首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study provides strong evidence for the involvement of rat liver microsomal cytochrome b5 in the first reduction step of fatty acid chain elongation. The rate of reoxidation of NADH-reduced microsomal cytochrome b5 was markedly stimulated (up to 3-fold) by the addition of increasing concentrations of beta-ketohexadecanoyl-CoA (1-8 microM). A quantitative analysis of product formation, the effect of cyanide, and anaerobiosis completely exclude the possibility that desaturase activity accounted for the beta-ketohexadecanoyl-CoA-induced stimulation of the cytochrome b5 reoxidation rate. Using liver microsomes from untreated rats, the beta-keto substrate was found to stimulate the rate of reoxidation of cytochrome b5 by 30%. However, when liver microsomes from fat-free diet rats were employed the stimulation was more than 3-fold, suggesting that the beta-ketoacyl-CoA reductase is inducible by a high carbohydrate, fat-free diet. This study also provides evidence for the noninvolvement of cytochrome b5 in the terminal reaction step (second reduction step of chain elongation), which is catalyzed by the trans-2-enoyl-CoA reductase. Although trans-2-hexadecenoyl-CoA significantly stimulated the NADH-reduced cytochrome b5 reoxidation rate under aerobic conditions, it did not have any stimulatory effect under anaerobic conditions. One interpretation of these results is that the trans-2-hexadecenoyl-CoA is substrate for the microsomal delta 9 desaturase system. Consistent with this conclusion was the fact that the trans-2-hexadecenoyl-CoA inhibited the liver microsomal delta 9 desaturation of stearoyl-CoA to oleoyl-CoA.  相似文献   

2.
The NADH-dependent stearoyl CoA desaturase of hepatic microsomes (EC 1.14.99.5) is an enzyme system consisting of cytochrome b5 reductase (EC 1.6.2.2), cytochrome b5, and the terminal desaturase. We have developed a simple method for routine assay of the terminal enzyme based on complementation of the enzyme with chick embryo liver microsomes lacking desaturase activity. Desaturation of [1-14C]stearoyl CoA by the enzyme-microsome mixture is then assayed by thin-layer chromatography of the reaction products and determination of the amount of oleate formed. Microsomes from the livers of starved-refed rats were used as the source of the stearoyl CoA desaturase. The enzyme alone, solubilized and free from cytocrome b5 reductase and cytochrome b5, was unable to catalyze the desaturation of stearoyl CoA. However, after preincubation with chick embryo liver microsomes in the presence of 1% Triton X-100, the enzyme was active. The enzyme activity was linear with time and desaturase protein under the conditions described and depended on the concentrations of Triton X-100 present in the preincubation and the assay. The optimum concentrations of Triton X-100 were 1% for the preincubation and 0.1-0.15% in the assay. The desaturation activity was dependent on NADH and O2, and was inhibited 95% by 1 mM KCN. The use of chick embryo liver microsomes in this method eliminates the need to use purified cytochrome b5 reductase, cytochrome b5, and liposomes for routine assays and greatly reduces the complexities of timing and order of addition encountered in the existing assays.  相似文献   

3.
1. In vitro assay conditions have been defined for measurement of delta 9 desaturase activity in Tetrahymena pyriformis W. 2. The reaction depends on the presence of oxygen and a reduced pyridine nucleotide cofactor. FAD supports a low level of enzymatic activity. 3. Both stearyl-CoA and palmityl-CoA are acceptable substrates. Oleate formation is maximal at 30 degrees C. 4. Delta-9 desaturase activity appears to be localized in the microsomal fraction. Delta-6 and/or delta 12 desaturase activities have also been observed. 5. When the specificity of the delta 9 desaturase towards stearyl-CoA and palmityl-CoA was observed at 30 and 16 degrees C it was found that lowering the assay temperature did not affect specificity. Stearyl-CoA was more readily desaturated at both temperatures. 6. Exogenous oleyl-CoA and diisopropylfluorophosphate had little effect on delta 9 desaturase activity. However, cyanide strongly inhibited desaturation and a sensitivity to sulfhydryl-binding reagents has also been demonstrated.  相似文献   

4.
The structural properties of rat liver microsomes were studied by physical and kinetic methods. The microsomes and the lipids extracted from the microsomes were labeled with 16-doxyl-stearic acid- and N-phenyl-1-naphthylamine. The electron spin resonance spectra and the fluorescence intensities were respectively determined at different temperatures from approximately 10 to 40 C. Both methods suggested the absence of a transition temperature indicative of a phase change in the bulk of the lipids of the microsomes in the temperature range studied. The fluidity of the lipid bilayer increased smoothly with the temperature. The Arrhenius plots of the NADH-ferricyanide reductase, NADH-cyt.c reductase, delta 9 desaturase, delta 6 desaturase and palmitic elongation to stearic acid also indicated the absence of a detectable change of phase from crystalline to liquid crystalline in the boundary lipids of these enzymes from 10 C to 40 C. The transference of electrons from the NADH-cyt.b5 reductase to the cyt.b5 is the rate limiting step in the first parts of the electron transport chain. However, the delta 9 desaturase is the rate limiting step of all the series of reactions involved in the delta 9 fatty acid desaturation. Similar conclusions may be extended to the delta 6 desaturation of fatty acids. The physical state of the lipids surrounding the desaturating system would be different from boundary lipids of the cyt.P450 system.  相似文献   

5.
The terminal oxidase of the NADH-dependent lathosterol 5-desaturation system was solubilized from rat liver microsomes with 2% Triton X-100, and partially purified approximately 18-fold with 19% yield after DEAE-cellulose and 6-aminohexyl-Sepharose column chromatography. The final enzyme preparation was free from other electron transfer components and phospholipids in microsomes, and the desaturation reaction was reconstituted with the following components: NADH, molecular oxygen, phospholipids and three proteins, i.e., NADH-cytochrome b5 reductase, cytochrome b5 and the terminal oxidase. Omission of one of these components led to an almost complete loss of the desaturase activity. Under the reconstitution conditions, the desaturase activity was significantly inhibited by potassium cyanide but was not affected by -SH reagents such as N-ethylmaleimide and dithiothreitol.  相似文献   

6.
The rat hepatic stearoyl-CoA desaturation decreased by 3.7-fold in streptozotocin-induced diabetes. Insulin treatment of diabetic rats increased the enzyme activity by 7-fold. In marked contrast to glucose administration, fructose feeding in diabetic rats resulted in 20-fold stimulation of stearoyl-CoA desaturation, although both carbohydrates stimulated stearoyl-CoA desaturation in normal rats. Measurement of the microsomal electron transfer components showed no significant changes in the NADH-cytochrome b5 reductase activity or in the concentration of cytochrome b5. However, the activity of the terminal desaturase changed in a parallel fashion as the amount of terminal desaturase reflect changes in the overall desaturation. Supplementation of various microsomes with the saturating amount of purified terminal desaturase resulted in the formation of similar amounts of catalytically active complex and increased the stearoyl-CoA desaturation to the same level suggesting that the changes in the amount of terminal desaturase reflect changes in the overall desaturation. The results support the suggestion that both insulin and the intermediates of carbohydrate metabolism are involved in the regulation of terminal desaturase.  相似文献   

7.
The involvement of cytochrome b5 in palmitoyl-CoA desaturation by yeast microsomes was studied by using yeast mutants requiring unsaturated fatty acids and an antibody to yeast cytochrome b5. The mutants used were an unsaturated fatty acid auxotroph (strain E5) and a pleiotropic mutant (strain Ole 3) which requires either Tween 80 and ergosterol or delta-aminolevulinic acid for growth. Microsomes from the wild-type strain possessed both the desaturase activity and cytochrome b5, whereas those from mutant E5 contained the cytochrome but lacked the desaturase activity. Microsomes from mutant Ole 3 grown with Tween 80 plus ergosterol were devoid of both the desaturase activity and cytochrome b5, but those from delta-aminolevulinic acid-grown mutant Ole 3 contained cytochrome b5 and catalyzed the desaturation. The cytochrome b5 content in microsomes from mutant Ole 3 could be varied by changing the delta-aminolevulinic acid concentration in the growth medium, and the desaturase activity of the microsomes increased as their cytochrome b5 content was increased. The antibody to yeast cytochrome b5, but not the control gamma-globulin fraction, inhibited the NADH-cytochrome c reductase and NADH-dependent desaturase activities of the wild-type microsomes. It is concluded that cytochrome b5 is actually involved in the desaturase system of yeast microsomes. The lack of desaturase activity in mutant Ole 3 grown with Tween 80 plus ergosterol seems to be due to the absence of cytochrome b5 in microsomes, whereas the genetic lesion in mutant E5 appears to be located at ther terminal desaturase.  相似文献   

8.
The electron donors for the membrane-bound fatty acid desaturases of higher plants have not previously been identified. In order to assess the participation of cytochrome b5 in microsomal fatty acid desaturation, the cytoplasmic domain of microsomal cytochrome b5 was purified from Brassica oleracea, and murine polyclonal antibodies were prepared. The IgG fraction from ascites fluid inhibited 62% of NADH-dependent cytochrome c reduction in safflower (Carthamus tinctorius L.) microsomes. These antibodies also blocked desaturation of oleic acid to linoleic acid in lipids of C. tinctorius microsomes by 93%, suggesting that cytochrome b5 is the electron donor for the delta 12 desaturase.  相似文献   

9.
Two Helicoverpa species, H. armigera and H. assulta use (Z)-11-hexadecenal and (Z)-9-hexadecenal as their sex attractant pheromone components but in opposite ratios. Since both female and male interspecific hybrids produced by female H. assulta and male H. armigera have been obtained in our laboratory, we can make a comparative study of sex pheromone composition and biosynthesis in the two species and their hybrid. With GC and GC-MS analyses using single gland extracts, the ratio of (Z)-9-hexadecenal to (Z)-11-hexadecenal was determined as 2.1:100 in H. armigera, and 1739:100 in H. assulta. The hybrid has a ratio of 4.0: 100, which is closer to that of H. armigera, but significantly different from H. armigera. We investigated pheromone biosynthesis with labeling experiments, using various fatty acid precursors in H. armigera, H. assulta and the hybrid. In H. armigera, (Z)-11-hexadecenal is produced by delta11 desaturation of palmitic acid, followed by reduction and terminal oxidation; (Z)-9-hexadecenal results from delta11 desaturation of stearic acid, followed by one cycle of chain shortening, reduction and terminal oxidation. delta11 desaturase is the unique desaturase for the production of the two pheromone components. In our Chinese strain of H. assulta, palmitic acid is used as the substrate to form both the major pheromone component, (Z)-9-hexadecenal and the minor one, (Z)-11-hexadecenal. Our data suggest that delta9 desaturase is the major desaturase, and delta11 desaturase is responsible for the minor component in H. assulta, which is consistent with previous work. However, the weak chain shortening acting on (Z)-9 and (Z)-11-octadecenoic acid, which is present in the pheromone glands, does occur in this species to produce (Z)-7 and (Z)-9-hexadecenoic acid. In the hybrid, the major pheromone component, (Z)-11-hexadecenal is produced by delta11 desaturation of palmitic acid, followed by reduction and terminal oxidation. The direct fatty acid precursor of the minor component, (Z)-9-hexadecenoic acid is mainly produced by delta9 desaturation of palmitic acid, but also by delta11 desaturation of stearic acid and one cycle of chain shortening. The greater relative amounts of (Z)-9-hexadecenal in the hybrid are due to the fact that both palmitic and stearic acids are used as substrates, whereas only stearic acid is used as substrate in H. armigera. The evolutionary relationships between the desaturases in several Helicoverpa species are also discussed in this paper.  相似文献   

10.
A desaturase with 83% sequence identity to the coriander delta(4)-16:0-ACP desaturase was isolated from developing seeds of Hedera helix (English ivy). Expression of the ivy desaturase in Arabidopsis resulted in the accumulation of 16:1delta(4) and its expected elongation product 18:1delta(6) (petroselinic acid). Expression in Escherichia coli resulted in the accumulation of soluble, active protein that was purified to apparent homogeneity. In vitro assays confirmed delta(4) desaturation with 16:0-ACP; however, with 18:0-acyl acyl carrier protein (ACP) desaturation occurred at the delta(9) position. The ivy desaturase also converted 16:1delta(9)-ACP and 18:1delta(9)-ACP to the corresponding delta(4,9) dienes. These data suggest at least two distinct substrate binding modes, one placing C4 at the diiron active site and the other placing C9 at the active site. In the latter case, 18:0 would likely bind in an extended conformation as described for the castor desaturase with 9-carbons accommodated in the cavity beyond the dirron site. However, delta(4) desaturation would require the accommodation of 12 carbons for C16 substrates or 14 carbons for C18 substrates. The amino acids lining the substrate binding cavity of ivy and castor desaturases are conserved except for T117R and P179I (castor/ivy). Paradoxically, both substitutions, when introduced into the castor desaturase, favored the binding of shorter acyl chains. Thus, it seems likely that delta(4) desaturation would require a non-extended, perhaps U-shaped, substrate conformation. A cis double bond may facilitate the initiation of such a non-extended conformation in the monounsaturated substrates. The multifunctional properties of the ivy desaturase make it well suited for further dissection of the determinants of regiospecificity.  相似文献   

11.
The effect of clofibrate and ethanol in the rat was studied on the following aspects of lipid composition and metabolism: liver delta 5, delta 6 and delta 9 fatty acid desaturases, fatty acid synthetase and fatty acid desaturase microsomal electron transport chain activity and serum cholesterol, triacylglycerols and high (HDL), low (LDL) and very low density lipoprotein (VLDL) levels. Clofibrate administered for 9 days (0.3% W/W) did not modify the relative composition of liver phospholipids and cholesterol, but did diminish triacylglycerol levels increased by ethanol. This effect could be explained by the possible beta-adrenergic blocking properties of clofibrate or by an increased activity of peroxisomal beta-oxidation. Clofibrate also promoted a decrease in serum cholesterol and triacylglycerol levels, delta 6 desaturase activity and a suppression of the electron transport chain as measured by NADH cytochrome b5 reductase and NADH cytochrome c reductase. The drug increased delta 9 desaturase activity and fatty acid synthetase, while no effect could be found in delta 5 desaturase activity. The hypocholesterolenic effect of clofibrate can not be explained through the delta 6 desaturase inhibition, or the fatty acid synthetase enhancement. Ethanol increased the HDL and VLDL and lowered LDL serum concentrations, while clofibrate reversed these results. Considering that clofibrate could have antiatherosclerotic effect in the rat, it is difficult to explain it through these changes in lipoprotein levels, since according to Miller and Miller low HDL levels are predictive of coronary heart disease.  相似文献   

12.
The development of the stearyl-CoA desaturase system was studied in newly hatched chicks. The desaturation activity was very low in hepatic microsomes from chick embryos, less than 0.05 nmol of oleate formed min?1 (mg of protein)?1. After hatching and feeding, the desaturation activity gradually increased to 4–5 nmol of oleate formed min?1 (mg of protein)?1 in 6-day-old chicks. This increase could be prevented by administration of cycloheximide or actinomycin D. Measurement of the microsomal electron transfer components throughout the induction period showed no significant changes in the NADH- or NADPH-specific reductases or in the concentrations of cytochromes b5 and P-450. However, the activity of the terminal component of the desaturase system (the desaturase enzyme) increased in parallel with the desaturation activity. Supplementing the liver microsomes from chick embryos with isolated desaturase enzyme resulted in the formation of an active desaturation system. It is proposed that the induction of the stearyl-CoA desaturase system during development of newly hatched chicks is dependent on the synthesis of the terminal desaturase enzyme.  相似文献   

13.
In the present study, we have investigated the liver microsomal stearic acid delta9 desaturation, and the fatty acid composition of liver microsomal total lipids in 10- and 30-day-old spontaneously hypertensive rats (SHRs), compared to the normotensive Wistar Kyoto (WKY) control rats. So as to avoid any influence related to the diet, the composition of the milk being different in SHR and WKY strains, the pups were suckled by adoptive normotensive female Wistar. After weaning, the 30-day-old rats were fed a standard commercial diet and then killed. Our results show lower liver microsomal delta9 desaturase activities in the 10- and 30-day-old SHR versus the WKY of the same age. The fatty acid composition of the SHR liver microsomal total lipids are not in agreement with the changes in the delta9 desaturase activities at the two studied ages. This phenomenon depends not only on desaturation/elongation but also on other interacting aspects of lipid metabolism including oxidation, substrate availability, acyl exchange, and eicosanoid synthesis, as well as hormonal status.  相似文献   

14.
The enzymatic properties of the three types of microsomal acyl-CoA desaturases, delta 6-, delta 9- and delta 5-desaturases, were immunologically compared using a monospecific antibody raised against the purified linoleoyl-CoA desaturase (delta 6-desaturase). By the double immunodiffusion technique, the anti-delta 6-desaturase antibody showed a single precipitin line to the purified delta 6-desaturase and microsomes treated with Triton X-100, but no line was observed with the partially purified delta 9-desaturase. The antibody even inhibited definitely delta 6-desaturase activity in microsomes, but neither stearoyl-CoA (delta 9-) nor eicosatrienoic acid (delta 5-) desaturations were inhibited. By these immunological investigations it was confirmed that terminal delta 6-desaturase is different enzyme from desaturases delta 9- and delta 5.  相似文献   

15.
This report supports evidence for the existence of a dexamethasone-induced factor that modulates fatty acid desaturase activities. Dexamethasone at a dose of 1 mg/rat produced a significant decrease in microsomal delta 6 and delta 5 desaturation activity 12 h after the injection. Both desaturase activities were depressed by a soluble factor present in the cytosolic fraction of cells, since the supernatant of microsomes separated at 110,000 X g from hormonal-treated rat liver homogenates, added to crude or washed control microsomes, was able to inhibit in vitro linoleic and homo-gamma-linolenic conversion to gamma-linolenic and arachidonic acids, respectively. The inhibitory factor was loosely bound to microsomes, since it was also present in a soluble fraction obtained after washing crude microsomes from dexamethasone-treated rats with a low-ionic-strength solution. Besides, trypsin digestion deactivates the dexamethasone-induced factor. Therefore, the depressing effect of glucocorticoids on delta 6 and delta 5 desaturation capacity depends on an unchanged protein structure present in the cytosolic fraction of the cell and whose biosynthesis is brought about by hormonal induction.  相似文献   

16.
We studied linoleic acid delta 5 and dihomo-gamma-linolenic acid delta 5 desaturations, and fatty acid composition, of liver microsomes in the insulin-dependent spontaneously diabetic adult female BB rat. These desaturations were defective along the normo- and hyper-glycemic period and restored during the hypoglycemic period which followed the insulin injection to the diabetic rats. The fatty acid composition of BB rats microsomes was not consistent with the desaturase activities at the different periods of glycemia, probably because other factors than desaturation impairments were involved in the evolution of fatty acid composition.  相似文献   

17.
Microsomes prepared from the livers of 4-week-old rats were, after extraction with 0.1 M potassium phosphate buffer, pH 7.4, unable to catalyse either the delta6 desaturation of alpha-linolenic acid (9c.12c.15c., 18 : 3) into 6c.9c.12c.15c., 18 : 4 or the delta5 desaturation of eicosatrienoic acid (8c.11c.14c., 20 : 3) into arachidonic acid (5c.8c.11c.14c., 20 : 4). Both these enzymes only showed full activity after incubation of the microsomes with either the 100 000 X g supernatant fraction or with purified bovine catalase. Bovine serum albumin, while capable of restoring 50% of the delta5 desaturase activity has no effect on the delta6 desaturase. In contrast the delta9 desaturase activity of microsomes was never completely lost after extraction with buffer but could be stimulated by optimum concentrations of both bovine serum albumin and catalase. The significance of the different responses of the three desaturases to the cytoplasmic components is discussed.  相似文献   

18.
1. The effects of halothane (CF3CHBrCl), a volatile anaesthetic agent, on electron transfer in isolated rat liver microsomal preparations were examined. 2. At halothane concentrations achieved in tissues during clinical anaesthesia (1-2mM), halothane shifts the redox equilibrium of microsomal cytochrome b5 in the presence of NADPH towards the oxidized form. Halothane accelerates stoicheiometric consumption of NADPH and O2, increases the rate of reoxidation of NADH-reduced microsomal ferrocytochrom b5, but does not affect NADPH- or NADH-cytochrome c reductase activity. The enhanced microsomal electron flow seen in the presence of halothane is not diminished by CO nor is it increased by pretreatment of the animals with phenobarbital. 3. The effects of halothane are maximum in microsomal preparations isolated from animals fed on a high-carbohydrate diet to induce stearate desaturase activity. Changes in microsomal electron transfer caused by halothane are in all cases abolished by low concentrations (1-2mM) of cyanide. Microsomal stearate desaturase activity is unaffected by halothane. 4. The first-order rate constant for oxidation of membrane-bound ferrocytochrome b5 in the absence of added substrate (k1 equals 1.5 times 10(-3)A-1) is similar to that for autoxidation of purified ferrocytochrome b5(k1 equals 7 times 10(-3)S-1) the rate of autoxidation of soluble ferrocytochrome b5 is unaffected by halothane. 5. It is concluded that the effects of halothane on microsomal electron transfer are not related to cytochrome P-450 linked metabolism but rather arise from the interaction of halothane with the cyanide-sensitive factor of the stearate desaturase pathway.  相似文献   

19.
Male rats were fed a diet containing 0.5% (w/w) p-chlorophenoxyisobutyric acid (clofibric acid), a hypolipidemic drug. Activities of stearoyl-CoA desaturation in hepatic microsomes were increased approx. 4 times following the administration of clofibric acid for 7 days. An increase in the activity of desaturation of stearic acid was also observed in the liver of clofibric acid-fed rats in vivo. The increase in the activity of microsomal stearoyl-CoA desaturation by clofibric acid-feeding was due to the increase in the activity of terminal desaturase as measured by the rate constant for cytochrome b5 reoxidation, but not due to the changes in cytochrome b5 content and NADH-cytochrome b5 reductase activity. Increases in the activity of stearoyl-CoA desaturation by clofibric acid-feeding were also observed in rats of hormonally altered state, such as diabetic rats, hyperthyroid rats and hypothyroid rats. Percentages of octadecenoic acid in total fatty acid of hepatic lipid were increased with the increase in the activity of stearoyl-CoA desaturation.  相似文献   

20.
A rabbit antiserum was prepared against rat liver microsomal cytochrome b5, and utilized in demonstrating the participation of this cytochrome in the microsomal stearyl-CoA desaturation reaction. The antiserum inhibited the NADH-cytochrome c reductase activity of rat liver microsorncs, but it did not inhibit either NADH-ferricyanide or NADPH-cytochrome c reductase activity of the microsomes. Thus, the inhibitory effect of the antiserum on the microsomal electron-transferring reactions seemed to be specific to those which require the participation of cytochrome b5.The NADH-dependent and NADPH-dependent desaturations of stearyl CoA by rat liver microsomes were strongly inhibited by the antiserum. The reduction of cytochrome b5 by NADH-cytochrome b5 reductase as well as the reoxidation of the reduced cytochrome b3 by the desaturase, the terminal cyanide-sensitive factor of the desaturation system, was also strongly inhibited by the antiserum. When about 90%, of cytochrome b5 was removed from rat liver microsomes by protease treatment, the desaturation activity of the microsomes became much more sensitive to inhibition by the antiserum. These results confirmed our previous conclusion that the reducing equivalent for the desaturation reaction is transferred from NAD(P)H to the cyanidesensitive factor mainly via cytochrome b5 in the microsomal membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号