首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microglial activation is a hallmark of brain abscess. The continual release of proinflammatory mediators by microglia following bacterial challenge may contribute, in part, to the destruction of surrounding normal tissue characteristic of brain abscess. Therefore, attenuating chronic microglial activation during the course of CNS bacterial infections may have therapeutic benefits. The purpose of this study was to evaluate the ability of the natural peroxisome proliferator-activated receptor (PPAR)-gamma agonist 15-deoxy-Delta12,14- prostaglandin J2 (15d-PGJ2) to modulate microglial activation in response to Staphylococcus aureus, one of the main etiologic agents of brain abscess in humans. 15d-PGJ2 was a potent inhibitor of proinflammatory cytokine (IL-1beta, TNF-alpha, IL-12 p40) and CC chemokine (MIP-1beta, MCP-1) production in primary microglia, but had no effect upon the expression of select CXC chemokines (MIP-2, KC). 15d-PGJ2 also selectively inhibited the S. aureus-dependent increase in microglial TLR2, CD14, MHC class II, and CD40 expression, whereas it had no effect on the co-stimulatory molecules CD80 and CD86. Microarray analysis revealed additional inflammatory mediators modulated by 15d-PGJ2 in primary microglia following S. aureus exposure, the majority of which were chemokines. These results suggest that suppressing microglial activation through the use of 15d-PGJ2 may lead to the sparing of damage to normal brain parenchyma that often results from brain abscess.  相似文献   

2.
Astrocytes play an important role in initiating and regulating CNS immune responses through the release of proinflammatory cytokines and chemokines. Here we demonstrate that primary astrocytes are capable of recognizing the Gram-positive bacterium Staphylococcus aureus and its cell wall product peptidoglycan (PGN) and respond by producing numerous proinflammatory mediators including interleukin-1beta (IL-1beta), tumor necrosis factor-alpha (TNF-alpha), macrophage inflammatory protein-1beta (MIP-1beta), MIP-2, and monocyte chemoattractant protein (MCP-1). Astrocytes have recently been shown to express Toll-like receptor 2 (TLR2), a pattern recognition receptor important for recognizing structural components of various Gram-positive bacteria, fungi, and protozoa. However, the functional significance of TLR2 in mediating astrocyte activation remains unknown. Primary astrocytes from TLR2 knockout mice were used to evaluate the role of TLR2 in astrocyte responses to S. aureus and PGN. The results demonstrate that TLR2 is essential for maximal proinflammatory cytokine and chemokine production, but not phagocytosis, in primary astrocytes following S. aureus and PGN exposure. In addition, both stimuli led to a significant increase in TLR2 mRNA expression in wild-type astrocytes as assessed by real-time quantitative RT-PCR. These findings suggest that astrocytes may play a key role in the initial antibacterial immune response in the CNS through engagement of TLR2.  相似文献   

3.
The macrophage occupies a central role in the host response to invasion, exerting its control over the developing inflammatory response largely through the elaboration of an assortment of endogenous mediators including many cytokines. The beta chemokine peptides, macrophage inflammatory protein [MIP]-1 alpha and MIP-1 beta, are two such effectors markedly up-regulated in macrophages following exposure to bacterial lipopolysaccharide (LPS). These highly homologous peptides, like the other members of the beta chemokine family, exhibit diverse but partially overlapping biological activity profiles, suggesting that the cellular participants and intensity of an inflammatory response may in part be regulated by selective expression of these chemokines. Studies reported here demonstrate that, in contrast to the "balanced" MIP-1 alpha/MIP-1 beta chemokine responses of LPS-stimulated macrophage cultures in vitro, circulating levels of MIP-1 beta are significantly higher than those of MIP-1 alpha following LPS administration in vivo. Further studies have revealed that several immunomodulatory cytokines known to be up-regulated in vivo as a consequence of exposure to an invasive stimulus (gamma-IFN, IL-10, IL-4, and transforming growth factor [TGF]-beta) down-regulated the LPS-induced release of MIP-1 alpha by macrophages in vitro, but spared the MIP-1 beta response. This altered pattern of secretion may explain, at least in part, the high circulating levels of MIP-1 beta relative to MIP-1 alpha observed in vivo in response to LPS challenge.  相似文献   

4.
The host response to Gram-negative LPS is characterized by an influx of inflammatory cells into host tissues, which is mediated, in part, by localized production of chemokines. The expression and function of chemokines in vivo appears to be highly selective, though the molecular mechanisms responsible are not well understood. All CXC (IFN-gamma-inducible protein (IP-10), macrophage inflammatory protein (MIP)-2, and KC) and CC (JE/monocyte chemoattractant protein (MCP)-1, MCP-5, MIP-1alpha, MIP-1beta, and RANTES) chemokine genes evaluated were sensitive to stimulation by LPS in vitro and in vivo. While IL-10 suppressed the expression of all LPS-induced chemokine genes evaluated in vitro, treatment with IFN-gamma selectively induced IP-10 and MCP-5 mRNAs, but inhibited LPS-induced MIP-2, KC, JE/MCP-1, MIP-1alpha, and MIP-1beta mRNA and/or protein. Like the response to IFN-gamma, LPS-mediated induction of IP-10 and MCP-5 was Stat1 dependent. Interestingly, only the IFN-gamma-mediated suppression of LPS-induced KC gene expression was IFN regulatory factor-2 dependent. Treatment of mice with LPS in vivo also induced high levels of chemokine mRNA in the liver and lung, with a concomitant increase in circulating protein. Hepatic expression of MIP-1alpha, MIP-1beta, RANTES, and MCP-5 mRNAs were dramatically reduced in Kupffer cell-depleted mice, while IP-10, KC, MIP-2, and MCP-1 were unaffected or enhanced. These findings indicate that selective regulation of chemokine expression in vivo may result from differential response of macrophages to pro- and antiinflammatory stimuli and to cell type-specific patterns of stimulus sensitivity. Moreover, the data suggest that individual chemokine genes are differentially regulated in response to LPS, suggesting unique roles during the sepsis cascade.  相似文献   

5.
Recognition of conserved bacterial structures called pathogen-associated molecular patterns (PAMPs) by pattern recognition receptors (PRRs), may lead to induction of a variety of "early immediate genes" such as chemokines. In the current study, we have in an ex vivo whole blood model studied the induction of the chemokines MIP-1alpha, MCP-1 and IL-8 by various PAMPs. The rate of appearance of Escherichia coli-Lipopolysaccharide (LPS) induced chemokines differed. The production of MIP-1alpha and IL-8 was after 1 h of stimulation significantly higher when compared to unstimulated whole blood, whereas MCP-1 was not significantly elevated until after 3 h. At peak levels the MIP-1alpha concentration induced by E. coli-LPS was 3-5-fold higher than MCP-1 and IL-8. By specific cell depletion, we demonstrated that all three chemokines were mainly produced by monocytes. However, the mRNA results showed that IL-8 was induced in both monocytes and granulocytes. The production of all three chemokines, induced by the E. coli-LPS and Neisseria meningitidis-LPS, was significantly inhibited by antibodies against CD14 and TLR4, implying these receptors to be of importance for the effects of LPS in whole blood. The chemokine production induced by lipoteichoic acid (LTA) and non-mannose-capped lipoarabinomannan (AraLAM) was, however, less efficiently blocked by antibodies against CD14 and TLR2. E. coli-LPS and LTA induced a dose-dependent increase of CD14, TLR2 and TLR4 expression on monocytes in whole blood. These data show that PAMPs may induce chemokine production in whole blood and that antibodies against PRRs inhibit the production to different extent.  相似文献   

6.
7.
8.
Chemokines are important mediators in immune responses and inflammatory processes of neuroimmunologic and infectious diseases. Although chemokines are expressed predominantly by cells of the immune system, neurons also express chemokines and chemokine receptors. We report herein that human neuronal cells (NT2-N) produce macrophage inflammatory protein-1alpha and -1beta (MIP-1alpha and MIP-1beta), which could be enhanced by interleukin (IL)-1beta at both mRNA and protein levels. The addition of supernatants from human peripheral blood monocyte-derived macrophage (MDM) cultures induced MIP-1beta mRNA expression in NT2-N cells. Anti-IL-1beta antibody removed most, but not all, of the MDM culture supernatant-induced MIP-1beta mRNA expression in NT2-N cells, suggesting that IL-1beta in the MDM culture supernatants is a major factor in the induction of MIP-1beta expression. Investigation of the mechanism(s) responsible for IL-1beta-induced MIP-1alpha and -1beta expression demonstrated that IL-1beta activated nuclear factor kappa B (NF-kappaB) promoter-directed luciferase activity in NT2-N cells. Caffeic acid phenethyl ester, a potent and specific inhibitor of activation of NF-kappaB, not only blocked IL-1beta-induced activation of the NF-kappaB promoter but also decreased IL-1beta-induced MIP-1alpha and -1beta expression in NT2-N cells. These data suggest that NF-kappaB is at least partially involved in the IL-1beta-mediated action on MIP-1alpha and -1beta in NT2-N cells. IL-1beta-mediated up-regulation of beta-chemokine expression may have important implications in the immunopathogenesis of inflammatory diseases in the CNS.  相似文献   

9.
Although activation of human innate immunity after endotoxin administration is well established, in vivo endotoxin effects on human T cell responses are not well understood. Most naive human T cells do not express receptors for LPS, but can respond to endotoxin-induced mediators such as chemokines. In this study, we characterized the in vivo response of peripheral human T cell subsets to endotoxin infusion by assessing alterations in isolated T cells expressing different phenotypes, intracellular cytokines, and systemic chemokines concentration, which may influence these indirect T cell responses. Endotoxin administration to healthy subjects produced T cell activation as confirmed by a 20% increase in intracellular IL-2, as well as increased CD28 and IL-2R alpha-chain (CD25) expression. Endotoxin induced indirect activation of T cells was highly selective among the T cell subpopulations. Increased IL-2 production (36.0 +/- 3.7 to 53.2 +/- 4.1) vs decreased IFN-gamma production (33.8 +/- 4.2 to 19.1 +/- 3.2) indicated selective Th1 activation. Th2 produced IL-13 was minimally increased. Differentially altered chemokine receptor expression also indicated selective T cell subset activation and migration. CXCR3+ and CCR5+ expressing Th1 cells were decreased (CXCR3 44.6 +/- 3.2 to 33.3 +/- 4.6 and CCR5 24.8 +/- 2.3 to 12 +/- 1.4), whereas plasma levels of their chemokine ligands IFN-gamma-inducible protein 10 and MIP-1alpha were increased (61.4 +/- 13.9 to 1103.7 +/- 274.5 and 22.8 +/- 6.2 to 55.7 +/- 9.5, respectively). In contrast, CCR4+ and CCR3 (Th2) proportions increased or remained unchanged whereas their ligands, eotaxin and the thymus and activation-regulated chemokine TARC, were unchanged. The data indicate selective activation among Th1 subpopulations, as well as differential Th1/Th2 activation, which is consistent with a selective induction of Th1 and Th2 chemokine ligands.  相似文献   

10.
The expression of chemokines has been suggested to involve an interdependent network, with the absence of a single chemokine affecting the expression of multiple other chemokines. Monocyte chemoattractant protein (MCP-1), a member of C-C chemokine superfamily, plays a critical role in the recruitment and activation of leukocytes during acute inflammation. To examine the effect of the loss of MCP-1 on expression of the chemokine network, we compared the mRNA expression profiles of MCP-1(-/-) and wild type mice during the acute inflammatory phase of excisional wounds. Utilizing a mouse cDNA array containing 514 chemokine and chemokine related genes, the loss of MCP-1 was observed to cause a significant upregulation of nine genes (Decorin, Persephin, IL-1beta, MIP-2, MSP, IL1ra, CCR5, CCR3, IL-11) and significant downregulation of two genes (CCR4 and CD3Z) in acute wounds. The array data was confirmed by semi-quantitative RT-PCR. The effect of MCP-1 deletion on chemokine expression was further examined in isolated macrophages. Compared to wild type, LPS-stimulated peritoneal macrophages from MCP-1(-/-) mice showed a significant increase in the expression of RANTES, MIP-1beta, MIP-1alpha and MIP-2 mRNA. The data suggest that loss of a single chemokine perturbs the chemokine network not only in the setting of acute inflammation but even in an isolated inflammatory cell, the macrophage.  相似文献   

11.
12.
The cells of innate and adaptive immunity, although activated by different ligands, engage in cross talk to ensure a successful immune outcome. To better understand this interaction, we examined the demographic picture of individual TLR (TLRs 2-9) -driven profiles of eleven cytokines (IFN-alpha/beta, IFN-gamma, IL-12p40/IL-12p70, IL-4, 1L-13, TNF-alpha, IL-1beta, IL-2, IL-10) and four chemokines (MCP-1, MIP1beta, IL-8, and RANTES), and compared them with direct T-cell receptor triggered responses in an assay platform using human PBMCs. We find that T-cell activation by a combination of anti-CD3/anti-CD28/PHA induced a dominant IL-2, IL-13, and Type-II interferon (IFN-gamma) response without major IL-12 and little Type-I interferon (IFN-alphabeta) release. In contrast, TLR7 and TLR9 agonists induced high levels of Type-I interferons. The highest IFN-gamma levels were displayed by TLR8 and TLR7/8 agonists, which also induced the highest levels of pro-inflammatory cytokines IL-12, TNF-alpha, and IL-1beta. Amongst endosomal TLRs, TLR7 displayed a unique profile producing weak IL-12, IFN-gamma, TNF-alpha, IL-1beta, and IL-8. TLR7 and TLR9 resembled each other in their cytokine profile but differed in MIP-1beta and MCP1 chemokine profiles. Gram positive (TLR2, TLR2/6) and gram negative (TLR4) pathogen-derived TLR agonists displayed significant similarities in profile, but not in potency. TLR5 and TLR2/6 agonists paralleled TLR2 and TLR4 in generating pro-inflammatory chemokines MCP-1, MIP-1beta, RANTES, and IL-8 but yielded weak TNF-alpha and IL-1 responses. Taken together, the data show that diverse TLR agonists, despite their operation through common pathways induce distinct cytokine/chemokine profiles that in turn have little or no overlap with TCR-mediated response.  相似文献   

13.
Sadik CD  Kim ND  Alekseeva E  Luster AD 《PloS one》2011,6(10):e26342

Objective

To investigate the role of IL-17RA signaling in the effector phase of inflammatory arthritis using the K/BxN serum-transfer model.

Methods

Wild-type and Il17ra−/− mice were injected with serum isolated from arthritic K/BxN mice and their clinical score was recorded daily. Mice were also harvested on days 12 and 21 and ankles were analyzed for cytokine and chemokine mRNA expression by qPCR on day 12 and for bone and cartilage erosions by histology on day 21, respectively. The induction of cytokine and chemokine expression levels by IL-17A in synovial-like fibroblasts was also analyzed using qPCR.

Results

Il17ra−/− mice were partially protected from clinical signs of arthritis and had markedly fewer cartilage and bone erosions. The expression of several pro-inflammatory mediators, including the chemokines KC/CXCL1, MIP-2/CXCL2, LIX/CXCL5 MIP-1γ/CCL9, MCP-3/CCL7, MIP-3α/CCL20, the cytokines IL-1β, IL-6, RANKL and the matrix metalloproteinases MMP2, MMP3, and MMP13 were decreased in the ankles of Il17ra−/− mice compared to wild-type mice. Many of these proinflammatory genes attenuated in the ankles of Il17ra−/− mice were shown to be directly induced by IL-17A in synovial fibroblasts in vitro.

Conclusions

IL-17RA signaling plays a role as an amplifier of the effector phase of inflammatory arthritis. This effect is likely mediated by direct activation of synovial fibroblasts by IL-17RA to produce multiple inflammatory mediators, including chemokines active on neutrophils. Therefore, interrupting IL-17RA signaling maybe a promising pharmacological target for the treatment of inflammatory arthritis.  相似文献   

14.
Regulation of chemokine expression by IL-10 in lung inflammation   总被引:18,自引:0,他引:18  
Shanley TP  Vasi N  Denenberg A 《Cytokine》2000,12(7):1054-1064
We have been interested in understanding the mechanisms regulating the inflammatory process underlying acute lung injury. The current studies have employed a model of acute lung inflammation in mice triggered by bacterial lipopolysaccharide. The development of this injury was associated with increased expression of the chemokines, MIP-1alpha and MIP-2, that coordinate recruitment of neutrophils to the lung. IL-10 is a potent, endogenous anti-inflammatory molecule that has been shown to decrease lung inflammation partly on the basis of TNF-alpha and IL-1beta inhibition. In these studies we tested the hypothesis that endogenous IL-10 modulates chemokine expression using the IL-10 knock-out mouse, and then explored the molecular mechanisms by which IL-10 might do so. The results demonstrate that significant elevations in both chemokines were observed in the absence of IL-10 and that these findings were associated with significant increases in lung neutrophil accumulation. In vitro studies defined two, gene-specific, mechanisms by which IL-10 regulated chemokine expression: mRNA destabilization and NF-kappaB inhibition. These results suggested that IL-10 is an important, endogenous regulator of chemokine expression in acute lung inflammation.  相似文献   

15.
This study examined the impact of concurrent parasite infections (amoebiasis, filariasis, necatoriasis) and the effect of anti-parasite treatment on cytokine and chemokine responses in singly and poly-parasitized patients. Cellular reactivity and parasite-specific Th1- and Th2-type cytokine and chemokine profiles were investigated before and six weeks after treatment. In those patients infected with three parasite species, cellular secretion of interleukin 5 (IL-5) and IL-12p40 by PBMC was strongly diminished (p<0.005) but IL-10 was elevated in parasite-infected patients (p<0.0001) in response to protozoa- and helminth-specific as well as bacteria-specific antigens. Macrophage inflammatory chemokines (MIP-1alpha/CCL3 and MIP-1beta/CCL4), macrophage-derived chemokine (MDC/CCL22) and neutrophil activating chemokine (IL-8/CXCL8) were produced by PBMC in similar amounts in endemic controls and singly and poly-parasitized patients, but thymus and activation-regulated chemokine (TARC/CCL17) was produced the highest by PBMC from patients with triple parasite infections (p<0.0001). Following anti-parasite therapy, secretion of IL-12p40 and IL-5 augmented significantly in treated patients while IL-10, MDC, MIP-1alpha, TARC and IL-8 substantially diminished (all p<10(-5)) when their PBMC were activated with parasite- and bacteria-specific antigens. In summary, PBMC from poly-parasitized patients responded to protozoa- and helminth-specific antigens with a compromised IL-5 and IL-12p40 but high IL-10 and a substantial chemokine release. Chemokines may attract and activate effector cells in peri-parasitic tissues to limit parasite proliferation and dissemination, while depressed IL-5 and IL-12p40 but prominent IL-10 may prevent eosinophil and cytotoxic cell-mediated inflammatory processes and pathogenesis to the host. The changes in this profile following anti-parasite therapy disclosed the dynamics of an immune adaptation associated with parasite accumulation and also with clearance of parasite infections.  相似文献   

16.
In the present study we analyse chemokine expression in the remodelling of subchondral bone in arthritis patients. Trabecular bone biopsies were tested by immunohistochemistry to identify interleukin (IL)-8, GRO-alpha, MCP-1, RANTES, MIP-1alpha and MIP-1beta expression. Subsequently, we evaluated by immunoassay the effect of interferon (IFN)-gamma and IL-6 on chemokine production by osteoarthritis (OA), rheumatoid arthritis (RA) and post-traumatic (PT) patients' isolated osteoblasts (OB). OB constitutively produced in situ IL-8, GRO-alpha, MCP-1, RANTES and MIP-1alpha. MIP-1beta was positive only in mononuclear cells. In RA many of these chemokines were also produced by mononuclear cells. IFN-gamma significantly down-regulated IL-8 and up-regulated MCP-1 produced by OB from all patients tested, whereas it did not affect the other chemokines analysed. Moreover, IFN-gamma reduced IL-1beta-stimulated IL-8 production but significantly increased both MCP-1 and RANTES. Interestingly, IL-6 significantly downregulated IFN-gamma-induced MCP-1 production, that was significantly lower in OA compared to RA patients. OB expressed chemokines both in vivo and in vitro suggesting that these cells are primary effectors in the bone capable of regulating autocrine/paracrine circuits that affect bone remodelling in these diseases.  相似文献   

17.
Fibronectin fragments (FN-f) that bind to the alpha(5)beta(1) integrin stimulate chondrocyte-mediated cartilage destruction and could play an important role in the progression of arthritis. The objective of this study was to identify potential cytokine mediators of cartilage inflammation and destruction induced by FN-f and to investigate the mechanism of their stimulation. Human articular chondrocytes, isolated from normal ankle cartilage obtained from tissue donors, were treated with a 110-kDa FN-f in serum-free culture, and expression of various cytokine genes was analyzed by cDNA microarray and by a cytokine protein array. Compared with untreated control cultures, stimulation by FN-f resulted in a >2-fold increase in IL-6, IL-8, MCP-1, and growth-related oncogene beta (GRO-beta). Constitutive and FN-f-inducible expression of GRO-alpha and GRO-gamma were also noted by RT-PCR and confirmed by immunoblotting. Previous reports of IL-1beta expression induced by FN-f were also confirmed, while TNF expression was found to be very low. Inhibitor studies revealed that FN-f-induced stimulation of chondrocyte chemokine expression was dependent on NF-kappaB activity, but independent of IL-1 autocrine signaling. The ability of FN-f to stimulate chondrocyte expression of multiple proinflammatory cytokines and chemokines suggests that damage to the cartilage matrix is capable of inducing a proinflammatory state responsible for further progressive matrix destruction, which also includes the chemoattraction of inflammatory cells. Targeting the signaling pathways activated by FN-f may be an effective means of inhibiting production of multiple mediators of cartilage destruction.  相似文献   

18.
Certain chemokines possess anti-angiogenic and antibacterial activity, in addition to their ability to recruit leukocytes. Herein, we demonstrate that CXCL9/MIG induces the expression, by a monocytic cell line and peripheral blood mononuclear cells, of a variety of chemokines including CXCL8/IL-8, CCL3/MIP-1α, CCL4/MIP-1β, CCL2/MCP-1 in a pertussis toxin insensitive manner. Similarly, another cationic chemokine CCL20/MIP-3α, but not the non-cationic chemokines CCL2 or CCL3, stimulated monocytic cells to produce substantial amounts of CXCL8 and CCL3. Microarray experiments demonstrated that CXCL9, but not CCL2, induced the expression of hundreds of genes, many of which have known or proposed immunomodulatory functions. Induction of CXCL8 required the p38 and ERK1/2 mitogen-activated protein kinases but not NFκB, JAK-STAT or JNK signaling pathways. These results collectively demonstrate that CXCL9 has immunomodulatory functions that are not mediated through a G-protein coupled receptor and may possess additional roles in host defenses against infection.  相似文献   

19.
To investigate the role of neutrophils in experimental cerebral malaria (ECM), in a previous study we found that early neutrophil depletion prevented the development of ECM and down regulated the expression of Th1 cytokines in the brain. To further clarify the mechanisms responsible for these findings, in the present study, using RT-PCR, we examined the expression of cytokine and chemokine mRNAs in neutrophils and macrophages after PbA infection. We found that, after infection, neutrophils not only expressed cytokines IL-2, IL-12p40, IL-18, IFN-gamma and TNF-alpha mRNAs, but also mRNAs for Th1 chemoattractive chemokines, monokine-induced by IFN-gamma (MIG), macrophage-inflammatory protein-1alpha (MIP-1alpha) and IFN-gamma inducible protein-10 (IP-10). Neutrophil depletion down regulated the expression of IL-18 and MIG mRNAs in macrophages, but did not affect the expression of IFN-gamma, TNF-alpha, MIP-1alpha and IP-10 mRNAs. Therefore, this study confirms our hypothesis that neutrophils may play a role in the pathogenesis of ECM via their expression of cytokines or chemokines.  相似文献   

20.
Liver and activation-regulated chemokine (LARC), also designated macrophage inflammatory protein-3alpha (MIP-3alpha), Exodus, or CCL20, is a C-C chemokine that attracts immature dendritic cells and memory T lymphocytes, both expressing CCR6. Depending on the cell type, this chemokine was found to be inducible by cytokines (IL-1beta) and by bacterial, viral, or plant products (including LPS, dsRNA, and PMA) as measured by a specific ELISA. Although coinduced with monocyte chemotactic protein-1 (MCP-1) and IL-8 by dsRNA, measles virus, and IL-1beta in diploid fibroblasts, leukocytes produced LARC/MIP-3alpha only in response to LPS. However, in myelomonocytic THP-1 cells LARC/MIP-3alpha was better induced by phorbol ester, whereas in HEp-2 epidermal carcinoma cells IL-1beta was the superior inducer. The production levels of LARC/MIP-3alpha (1-10 ng/ml) were, on the average, 10- to 100-fold lower than those of IL-8 and MCP-1, but were comparable to those of other less abundantly secreted chemokines. Natural LARC/MIP-3alpha protein isolated from stimulated leukocytes or tumor cell lines showed molecular diversity, in that NH(2)- and COOH-terminally truncated forms were purified and identified by amino acid sequence analysis and mass spectrometry. In contrast to other chemokines, including MCP-1 and IL-8, the natural processing did not affect the calcium-mobilizing capacity of LARC/MIP-3alpha through its receptor CCR6. Furthermore, truncated natural LARC/MIP-3alpha isoforms were equally chemotactic for lymphocytes as intact rLARC/MIP-3alpha. It is concluded that in addition to its role in homeostatic trafficking of leukocytes, LARC/MIP-3alpha can function as an inflammatory chemokine during host defense.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号