首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The availability of sequential DNA phosphates to bind toluidine blue molecules after acid hydrolysis was studied in normally shaped and misshaped spermatozoa from subfertile and highly fertile bulls. The aim was to associate induced spermatozoal metachromasia with infertility. Some few normally and abnormally shaped cells from highly fertile bulls exhibited an induced metachromasia after being treated with 4N HCl for 10–30 min at 25°C prior to staining. Subfertile bulls contained 12 times as many metachromatic spermatozoa as highly fertile animals. The induced toluidine blue metachromasia is suggested as a rapid and simple method for detecting bull spermatozoa bearing an anomalous DNA-protein complex. This nucleoprotein complex was found to be more frequent in subfertile bulls.  相似文献   

2.
Manuele Rebsamen 《Autophagy》2016,12(6):1061-1062
The mechanistic target of rapamycin (serine/threonine kinase) complex 1 (MTORC1) acts as a crucial regulator of cellular metabolism by integrating growth factor presence, energy and nutrient availability to coordinate anabolic and catabolic processes, and controls cell growth and proliferation. Amino acids are critical for MTORC1 activation, but the molecular mechanisms involved in sensing their presence are just beginning to be understood. We recently reported that the previously uncharacterized amino acid transporter SLC38A9 is a member of the lysosomal sensing machinery that signals amino acid availability to MTORC1. SLC38A9 is the first component of this complex shown to physically engage amino acids, suggesting a role at the core of the amino acid-sensing mechanism.  相似文献   

3.
Ethanol abolishes the metachromatic reaction of toluidine blue O with un-combined chromotropes but not when they are in association with protein. The green colour obtained in metachromatic regions is established as not due to any green impurity of the dye by chromatographic analysis but due to the fluid dehydrants combining with the dye as dye-organic solvent mixture showed green. The loss of metachromasia is not due to a dehydration effect of ethanol alone for the following reasons: (i) Stained samples of chromotropes dried in vacuuo continued to retain the metachromatic colour, (ii) Although other dehydrating agents likewise abolished the metachromasia, alcohols which have very slight affinity to water also abolished it, (iii) Ethanol does not abolish metachromasia produced in an acid mucopolysaccharide-protein complex. This has been suggested as due to the inability of ethanol to separate the dye from such compounds and to bring about a shift to green.  相似文献   

4.
Amino acids regulate TOR complex 1 (TORC1) via two counteracting mechanisms, one activating and one inactivating. The presence of amino acids causes TORC1 recruitment to lysosomes where TORC1 is activated by binding Rheb. How the absence of amino acids inactivates TORC1 is less well understood. Amino acid starvation recruits the TSC1/TSC2 complex to the vicinity of TORC1 to inhibit Rheb; however, the upstream mechanisms regulating TSC2 are not known. We identify here the eIF4A‐containing eIF4F translation initiation complex as an upstream regulator of TSC2 in response to amino acid withdrawal in Drosophila. We find that TORC1 and translation preinitiation complexes bind each other. Cells lacking eIF4F components retain elevated TORC1 activity upon amino acid removal. This effect is specific for eIF4F and not a general consequence of blocked translation. This study identifies specific components of the translation machinery as important mediators of TORC1 inactivation upon amino acid removal.  相似文献   

5.
The effect of amino acids, in concentrations corresponding to those found in the portal vein of rats given a high-protein diet, was investigated on the activity of system A amino acid transport in hepatocytes from fed rats. Amino acids counteracted the induction of system A by insulin or glucagon. This effect was observed at all concentrations of hormones tested, up to 1 microM. Amino acids did not affect the basal cyclic AMP concentration in hepatocytes, or the large rise in cyclic AMP elicited by glucagon. The reversal of system-A induction was observed at relatively low concentration of amino acids, corresponding to plasma values reported in rats given a basal diet. Amino acids were separately tested: substrates of system A were particularly efficient, but so were glutamine and histidine. Non-metabolizable substrates of system A, such as 2-aminoisobutyrate, were also inhibitory, suggesting that a part of the effect of amino acids is independent of their cellular metabolism. Provision of additional energy substrates such as lactate and oleate did not affect induction of system A or the inhibitory effects of amino acids. Thus amino acids do not act by serving as an energy source and by maintaining the integrity of hepatocytes. Inhibition of mRNA synthesis by actinomycin practically abolished the effect of amino acids on the induction of system A by glucagon. The results suggest that amino acids may promote the synthesis of protein(s) affecting the activity of system A either directly at the carrier unit or at an intermediate stage of its emergence.  相似文献   

6.
Amino acids are known to react with oxidizing agents and some of the degradation products are less complex amino acids. In this study, 14 amino acids as well as fibrous corium collagen and epoxy resin-tanned collagen were reacted with a hydrogen peroxide or hydrogen peroxide-copper sulfate solution, and a number of amino acids were identified chromatographically which were not originally present. These results may explain the presence of several ninhydrin-reactive unknowns formed during hydrolysis of the product obtained by tanning fibrous corium collagen with an epoxy resin.  相似文献   

7.
The activity of mammalian target of rapamycin (mTOR) complexes regulates essential cellular processes, such as growth, proliferation, or survival. Nutrients such as amino acids are important regulators of mTOR complex 1 (mTORC1) activation, thus affecting cell growth, protein synthesis, and autophagy. Here, we show that amino acids may also activate mTOR complex 2 (mTORC2). This activation is mediated by the activity of class I PI3K and of Akt. Amino acids induced a rapid phosphorylation of Akt at Thr-308 and Ser-473. Whereas both phosphorylations were dependent on the presence of mTOR, only Akt phosphorylation at Ser-473 was dependent on the presence of rictor, a specific component of mTORC2. Kinase assays confirmed mTORC2 activation by amino acids. This signaling was functional, as demonstrated by the phosphorylation of Akt substrate FOXO3a. Interestingly, using different starvation conditions, amino acids can selectively activate mTORC1 or mTORC2. These findings identify a new signaling pathway used by amino acids underscoring the crucial importance of these nutrients in cell metabolism and offering new mechanistic insights.  相似文献   

8.
The electrogenic action of the basic amino acid, l-arginine, has been compared with the action of the neutral amino acids, l-alanine and glycine, in mouse pancreatic acinar cells. All three amino acids cause membrane depolarization, but while the reversal potential for the action of the neutral amino acids is close to the calculated value of the Na equilibrium potential (+30 m V) the reversal potential for the l-arginine effects is +7 m V. The neutral amino acids exhibit mutual inhibition, but l-arginine did not inhibit the l-alanine-or glycine-evoked depolarization nor did the neutral amino acids inhibit the action of l-arginine. While l-alanine markedly depressed acetylcholine-evoked depolarization, l-arginine had no such effect. It is concluded that there are at least two quite different types of electrogenic amino acid action in pancreatic acinar cells.  相似文献   

9.
Amino acids are key nutrients for protein synthesis and many metabolic processes. There is compelling evidence that amino acids themselves regulate protein synthesis, degradation, and cell growth. Mammalian target of rapamycin complex 1 (mTORC1) plays a central role in cellular growth regulation. Amino acids potently activate mTORC1, however, the mechanism of amino acid signaling is largely unknown. Recent studies have identified Rag small GTPases as key components mediating amino acid signals to mTORC1 activation.  相似文献   

10.
Amino acid signalling and the integration of metabolism   总被引:12,自引:0,他引:12  
It has become clear in recent years that amino acids are not only important as substrates for various metabolic pathways but that they can also activate a nutrient-sensitive, mTOR-mediated, signalling pathway in synergy with insulin. Leucine is the most effective amino acid in this regard. The signalling pathway is antagonised by AMP-activated protein kinase. Amino acid signalling stimulates protein synthesis and inhibits (autophagic) proteolysis. In addition, many amino acids cause an increase in cell volume. Cell swelling per se stimulates synthesis of protein, glycogen, and lipid, in part by further stimulating signalling and in part by unrelated mechanisms. Amino acids also stimulate signalling in beta-cells and stimulate beta-cell growth and proliferation. This results in increased production of insulin, which enhances the anabolic (and anti-catabolic) properties of amino acids. Finally, amino acid-dependent signalling controls the production of leptin by adipocytes, and thus contributes to the regulation of appetite.  相似文献   

11.
Trypanosoma cruzi, the etiologic agent of Chagas disease, resists extreme fluctuations in osmolarity during its life cycle. T. cruzi possesses a robust regulatory volume decrease mechanism that completely reverses cell swelling when submitted to hypo-osmotic stress. The efflux of amino acids and K+ release could account for only part for this volume reversal. In this work we demonstrate that swelling of acidocalcisomes mediated by an aquaporin and microtubule- and cyclic AMP-mediated fusion of acidocalcisomes to the contractile vacuole complex with translocation of this aquaporin and the resulting water movement are responsible for the volume reversal not accounted for by efflux of osmolytes. Contractile vacuole bladders were isolated by subcellular fractionation in iodixanol gradients, showed a high concentration of basic amino acids and inorganic phosphate, and were able to transport protons in the presence of ATP or pyrophosphate. Taken together, these results strongly support a role for acidocalcisomes and the contractile vacuole complex in osmoregulation and identify a functional role for aquaporin in protozoal osmoregulation.  相似文献   

12.
The genetic code, understood as the specific assignment of amino acids to nucleotide triplets, might have preceded the existence of translation. Amino acids became utilized as cofactors by ribozymes in a metabolically complex RNA world. Specific charging ribozymes linked amino acids to corresponding RNA handles, which could basepair with different ribozymes, via an anticodon hairpin, and so deliver the cofactor to the ribozyme. Growing of the 'handle' into a presumptive tRNA was possible while function was retained and modified throughout. A stereochemical relation between some amino acids and cognate anticodons/codons is likely to have been important in the earliest assignments. Recent experimental findings, including selection for ribozymes catalyzing peptide-bond formation and those utilizing an amino acid cofactor, hold promise that scenarios of this major transition can be tested.  相似文献   

13.
In a normally feeding insect, the taste receptors are exposed to complex mixtures of chemicals, not single compounds. We investigate the responses of neurons in the galeal sensilla of the caterpillar of Grammia geneura to mixtures of nutrient compounds at concentrations occurring in plants. Compounds that stimulated the same neuron were generally additive in their effects in binary mixtures. Amino acids that did not stimulate usually had no effect in mixtures with a stimulating compound, but glutamic acid reduced the response to serine in the medial sensillum. Nutrient compounds that stimulated different cells in a sensillum acted independently of each other. Complex mixtures of amino acids resembling samples of free amino acids from three host plants were less stimulating than expected from their molar concentrations. In host plant selection, the response from the medial sensillum is probably dominated by sucrose; unless sucrose levels are low, amino acids will contribute little to sensory input because they stimulate the same cell as sucrose. In the lateral sensillum, amino acids act independently of sugars. The limited contact chemosensory array of caterpillars seems inadequate to allow them to make fine distinctions between plants on the basis of their free amino acids.  相似文献   

14.
Amino acid residues in region 2 of final sigma(70) have been shown to play an important role in the strand separation step that is necessary for formation of the functional or open RNA polymerase-promoter complex. Here we present a comparison of the roles of basic and aromatic amino acids in the accomplishment of this process, using RNA polymerase bearing alanine substitutions for both types of amino acids in region 2. We determined the effects of the substitutions on the kinetics of open complex formation, as well as on the ability of the RNA polymerase to form complexes with single-stranded DNA, and with forked DNA duplexes carrying a single-stranded overhang consisting of bases in the -10 region. We concluded that two basic amino acids (Lys(414) and Lys(418)) are important for promoter binding and demonstrated distinct roles, at a subsequent step, for two aromatic amino acids (Tyr(430) and Trp(433)). It is likely that these four amino acids, which are close to each other in the structure of final sigma(70), together are involved in the nucleation of the strand separation process.  相似文献   

15.
The high efficiency of protein deposition during the neonatal period is driven by high rates of protein synthesis, which are maximally stimulated after feeding. Infusion of amino acids, but not insulin, reproduces the feeding-induced stimulation of liver protein synthesis. To determine whether amino acid-stimulated liver protein synthesis is independent of insulin in neonates, and to examine the role of amino acids and insulin in the regulation of translation initiation in neonatal liver, we performed pancreatic glucose-amino acid clamps in overnight-fasted 7-day-old pigs. Pigs (n = 9-12/group) were infused with insulin at 0, 10, 22, and 110 ng.kg(-0.66).min(-1) to achieve 0, 2, 6, and 30 microU/ml insulin, respectively. At each insulin dose, amino acids were maintained at fasting or fed levels or, in conjunction with the highest insulin dose, allowed to fall to below fasting levels. Insulin had no effect on the fractional rate of protein synthesis in liver. Amino acids increased fractional protein synthesis rates in liver at each dose of insulin, including the 0 microU/ml dose. There was a dose-response effect of amino acids on liver protein synthesis. Amino acids and insulin increased protein S6 kinase and 4E-binding protein 1 (4E-BP1) phosphorylation; however, only amino acids decreased formation of the inactive 4E-BPI.eukaryotic initiation factor-4E (eIF4E) complex. The results suggest that amino acids regulate liver protein synthesis in the neonate by modulating the availability of eIF4E for 48S ribosomal complex formation and that this response does not require insulin.  相似文献   

16.
The serine/threonine kinase mTORC1 regulates cellular homeostasis in response to many cues, such as nutrient status and energy level. Amino acids induce mTORC1 activation on lysosomes via the small Rag GTPases and the Ragulator complex, thereby controlling protein translation and cell growth. Here, we identify the human 11-pass transmembrane protein SLC38A9 as a novel component of the Rag-Ragulator complex. SLC38A9 localizes with Rag-Ragulator complex components on lysosomes and associates with Rag GTPases in an amino acid-sensitive and nucleotide binding state-dependent manner. Depletion of SLC38A9 inhibits mTORC1 activity in the presence of amino acids and in response to amino acid replenishment following starvation. Conversely, SLC38A9 overexpression causes RHEB (Ras homolog enriched in brain) GTPase-dependent hyperactivation of mTORC1 and partly sustains mTORC1 activity upon amino acid deprivation. Intriguingly, during amino acid starvation mTOR is retained at the lysosome upon SLC38A9 depletion but fails to be activated. Together, the findings of our study reveal SLC38A9 as a Rag-Ragulator complex member transducing amino acid availability to mTORC1 activity.  相似文献   

17.
LinA-type1 and LinA-type2 are two well-characterized variants of the enzyme ‘hexachlorocyclohexane (HCH)-dehydrochlorinase’. They differ from each other at ten amino acid positions and exhibit differing enantioselectivity for the transformation of the (–) and (+) enantiomers of α-HCH. Amino acids responsible for this enantioselectivity, however, are not known. An in silico docking analysis identified four amino acids (K20, L96, A131, and T133) in LinA-type1 that could be involved in selective binding of the substrates. Experimental studies with constructed mutant enzymes revealed that a combined presence of three amino acid changes in LinA-type1, i.e. K20Q, L96C, and A131G, caused a reversal in its preference from the (–) to the (+) enantiomer of α-HCH. This preference was enhanced by the additional amino acid change T133 M. Presence of these four changes also caused the reversal of enantioselectivity of LinA-type1 for δ-HCH, and β-, γ-, and δ-pentachlorocyclohexens. Thus, the residues K20, L96, A131, and T133 in LinA-type1 and the residues Q20, C96, G131, and M133 in LinA-type 2 appear to be important determinants for the enantioselectivity of LinA enzymes.  相似文献   

18.
Chronic somatotropin (pST) treatment in pigs increases muscle protein synthesis and circulating insulin, a known promoter of protein synthesis. Previously, we showed that the pST-mediated rise in insulin could not account for the pST-induced increase in muscle protein synthesis when amino acids were maintained at fasting levels. This study aimed to determine whether the pST-induced increase in insulin promotes skeletal muscle protein synthesis when amino acids are provided at fed levels and whether the response is associated with enhanced translation initiation factor activation. Growing pigs were treated with pST (0 or 180 microg x kg(-1) x day(-1)) for 7 days, and then pancreatic-glucose-amino acid clamps were performed. Amino acids were raised to fed levels in the presence of either fasted or fed insulin concentrations; glucose was maintained at fasting throughout. Muscle protein synthesis was increased by pST treatment and by amino acids (with or without insulin) (P<0.001). In pST-treated pigs, fed, but not fasting, amino acid concentrations further increased muscle protein synthesis rates irrespective of insulin level (P<0.02). Fed amino acids, with or without raised insulin concentrations, increased the phosphorylation of S6 kinase (S6K1) and eukaryotic initiation factor (eIF) 4E-binding protein 1 (4EBP1), decreased inactive 4EBP1.eIF4E complex association, and increased active eIF4E.eIF4G complex formation (P<0.02). pST treatment did not alter translation initiation factor activation. We conclude that the pST-induced stimulation of muscle protein synthesis requires fed amino acid levels, but not fed insulin levels. However, under the current conditions, the response to amino acids is not mediated by the activation of translation initiation factors that regulate mRNA binding to the ribosomal complex.  相似文献   

19.
The evolutionarily conserved target of rapamycin complex 1 (TORC1) is a master regulator of cell growth and metabolism. In mammals, growth factors and cellular energy stimulate mTORC1 activity through inhibition of the TSC complex (TSC1-TSC2-TBC1D7), a negative regulator of mTORC1. Amino acids signal to mTORC1 independently of the TSC complex. Here, we review recently identified regulators that link amino acid sufficiency to mTORC1 activity and how mutations affecting these regulators cause human disease.  相似文献   

20.
Amino acid homochirality, as a unique behavior of life, could have originated synchronously with the genetic code. In this paper, phosphoryl amino-acid-5′-nucleosides with P-N bond are postulated to be a chiral origin model in prebiotic molecular evolution. The enthalpy change in the intramolecular interaction between the nucleotide base and the amino-acid side-chain determines the stability of the particular complex, resulting in a preferred conformation associated with the chirality of amino acids. Based on the theoretical model, our experiments and calculations show that the chiral selection of the earliest amino acids for L-enantiomers seems to be a strict stereochemical/physicochemical determinism. As other amino acids developed biosynthetically from the earliest amino acids, we infer that the chirality of the later amino acids was inherited from the precursor amino acids. This idea probably goes far back in history, but it is hoped that it will be a guide for further experiments in this area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号