in a net house. The treatment with PPA1 significantly increased shoot length, shoot fresh weight, shoot dry weight, root length, root fresh weight, root dry weight, plant length, leaf area and leaf chlorophyll content of cucumber plants compared to non-treated control. The growth promotion rate increased with the increasing concentration of inoculum of PPA1 applied to the soil. The fungus was re-isolated from the roots of cucumber plants at higher frequencies. These results suggest that Aspergillus spp. PPA1 is a root colonising plant-growth promoting fungus for cucumber.  相似文献   

12.
An experiment was conducted to test the effect of different doses of 2, 4 and 8?g/2?kg of soil of Pochonia chlamydosporia against the root-knot nematode (Meloidogyne incognita) on Phaseolus vulgaris. It was observed that inoculation of plant with the nematode alone, and 15?days prior to fungal inoculation, reduced the plant growth when compared with the plant with fungal application followed by the nematode. Plant length, fresh and dry weight, chlorophyll, carotenoid, protein contents and nitrate reductase activity decreased in nematode-infested plants. Application of higher dose of 8?g/2?kg of soil of P. chlamydosporia increased all the plant growth parameters as well as biochemical parameters. Highest number of galls per root system was recorded on the plants infested with nematode but not treated with the fungus. However, application of fungus prior to nematode inoculation improved the plant growth and reduced the number of galls and the number of egg masses per root system.  相似文献   

13.
Fungal pathogenicity in plants requires a conserved mitogen-activated protein kinase (MAPK) cascade homologous to the yeast filamentous growth pathway. How this signaling cascade is activated during infection remains poorly understood. In the soil-borne vascular wilt fungus Fusarium oxysporum, the orthologous MAPK Fmk1 (Fusarium MAPK1) is essential for root penetration and pathogenicity in tomato (Solanum lycopersicum) plants. Here, we show that Msb2, a highly glycosylated transmembrane protein, is required for surface-induced phosphorylation of Fmk1 and contributes to a subset of Fmk1-regulated functions related to invasive growth and virulence. Mutants lacking Msb2 share characteristic phenotypes with the Δfmk1 mutant, including defects in cellophane invasion, penetration of the root surface, and induction of vascular wilt symptoms in tomato plants. In contrast with Δfmk1, Δmsb2 mutants were hypersensitive to cell wall targeting compounds, a phenotype that was exacerbated in a Δmsb2 Δfmk1 double mutant. These results suggest that the membrane mucin Msb2 promotes invasive growth and plant infection upstream of Fmk1 while contributing to cell integrity through a distinct pathway.  相似文献   

14.
Both arbuscular mycorrhizal (AM) fungi and root hairs play important roles in plant uptake of water and mineral nutrients. To reveal the relative importance of mycorrhiza and root hairs in plant water relations, a bald root barley (brb) mutant and its wild type (wt) were grown with or without inoculation of the AM fungus Rhizophagus intraradices under well-watered or drought conditions, and plant physiological traits relevant to drought stress resistance were recorded. The experimental results indicated that the AM fungus could almost compensate for the absence of root hairs under drought-stressed conditions. Moreover, phosphorus (P) concentration, leaf water potential, photosynthetic rate, transpiration rate, stomatal conductance, and water use efficiency were significantly increased by R. intraradices but not by root hairs, except for shoot P concentration and photosynthetic rate under the drought condition. Root hairs even significantly decreased root P concentration under drought stresses. These results confirm that AM fungi can enhance plant drought tolerance by improvement of P uptake and plant water relations, which subsequently promote plant photosynthetic performance and growth, while root hairs presumably contribute to the improvement of plant growth and photosynthetic capacity through an increase in shoot P concentration.  相似文献   

15.
本研究从药用植物马比木Nothapodytes pittosporoides的花瓣中分离获得了1株真菌,经形态学与ITS分子共同鉴定为砖红镰刀菌Fusarium lateritium。使用该菌处理马铃薯后发现,显著增强了马铃薯对晚疫病菌的耐受性,处理组植株感染率为37.5%,相较对照组87.5%的感染率显著降低;植株生长测定发现,处理组的马铃薯生物量、株高、根系生物量和主根数相较于对照组分别提高了1.25、1.19、2.3、1.47倍,表明该真菌对马铃薯还具有促生作用。为探究砖红镰刀菌促生抗病的分子机理,检测了植物生长素合成和免疫防御相关基因的表达模式,结果表明处理组植株生长素合成相关基因(StYUC5)显著上调,而免疫相关激素茉莉酸和水杨酸合成相关基因(StPI-IStPALStPR1A)也不同程度上调。由此推测,砖红镰刀菌通过调控植物激素相关基因的表达介导马铃薯的促生和抗病。为了进一步探究砖红镰刀菌对马铃薯促生抗病的分子基础,构建了其遗传转化体系,并进行了优化,获得了GFP标记菌株。  相似文献   

16.
Piriformospora indica (Sebacinaceae, Basidiomycota) is an axenically cultivable, plant growth promoting root endophyte with a wide host range, including Populus. Rooting of Populus Esch5 explants started within 6 days after transfer to WPM medium. If such plantlets with roots were inoculated with P. indica, there was an increase in root biomass, and the number of 2nd order roots was increased significantly. A totally different observation was recorded when the explants were placed into WPM with pre-grown P. indica. The interaction led to complete blocking of root production and severely inhibited plant growth. Additionally, branched aerial roots appeared which did not penetrate the medium. On contact with the fungal colony or the medium, the ends of the aerial roots became inflated. Prolonged incubation stimulated the fungus to colonize aerial parts of the plant (stem and leaves). Mycelium not only spread on the surface of the aerial parts, but also invaded the cortical tissues inter- and intracellularly. Detached Populus leaves remained vital for 4 - 5 weeks on sterile agar media or on AspM medium with pre-grown P. indica. When the fungus was pre-grown on culture media such as WPM, containing ammonium as the main source of nitrogen, leaves in contact with the cultures turned brownish within 4 - 12 h. Thereafter, the leaves bleached, and about one day later had become whitish. Thus, cultural conditions could alter the behaviour of the fungus drastically: the outcome of the interaction between plant and fungus can be directed from mutualistic to antagonistic, characterized by fungal toxin formation and extension of the colonization to Populus shoots.  相似文献   

17.
Pochonia chlamydosporia (Pc123) is a fungal parasite of nematode eggs which can colonize endophytically barley and tomato roots. In this paper we use culturing as well as quantitative PCR (qPCR) methods and a stable GFP transformant (Pc123gfp) to analyze the endophytic behavior of the fungus in tomato roots. We found no differences between virulence/root colonization of Pc123 and Pc123gfp on root-knot nematode Meloidogyne javanica eggs and tomato seedlings respectively. Confocal microscopy of Pc123gfp infecting M. javanica eggs revealed details of the process such as penetration hyphae in the egg shell or appressoria and associated post infection hyphae previously unseen. Pc123gfp colonization of tomato roots was low close to the root cap, but increased with the distance to form a patchy hyphal network. Pc123gfp colonized epidermal and cortex tomato root cells and induced plant defenses (papillae). qPCR unlike culturing revealed reduction in fungus root colonization (total and endophytic) with plant development. Pc123gfp was found by qPCR less rhizosphere competent than Pc123. Endophytic colonization by Pc123gfp promoted growth of both roots and shoots of tomato plants vs. uninoculated (control) plants. Tomato roots endophytically colonized by Pc123gfp and inoculated with M. javanica juveniles developed galls and egg masses which were colonized by the fungus. Our results suggest that endophytic colonization of tomato roots by P. chlamydosporia may be relevant for promoting plant growth and perhaps affect managing of root-knot nematode infestations.  相似文献   

18.
19.
Almost all land plants have developed a symbiosis with arbuscular mycorrhizal fungi. Establishment of the association is accompanied by structural changes in the plant root. During arbuscule formation fungal hyphae penetrate the root apoplast and install highly specialized interfaces for solute transport between plant and fungus. The periarbuscular membrane which is part of the plant plasma membrane surrounding arbuscular structures was shown to harbour a high density of different transport systems. Among these also expression of aquaporins was described, which potentially can act as a low affinity transport system for ammonia or ammonium. The present study provides data for expression, localization and function of plant aquaporins in the periarbuscular membrane of mycorrhizal Medicago truncatula plants.  相似文献   

20.
The basidiomycete fungus Piriformospora indica colonizes roots of a broad range of mono- and dicotyledonous plants. It confers enhanced growth, improves resistance against biotic and tolerance to abiotic stress, and enhances grain yield in barley. To analyze mechanisms underlying P. indica-induced improved grain yield in a crop plant, the influence of different soil nutrient levels and enhanced biotic stress were tested under outdoor conditions. Higher grain yield was induced by the fungus independent of different phosphate and nitrogen fertilization levels. In plants challenged with the root rot-causing fungus Fusarium graminearum, P. indica was able to induce a similar magnitude of yield increase as in unchallenged plants. In contrast to the arbuscular mycorrhiza fungus Glomus mosseae, total phosphate contents of host plant roots and shoots were not significantly affected by P. indica. On the other hand, barley plants colonised with the endophyte developed faster, and were characterized by a higher photosynthetic activity at low light intensities. Together with the increased root formation early in development these factors contribute to faster development of ears as well as the production of more tillers per plant. The results indicate that the positive effect of P. indica on grain yield is due to accelerated growth of barley plants early in development, while improved phosphate supply—a central mechanism of host plant fortification by arbuscular mycorrhizal fungi—was not observed in the P. indica-barley symbiosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号