首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Marked changes occur in the morphology of chick chondroblasts grown for 5 days in F-10 medium containing either 5-bromo-2'-deoxyuridine or embryo extract. The cells lose the characteristic polygonal morphology and assume a flattened 'fibroblastic' appearance. To determine whether the morphological changes reflect a biochemical transformation toward frank fibroblasts, changes in collagen and glycosaminoglycan synthesis were examined in these 'dedifferentiated' cells. Growth in either medium did not significantly affect the total amount of collagen synthesized. However, the subunit composition of the collagen chains was different. Freshly isolated cartilage trunks or control chondroblast cultures synthesized only α1 subunits (suggesting exclusive synthesis of α1(ll)3-type collagen), whereas dedifferentiated cultures synthesized both α1 and, in addition, some α2 subunits (suggesting synthesis of fibroblasttype α1(l)2α2-type collagen). Incorporation of labelled glucosamine in F-10 medium showed that the major glycosaminoglycan synthesized by either cartilage trunks or chondroblast monolayers is chondroitin sulphate; little, if any, hyaluronic acid could be detected. With growth in embryo extract (EE) glucosamine was incorporated equally into chondroitin sulphate and hyaluronic acid, whereas in BUdR, chondroitin sulphate synthesis was completely inhibited. Distinct biochemical differences were therefore found for both collagen and glycosaminoglycan synthesis during growth in either BUdR or EE. Such changes were not identical but both demonstrate changes in synthetic programme tending to approach that of frank fibroblasts.  相似文献   

2.
Cells of the human embryonic kidney cell line (HEK 293) grown in repeated suspension and perfusion systems were characterized and described. Cell aggregates that formed immediately after the HEK 293 cells were inoculated in stirred vessels in serum-containing Dulbecco’s modified Eagle’s medium (D-MEM)/F-12 medium. The mean diameter of the cell aggregates reflecting the aggregate size increased with culture time, shifting from 63 to 239 μm after 1 and 8 days of culture in spinner flasks, respectively. No significant differences in cell performance were observed between HEK 293 cell populations grown as suspended aggregates and those grown as anchored monolayers. Replacing the D-MEM/F-12 with CD 293 medium caused the compact spherical cell aggregates to dissociate into single cells and small irregular aggregates without any apparent effect on cell performance. Moreover, the spherical cell aggregates could reform from individual cells and small aggregates when exposed to the serum-containing D-MEM/F-12 dominant medium. Perfusion culture of HEK 293 cells grown as suspended aggregates in a 7.5-l stirred tank bioreactor for 17 days resulted in a maximum viable cell density of 1.2×107 cells ml−1. These results demonstrate the feasibility and proof-of-concept for using aggregates as an immobilization system in large-scale stirred bioreactors because a small-scale culture can be used as easily as the inoculum for larger bioreactors.The first two authors contributed equally to this work.  相似文献   

3.
The state of chick embryo chondroblasts in culture was found to be sensitive to both fibronectin and another substance(s) (activity A) which could be extracted from chick embryo fibroblasts with 1 M urea or from conditioned medium. In the presence of either of these activities at concentrations of 25-150 micrograms/ml, chondroblasts, which normally grow as mixed cultures of floating and adherent cells, all immediately became attached to the tissue culture dish and spread. After several days, the morphology of these typically epithelioid cells became fibroblastic. This did not involve a selection process, since the effect was reversible. The synthetic program of these cells was also dramatically modified: the cultures no longer synthesized the chondroblast-unique type IV sulfated proteoglycan and began synthesizing alpha 2 collagen chains typical of fibroblastic or early limb bud cells. Fibronectin was resolved from activity A by gelatin affinity chromatography or gel filtration. Both activities were trypsin-sensitive. The two activities differed, however, on the basis of how the protein fractions in which they were found migrated in SDS-polyacrylamide gels, their specific activities and their effects on cell morphology and cell growth.  相似文献   

4.
Summary A method for growing chick embryo melanocytes is described that utilizes medium conditioned by Buffalo Rat liver (BRL-3A) cells. The dissected trunk region of each 72 h (Stages 14 to 19) embryo produces approximately 200,000 melanocytes (purity, 80%) when processed and cultured for 8 d. Thus, a typical experiment involving 20 embryos would produce a total of 4 × 106 melanocytes. Choice of serum, serum concentration, and cell density were determined experimentally. Partially purified multiplication stimulating activity (MSA) from BRL-3A cells and insulin were also tested as medium additives. MSA was not stimulatory, whereas insulin gave a positive response in 2% but not 10 or 0% serum. The final protocol used a modified F12 medium with 10% bovine calf serum conditioned by BRL-3A cells. Cultures were fed every other day. Small colonies of cells became evident by culture Day 3 and increased rapidly to Day 5 when pigmentation became obvious. Colony size continued to increase but more slowly from Days 5 to 8, whereas pigmentation increased rapidly and maximized on Day 8. There is a factor, or factors, present in BRL-3A conditioned medium that stimulates embryonic chick melanocytes to divide preferentially over contaminating cell types. This results in cultures that can provide adequate numbers and purity for biochemical studies. This work was supported by National Institutes of Health grants GM18969 to J. B. and CA17620 to G. S.  相似文献   

5.
The effect of chick embryo extract on the phenotypic expression of differentiated chondrocytes has been studied in consideration of the fact that these cells are well characterized by certain specific cell products, such as type H proteochondroitin sulfate and type II collagen. In this study, we utilized floating chondrocytes derived from chick embryonic sterna, which can be cultured in suspension with no apparent change in the type of cell products for at least a period of eight weeks, as described in a previous paper (1). In the presence of chick embryo extract in the medium, the floating chondrocytes became attached to the bottom of the culture dish, and the attached cells took on a fibroblast-like appearance. Biochemical analyses of the proteochondroitin sulfate and collagen synthesized by the attached cells revealed that if the culture medium was renewed everyday, the cells having a fibroblast-like appearance continued to synthesize type H proteochondroitin sulfate and type II collagen. When however, the medium was replaced every other day, the synthesis of both proteochondroitin sulfate and collagen by the attached cells switched from the chondrocyte type to the fibroblast type, i.e. the synthesis of type M proteochondroitin sulfate and type I collagen, with little change in the fibroblast-like appearance. The results show that the morphological features of chondrocytes are not necessarily associated with the biochemical properties of these cells, and further suggest that, in chick embryo extract, there is no modulator capable of acting directly on the chondrocytes to bring about phenotypic changes with respect to the synthesis of collagen and proteoglycans.  相似文献   

6.
Previously, we have demonstrated that a factor present in chick embryo extract or medium conditioned by neural tube cells supports adrenergic differentiation of some neural crest cells in vitro. These studies have been extended here to examine the effects of this factor(s) on the development of enzymes involved in neurotransmitter biosynthesis. The time course of expression of choline acetyltransferase (ChAT), a marker for cholinergic cells, and dopamine-beta-hydroxylase (DBH), a marker for adrenergic cells, was examined in neural crest cell cultures grown under three conditions: in medium containing 10% embryo extract, in medium containing 2% embryo extract, and in medium containing 2% embryo extract that was conditioned by neural tube cells (NTCM). Significant levels of DBH activity were measured in neural crest cell cultures grown in 10% embryo extract containing medium or in NTCM, while only low levels were present in cultures grown in medium containing 2% embryo extract. In contrast, ChAT activity was inhibited by NTCM in comparison to levels in both 10 and 2% embryo extract containing medium. As a preliminary characterization of the factor(s) present in chick embryo extract, we have fractionated embryo extract and find that a pool of 10 kDa or less can support adrenergic differentiation of some neural crest cells. These results suggest that low molecular weight factors present in embryo extract and NTCM support adrenergic expression of neural crest cells, whereas NTCM suppresses cholinergic expression.  相似文献   

7.
Three different culture media, Ham's F-12, medium 199, and Eagle's minimal essential medium (MEM), were compared with respect to the expression of neuronal (choline acetyl transferase activity: CAT) and glial (hydrocortisone-induced glutamine synthetase activity; GSase) markers of normal differentiation in cultures of 9-day chick embryo neuroretinal cells, and also with respect to the accumulation of a lens marker (delta crystallin) during so-called 'transdifferentiation' in these cultures. MEM allows transient expression of both CAT and GSase activities in early cultures, but also permits extensive delta crystallin accumulation at later stages. F-12 medium gives somewhat higher levels of CAT and GSase activities, the former being noticeably prolonged as compared with parallel MEM cultures; delta crystallin accumulation, however, is largely inhibited in F-12 cultures. By contrast, medium 199 permits only low levels of CAT and GSase activities, perhaps because the neuronal cells are distributed individually over the glial cell sheet in 199 cultures, rather than forming aggregates as in MEM or F-12 cultures. Medium 199 also blocks delta crystallin accumulation. The results of medium changeover between 'transdifferentiation'-permissive (MEM) and non-permissive (199, F-12) conditions suggest: (a) that potential lens precursor cells (whatever their nature) survive in F-12 medium for prolonged periods without extensive expression of the lens phenotype; (b) that such precursor cells become committed to subsequent differentiation as lens cells between 10 and 20 days of culture in permissive MEM medium (as judged by the accumulation of delta crystallin following transfer into F-12); and (c) that medium 199 can block expression of the lens phenotype even in cells already committed (by the above criteria) to lens differentiation, as for instance after 30 days of preculture in MEM.  相似文献   

8.
Factors influencing the release of proteins by cultured schwann cells   总被引:15,自引:9,他引:6       下载免费PDF全文
Cultured rat schwann cells grown in association with sensory neurons when labeled with [(3)H]leucinem, [(3)H]glucosamine, or [(35)S]methionine release labeled polypeptides into the culture medium. Analysis by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) of the culture medium reveals a reproducible pattern of more than 20 polypeptides with molecular weights ranging from 15,000 to more than 250,000. Five major polypeptides (apparent molecular weights 225,000, 210,000, 90,000, 66,000, 50,000, and 40,000) account for approximately 40 percent of the leucine or methionine radioactivity in medium polypeptide. Schwann cells grown in a serum-free defined medium, in which schwann cells do not relate normally to axons, release approximately four times less labeled medium polypeptides tha cultures grown in medium supplemented with serum and chick embryo extract. In addition, there is a qualitative difference in the pattern of medium polypeptides resolved by SDS-PAGE, so that a single polypeptide (mol wt 40,000) accounts for nearly all of the label in medium polypeptides. Switching of cultures grown in defined medium to supplemented medium for 2 d results in a fourfold increase in the amount of labeled polypeptides appearing in the culture medium, and a return to the normal pattern of medium polypeptides appearing in the culture medium, and a return to the normal pattern of medium polypeptides as resolved by SDS-PAGE. This change in the pattern of polypeptides release by schwann cells is accompanied by changes in the association between schwann cells and axons. An early step in the establishment of normal axon-schwann cell relations appears to be an inward migration of schwann cells into axonal bundles and spreading of schwann cells along neurites. These changes are evident within 48 h after medium shift. Our results thus suggest that the release of proteins by schwann cells may be important for the development of normal axonal ensheathment.  相似文献   

9.
Abstract. Three different culture media, Ham's F-12, medium 199, and Eagle's minimal essential medium (MEM), were compared with respect to the expression of neuronal (choline acetyl transferase activity: CAT) and glial (hydrocortisone-induced glutamine synthetase activity; GSase) markers of normal differentiation in cultures of 9-day chick embryo neuroretinal cells, and also with respect to the accumulation of a lens marker (δ crystallin) during so-called 'transdifferentiation' in these cultures.
MEM allows transient expression of both CAT and GSase activities in early cultures, but also permits extensive δ crystallin accumulation at later stages. F-12 medium gives somewhat higher levels of CAT and GSase activities, the former being noticeably prolonged as compared with parallel MEM cultures; δ crystallin accumulation, however, is largely inhibited in F-12 cultures. By contrast, medium 199 permits only low levels of CAT and GSase activities, perhaps because the neuronal cells are distributed individually over the glial cell sheet in 199 cultures, rather than forming aggregates as in MEM or F–12 cultures. Medium 199 also blocks δ crystallin accumulation.
The results of medium changeover between 'transdifferentiation'-permissive (MEM) and non-permissive (199, F-12) conditions suggest: (a) that potential lens precursor cells (whatever their nature) survive in F-12 medium for prolonged periods without extensive expression of the lens phenotype; (b) that such precursor cells become committed to subsequent differentiation as lens cells between 10 and 20 days of culture in permissive MEM medium (as judged by the accumulation of δ crystallin following transfer into F-12); and (c) that medium 199 can block expression of the lens phenotype even in cells already committed (by the above criteria) to lens differentiation, as for instance after 30 days of preculture in MEM.  相似文献   

10.
Differentiated parenchymal cells were cultured from chick embryo livers or kidneys. Tissues were trypsinized, fragmented under a dissecting microscope, suspended in culture medium and separated into microscopic cell clumps with a syringe and wide bore needle. These cell clumps were grown in culture chambers and after light microscopic study were fixed and sectioned for electron microscopy. Both liver and kidney parenchymal cells appeared as clusters of epithelial cells containing round nuclei surrounded by numerous large mitochondria. Electron microscopy revealed well-differentiated cytoplasm which, in the liver cells, contained glycogen rosettes closely associated with smooth endoplasmic reticulum.  相似文献   

11.
A comparative study was made of Formalin-inactivated Chikungunya vaccines prepared from the virus propagated in African green monkey kidney monolayers and concentrated chick embryo suspension cultures. The vaccine prepared in the chick embryo suspension cultures was significantly more protective to mice against a live homologous virus challenge and stimulated the production of 4 to 5 times more circulating antibodies than the vaccine prepared with virus grown in African green monkey kidney monolayer cultures.  相似文献   

12.
Pieces of 12- and 15-day-old chick embryo testes and ovaries were cultured in vitro in the presence of thyrotropin (TSH), gonadotropins (FSH + LH) and adrenocorticotropin (ACTH) for different periods. All the explants of treated gonads differentiated into typical testes or ovaries according to their genetic sex. The gonads of 12-and 15-day-old chick embryos showed a good response to both thyrotropic and gonadotropic stimulation. On the other hand, they did not respond to adrenocorticotropic stimulation. Fifteen-day-old chick embryo testes were grown in tissue culture in the presence of the said hormones. Gonadotropins and TSH enhanced the growth and migration of testicular cells as compared with the control or ACTH treated group. In addition, they maintained the germ cells on the upper surface of epithelial cells. These results have confirmed our previous results in vivo in that gonadotropins and thyrotropin hormones accelerated the development of 12- or 15-day-old chick embryo gonads.  相似文献   

13.
Investigations on the role of calcium in regulation of cell morphology of Chinese hamster lung cells (V79) revealed that cells grown with additional calcium (5 mM) in the growth medium (Ham's F12) adhere more tightly to the substratum than those grown in F12 alone. Additional calcium in the medium did not cause any changes in the structural membrane proteins or glycoproteins. Radioiodination of the surface membrane proteins of cells grown with or without additional calcium showed distinct differences in the labeling profile. The most striking change observed in cells grown with additional calcium was a very heavily labeled protein band at 70 K molecular weight. Two bands at approx. 100 K and 42 K were also heavily labeled. In contrast, the amount of radioactivity of a protein band at 52 K decreased in the cells grown in additional calcium. In general, cells grown with additional CaCl2 were better iodinated than those grown in growth medium alone. The results demonstrate that calcium modulates surface proteins of V79 cells and this modulation may account for the changes observed in the cell morphology.  相似文献   

14.
The effect of tunicamycin (TM) on the synthesis and secretion of sulfated proteoglycans and hyaluronate was examined in chick embryo fibroblasts and chondrocytes. The incorporation of the precursors [3H]glucosamine, [3H]mannose and [35S]sulfate into glycoconjugates in both the cell layer and medium of cultures was determined. In the chick embryo fibroblast, but not in the chondrocyte, synthesis of sulfated proteoglycan was inhibited 60–75% by TM (5 × 10−8 M), while synthesis of hyaluronate and protein was only inhibited slightly. The inhibition of sulfate incorporation into glycosaminoglycans of the chick embryo fibroblast was overcome to a great extent by addition of β-xyloside, which provides an exogenous initiator for chondroitin sulfate synthesis. TM treatment also altered cell shape and surface morphology in chick embryo fibroblasts, as observed by phase contrast and scanning electron microscopy (SEM). Cells treated with TM became rounded, and increased numbers of microvilli and blebs appeared on the cell surface. These alterations in cell morphology were reversed by removal of TM, but not by exogenous addition of xyloside, chondroitin sulfate or the adhesive cell surface glycoprotein fibronectin. These results demonstrate that TM inhibits synthesis of sulfated proteoglycans in the chick embryo fibroblast and causes a dramatic alteration in cell shape and surface morphology.  相似文献   

15.
The growth of L-929 cells on a series of peptones, and protein hydrolysates was examined, and it was found that when MEM was supplemented with any of a series of peptones, cell growth was about as good as when serum was used as a supplement. Protein hydrolysates did not support cell growth very well and at higher concentrations actually reduced cell growth. L-929 and L-60TM cells were grown both as monolayers or stationary suspensions and in agitated systems in MEM supplemented with 0.5—1% bactopeptone. The addition of macromolecular compounds, insulin or oleic acid had no effect on cell growth. BHK cells were also grown on media supplemented with bactopeptone but richer media (MEM-alpha, F-12, or RMPI1640) gave higher cell yields. The cells did not form the monolayers observed with fetal calf serum, but a partial suspension system. Addition of a detergent Darvan #2 gave a totally suspension culture in both stationary and agitated systems. The production of Sindbis virus in BHK cells grown in serum-free media was examined and the yield of virus was found to be about the same as that produced in serum-supplemented systems. It is estimated that the cost of cell production media could be reduced by about 90% by the replacement of serum supplement by peptones.  相似文献   

16.
Summary Neural crest cells from quail embryos grown in standard culture dishes differentiate almost entirely into melanocytes within 4 or 5 days when chick embryo extract (CEE) or occasional lots of fetal calf serum (FCS) are included in the medium. Gel fractionation showed that the pigment inducing factor(s) present in these media is of high molecular weight (> 400 K daltons). In the absence of CEE, the neural tube can also stimulate melanocyte differentiation. Culture medium supplemented by selected lots of FCS permits crest cell proliferation but little overt differentiation after up to 2 weeks in culture if the neural tube is removed within 18 h of explantation in vitro. Subsequent addition of CEE to such cultures promotes complete melanocyte differentiation. Crest cells from White leghorn chick embryos also differentiate into melanocytes in the presence of CEE, but do not survive well in its absence. Melanocyte differentiation of crest cells from both quail and chick embryos can by suppressed by culturing under a dialysis membrane, even in the presence of the neural tube and CEE, but neuronal differentiation appears greatly enhanced.  相似文献   

17.
Positive genotoxicity results are often observed using mammalian cells in culture with agents that are not in vivo genotoxins. We here illustrate one possible explanation: interaction of test chemicals with the cell-culture media used. We find that the toxicity and clastogenicity of epigallocatechin gallate (EGCG) to Chinese Hamster ovary (CHO) cells is affected by the culture medium used and appears largely or entirely due to variable rates of formation of hydrogen peroxide (H(2)O(2)) by chemical reactions of EGCG with the culture media. Catalase decreased EGCG toxicity substantially. Of seven different types of commonly used media evaluated, F-10 and F-12 nutrient mixtures were the least prone to produce this artefact. Although it generated H(2)O(2) in the culture media, ascorbate was not toxic to CHO cells because the H(2)O(2) levels achieved were insufficient to kill these cells. Thus, the culture medium, the cell type and the presence or absence of catalase (e.g. its variable amounts in S9 fractions) must be taken into account in in vitro genotoxicity testing.  相似文献   

18.
Tyrosyl kinase activity in vesicular stomatitis virus (VSV) acquired from host cells that differ in morphology was investigated. VSV grown in baby hamster kidney (BHK) cells with rounded morphology and a high efficiency of colony formation in soft agar (Rous sarcoma virus [RSV]- transformed and suspension BHK cells) was compared with VSV grown in BHK cells with a flattened morphology and lower efficiency of colony formation in soft agar (RSV-infected revertant and control BHK cells). Tyrosyl kinase activity measured with the substrates angiotensin II peptide or casein was found at 7-10-fold higher levels in virus released from the anchorage-independent BHK cells. Most of the VSV- associated tyrosyl kinases acquired from the RSV-transformed BHK cells reacted with antiserum to pp60src, whereas the activity acquired from the suspension BHK cells was unaffected by anti-src serum. The overall levels of tyrosyl kinase in subcellular fractions of the host BHK cells were also measured. Like the VSV released from them, the RSV- transformed cell extracts contained high levels. The suspension cells, however, contained the same low levels of tyrosyl kinase as was found in the control BHK cell extracts. Therefore, tyrosyl kinase was concentrated and acquired by VSV from the anchorage-independent suspension BHK cells. VSV-associated protein kinases acquired from other cell types followed a similar pattern. Tyrosyl kinase levels were high in VSV released from suspension cultures (Chinese hamster ovary and HeLa) and from virally transformed cells (Kirsten murine sarcoma virus-transformed rat kidney cells) and low in VSV released from an anchorage-dependent primary cell culture (chick embryo fibroblasts).  相似文献   

19.
In vitro procedures for obtaining the differentiation of human fetal muscle colonies were developed, and the sensitivity of clonal differentiation to environmental influences was examined. Human muscle colonies are capable of differentiating in the absence of an exogenous collagen substrate. The dependence of clonal diffeentiation upon the addition of chick embryo extract to the culture medium is determined by the serum type used in the medium and by the substrate upon which the colonies are grown. Clonal differentiation also depends upon conditioning of the medium by the colonies. The rate of medium conditioning is affected by clonal density and initial medium composition. The required medium modification is not species specific since medium conditioned by chick muscle cells also permits the early differentiation of human muscle clones. By manipulating the various environmental parameters described above it has been possible to define a number of in vitro conditions which permit a normal rate of cell proliferation but do not permit cell fusion. Results from these experiments are discussed in terms of their developmental implications.  相似文献   

20.
Attempts have been made to keep in vitro, for extended periods of time, cultures of chick embryo fibroblasts transformed by the Schmidt-Ruppin strain of Rous sarcoma virus, subgroup D. Roller cultures of transformed chick cells kept in serum-deficient medium can be maintained without subcultivation for up to 6 months. The confluent cultures continuously release viruses and viable tumor cells into the medium. The released cells can be plated and have characteristics of growth and morphology which are relatively stable with time until the culture degenerates. Cells released at later stages of the culture produced substantially more viruses than those released earlier, suggesting that cell selection or differentiation occurs during long-term cultivation in low serum concentration. Long-term cultures of untransformed chick embryo fibroblasts can also be maintained in the same way. The release of viable cells by these confluent cultures, however, is negligible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号