首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent crystal structures of G protein-coupled receptors (GPCRs) show the remarkable structural diversity of extracellular loop 2 (ECL2), implying its potential role in ligand binding and ligand-induced receptor conformational selectivity. Here we have applied molecular modeling and mutagenesis studies to the TM4/ECL2 junction (residues Pro(174(4.59))-Met(180(4.66))) of the human gonadotropin-releasing hormone (GnRH) receptor, which uniquely has one functional type of receptor but two endogenous ligands in humans. We suggest that the above residues assume an α-helical extension of TM4 in which the side chains of Gln(174(4.60)) and Phe(178(4.64)) face toward the central ligand binding pocket to make H-bond and aromatic contacts with pGlu(1) and Trp(3) of both GnRH I and GnRH II, respectively. The interaction between the side chains of Phe(178(4.64)) of the receptor and Trp(3) of the GnRHs was supported by reciprocal mutations of the interacting residues. Interestingly, alanine mutations of Leu(175(4.61)), Ile(177(4.63)), and Met(180(4.66)) decreased mutant receptor affinity for GnRH I but, in contrast, increased affinity for GnRH II. This suggests that these residues make intramolecular or intermolecular contacts with residues of transmembrane (TM) domain 3, TM5, or the phospholipid bilayer, which couple the ligand structure to specific receptor conformational switches. The marked decrease in signaling efficacy of I177A and F178A also indicates that IIe(177(4.63)) and Phe(178(4.64)) are important in stabilizing receptor-active conformations. These findings suggest that the TM4/ECL2 junction is crucial for peptide ligand binding and, consequently, for ligand-induced receptor conformational selection.  相似文献   

2.
Coetsee M  Millar RP  Flanagan CA  Lu ZL 《Biochemistry》2008,47(39):10305-10313
Molecular modeling showed interactions of Tyr (290(6.58)) in transmembrane domain 6 of the GnRH receptor with Tyr (5) of GnRH I, and His (5) of GnRH II. The wild-type receptor exhibited high affinity for [Phe (5)]GnRH I and [Tyr (5)]GnRH II, but 127- and 177-fold decreased affinity for [Ala (5)]GnRH I and [Ala (5)]GnRH II, indicating that the aromatic ring in position 5 is crucial for receptor binding. The receptor mutation Y290F decreased affinity for GnRH I, [Phe (5)]GnRH I, GnRH II and [Tyr (5)]GnRH II, while Y290A and Y290L caused larger decreases, suggesting that both the para-OH and aromatic ring of Tyr (290(6.58)) are important for binding of ligands with aromatic residues in position 5. Mutating Tyr (290(6.58)) to Gln increased affinity for Tyr (5)-containing GnRH analogues 3-12-fold compared with the Y290A and Y290L mutants, suggesting a hydrogen-bond between Gln of the Y290Q mutant and Tyr (5) of GnRH analogues. All mutations had small effects on affinity of GnRH analogues that lack an aromatic residue in position 5. These results support direct interactions of the Tyr (290(6.58)) side chain with Tyr (5) of GnRH I and His (5) of GnRH II. Tyr (290(6.58)) mutations, except for Y290F, caused larger decreases in GnRH potency than affinity, indicating that an aromatic ring is important for the agonist-induced receptor conformational switch.  相似文献   

3.
G protein coupled receptors (GPCRs) modulate the majority of physiological processes through specific intermolecular interactions with structurally diverse ligands and activation of differential intracellular signaling. A key issue yet to be resolved is how GPCRs developed selectivity and diversity of ligand binding and intracellular signaling during evolution. We have explored the structural basis of selectivity of naturally occurring gonadotropin-releasing hormones (GnRHs) from different species in the single functional human GnRH receptor. We found that the highly variable amino acids in position 8 of the naturally occurring isoforms of GnRH play a discriminating role in selecting receptor conformational states. The human GnRH receptor has a higher affinity for the cognate GnRH I but a lower affinity for GnRH II and GnRHs from other species possessing substitutions for Arg(8). The latter were partial agonists in the human GnRH receptor. Mutation of Asn(7.45) in transmembrane domain (TM) 7 had no effect on GnRH I affinity but specifically increased affinity for other GnRHs and converted them to full agonists. Using molecular modeling and site-directed mutagenesis, we demonstrated that the highly conserved Asn(7.45) makes intramolecular interactions with a highly conserved Cys(6.47) in TM 6, suggesting that disruption of this intramolecular interaction induces a receptor conformational change which allosterically alters ligand specific binding sites and changes ligand selectivity and signaling efficacy. These results reveal GnRH ligand and receptor structural elements for conformational selection, and support co-evolution of GnRH ligand and receptor conformations.  相似文献   

4.
Mammalian GnRH (mGnRH) is believed to interact with mGnRH type I receptors in a beta-II' turn conformation involving residues 5-8. This conformation can be constrained by substitution of a D-amino acid at position 6 or by a lactam ring involving residues 6 and 7, thereby increasing receptor binding affinity. It has been proposed that this is not the case for non-mGnRH receptors. However, we show that this conformational constraint increases the binding affinity of mammalian, chicken, and salmon GnRH for the chicken and catfish receptors, as well as for the mouse receptor. Therefore, we conclude that the beta-II' turn conformation enhances ligand binding for non-mGnRH as well as mGnRH type I receptors. In contrast, most substitutions of a D-amino acid in position 6 have limited effect on binding affinity for GnRH II. We suggest that this ligand is preconfigured through intramolecular interactions, which accounts for its high binding affinity and total conservation of primary structure over 500 million years of evolution.  相似文献   

5.
GnRH and its receptor are expressed in human reproductive tract cancers, and direct antiproliferative effects of GnRH analogs have been demonstrated in cancer cell lines. The intracellular signaling responsible for this effect differs from that mediating pituitary gonadotropin secretion. The GnRH structure-activity relationship is different for the two effects. Here we report a structure-activity relationship study of GnRH agonist antiproliferative action in model cell systems of rat and human GnRH receptors stably expressed in HEK293 cells. GnRH II was more potent than GnRH I in inhibiting cell growth in the cell lines. In contrast, GnRH I was more potent than GnRH II in stimulating inositol phosphate production, the signaling pathway in gonadotropes. The different residues in GnRH II (His(5), Trp(7), Tyr(8)) were introduced singly or in pairs into GnRH I. Tyr(5) replacement by His(5) produced the highest increase in the antiproliferative potency of GnRH I. Tyr(8) substitution of Arg(8) produced the most selective analog, with very poor inositol phosphate generation but high antiproliferative potency. In nude mice bearing tumors of the HEK293 cell line, GnRH II and an antagonist administration was ineffective in inhibiting tumor growth, but D-amino acid stabilized analogs (D-Lys(6) and D-Arg(6)) ablated tumor growth. Docking of GnRH I and GnRH II to the human GnRH receptor molecular model revealed that Arg(8) of GnRH I makes contact with Asp(302), whereas Tyr(8) of GnRH II appears to make different contacts, suggesting these residues stabilize different receptor conformations mediating differential intracellular signaling and effects on gonadotropin and cell growth. These findings provide the basis for the development of selective GnRH analog cancer therapeutics that directly target tumor cells or inhibit pituitary gonadotropins or do both.  相似文献   

6.
The dog GnRH receptor was cloned to facilitate the identification and characterization of selective nonpeptide GnRH antagonists. The dog receptor is 92% identical to the human GnRH receptor. Despite such high conservation, the quinolone-based nonpeptide GnRH antagonists were clearly differentiated by each receptor species. By contrast, peptide antagonist binding and functional activity were not differentiated by the two receptors. The basis of the differences was investigated by preparing chimeric receptors followed by site-directed mutagenesis. Remarkably, a single substitution of Phe313 to Leu313 in the dog receptor explained the major differences in binding affinities and functional activities. The single amino acid replacement of Phe313 of the human receptor with Leu313 resulted in a 160-fold decrease of binding affinity of the nonpeptide antagonist compound 1. Conversely, the replacement of Leu313 of the dog receptor with Phe313 resulted in a 360-fold increase of affinity for this compound. These results show that Phe313 of the GnRH receptor is critical for the binding of this structural class of GnRH antagonists and that the dog receptor can be "humanized" by substituting Leu for Phe. This study provides the first identification of a critical residue in the binding pocket occupied by nonpeptide GnRH antagonists and reinforces cautious extrapolation of ligand activity across highly conserved receptors.  相似文献   

7.
GnRH I regulates reproduction. A second form, designated GnRH II, selectively binds type II GnRH receptors. Amino acids of the type I GnRH receptor required for binding of GnRH I (Asp2.61(98), Asn2.65(102), and Lys3.32(121)) are conserved in the type II GnRH receptor, but their roles in receptor function are unknown. We have delineated their functions using mutagenesis, signaling and binding assays, immunoblotting, and computational modeling. Mutating Asp2.61(97) to Glu or Ala, Asn2.65(101) to Ala, or Lys3.32(120) to Gln decreased potency of GnRH II-stimulated inositol phosphate production. Consistent with proposed roles in ligand recognition, mutations eliminated measurable binding of GnRH II, whereas expression of mutant receptors was not decreased. In detailed analysis of how these residues affect ligand-dependent signaling, [Trp2]-GnRH I showed lesser decreases in potency than GnRH I at the Asp2.61(97)Glu mutant. In contrast, [Trp2]-GnRH II showed the same loss of potency as GnRH II at this mutant. This suggests that Asp2.61(97) contributes to recognition of His2 of GnRH I, but not of GnRH II. GnRH II showed a large decrease in potency at the Asn2.65(101)Ala mutant compared with analogs lacking the CO group of Gly10NH2. This suggests that Asn2.65(101) recognizes Gly10NH2 of GnRH II. GnRH agonists showed large decreases in potency at the Lys3.32(120)Gln mutant, but antagonist activity was unaffected. This suggests that Lys3.32(120) recognizes agonists, but not antagonists, as in the type I receptor. These data indicate that roles of conserved residues are similar, but not identical, in the type I and II GnRH receptors.  相似文献   

8.
GnRHs and GnRH receptors   总被引:7,自引:0,他引:7  
GnRH is the pivotal hypothalamic hormone regulating reproduction. Over 20 forms of the decapeptide have been identified in which the NH2- and COOH-terminal sequences, which are essential for receptor binding and activation, are conserved. In mammals, there are two forms, GnRH I which regulates gonadotropin and GnRH II which appears to be a neuromodulator and stimulates sexual behaviour. GnRHs also occur in reproductive tissues and tumours in which a paracrine/autocrine role is postulated. GnRH agonists and antagonists are now extensively used to treat hormone-dependent diseases, in assisted conception and have promise as novel contraceptives. Non-peptide orally-active GnRH antagonists have been recently developed and may increase the flexibility and range of utility. As with GnRH, GnRH receptors have undergone co-ordinated gene duplications such that cognate receptor subtypes for respective ligands exist in most vertebrates. Interestingly, in man and some other mammals (e.g. chimp, sheep and bovine) the Type II GnRH receptor has been silenced. However, GnRH I and GnRH II still appear to have distinct roles in signalling differentially through the Type I receptor (ligand-selective-signalling) to have different downstream effects. The ligand-receptor interactions and receptor conformational changes involved in receptor activation have been partly delineated. Together, these findings are setting the scene for generating novel selective GnRH analogues with potential for wider and more specific application.  相似文献   

9.
Glu-Leu-Arg ("ELR") CXC chemokines interleukin-8 (IL-8) and melanoma growth stimulatory activity (MGSA) recruit neutrophils by binding and activating two receptors, CXCR1 and CXCR2. CXCR1 is specific, binding only IL-8 with nanomolar affinity, whereas CXCR2 is promiscuous, binding all ELRCXC chemokines with high affinity. Receptor signaling consists of two events: interactions between the ligand N-terminal loop (N-loop) and receptor N-terminal domain (N-domain) residues (site I), and between the ligand N-terminal ELR and the receptor juxtamembrane domain (J-domain) residues (site II). It is not known how these interactions mediate ligand affinity and selectivity, and whether binding at one site influences binding and function at the other. Sequence analysis and structure-function studies have suggested that the receptor N-domain plays an important role in ligand selectivity. Here, we report ligand-binding properties and structural characteristics of the CXCR1 N-domain in solution and in detergent micelles that mimic the native membrane environment. We find that IL-8 binds the N-domain with significantly higher affinity in micelles than in solution (approximately 1 microM versus approximately 20 microM) and that MGSA does not bind the N-domain in solution but does in micelles with appreciable affinity (approximately 3 microM). We find that the N-domain is structured in micelles and that the entire N-domain interacts with the micelle in an extended fashion. We conclude that the micellar environment constrains the N-domain, and this conformational restraint influences its ligand-binding properties. Most importantly, our data suggest that for both ligands, site I interaction provides similar affinity and that differential coupling between site I and II interactions is responsible for the observed differences in affinity.  相似文献   

10.
Interaction between angiotensin II (Ang II) and the fragment peptide 300-320 (fCT300-320) of the rat angiotensin II receptor AT1a was demonstrated by relaxation measurements, NOE effects, chemical shift variations, and CD measurements. The correlation times modulating dipolar interactions for the bound and free forms of Ang II were estimated by the ratio of the nonselective and single-selective longitudinal relaxation rates. The intermolecular NOEs observed in NOESY spectra between HN protons of 9Lys(fCT) and 6His(ang), 10Phe(fCT) and 8Phe(ang), HN proton of 3Tyr(fCT) and Halpha of 4Tyr(ang), 5Phe(fCT)Hdelta and Halpha of 4Tyr(ang) indicated that Ang II aromatic residues are directly involved in the interaction, as also verified by relaxation data. Some fCT300-320 backbone features were inferred by the CSI method and CD experiments revealing that the presence of Ang II enhances the existential probability of helical conformations in the fCT fragment. Restrained molecular dynamics using the simulated annealing protocol was performed with intermolecular NOEs as constraints, imposing an alpha-helix backbone structure to fCT300-320 fragment. In the built model, one strongly preferred interaction was found that allows intermolecular stacking between aromatic rings and forces the peptide to wrap around the 6Leu side chain of the receptor fragment.  相似文献   

11.
A complete series of analogs of tyrosine modified neurokinin A ([Tyr1]-NKA or [Tyr0]-NKA) has been synthesized by substituting each natural residue with 1-Cys. These analogs were tested for their ability to bind recombinant neurokinin-2 (NK-2) receptor. Substitution of Phe6 with Cys completely abolished binding of the analog to the receptor. Substitution of residues in the carboxyl-terminal region of the peptide (Met10, Leu9, Gly8, Val7) and Asp4 with Cys gave reductions in binding affinity of between 23- and 250-fold. Molecular dynamics simulations of these analogs suggest that changes in peptide structure and flexibility are not large contributors to the losses in receptor binding affinity. Reductions in binding affinity are therefore more confidently ascribed to losses of peptide-receptor interactions.  相似文献   

12.
Melanin-concentrating hormone (MCH) is a neuropeptide present in the brain of all vertebrates. For the characterization of MCH receptors, a monoiodinated [Phe13, Tyr19]-MCH radioligand analogue was developed. The high susceptibility of [125I]-[Phe13, Tyr19]-MCH to oxidative damage and its very lipophilic nature made it necessary to develop new MCH radioligands. To increase the stability, native methionines were replaced by non-sulphur containing amino acid residues. In one analogue, the L-enantiomer of the phenylalanine residue at position 13 was substituted by the D-enantiomer, which increased the relative affinity of the ensuing [125I]-[D-Phe13, Tyr19]-MCH about 7-fold. The different analogues were iodinated by an enzymatic reaction and used for binding studies with mouse melanoma cells. [125I]-[Met(O)4,8, Phe13, Tyr19]-MCH and [125I]-[Hse4,8, Phe13, Tyr19]-MCH showed only about 19% of total binding and [125I]-[Ser4,8, Phe13, Tyr19]-MCH displayed about 44% of total binding when compared with [125I]-[Phe13, Tyr19]-MCH. Non-specific binding for all tracers was below 11% of total binding of [125I]-[Phe13, Tyr19]-MCH binding. [125I]-[D-Phe13, Tyr19]-MCH was used for saturation binding studies and revealed a KD of 122.7 +/- 15.3 pmol/l. This radioligand was further characterized by association and dissociation binding studies.  相似文献   

13.
Replacement of Phe3 in the endogenous delta-opioid selective peptide deltorphin I with four optically pure stereoisomers of the topographically constrained, highly hydrophobic novel amino acid beta-isopropylphenylalanine (beta-iPrPhe) produced four pharmacologically different deltorphin I peptidomimetics. Radiolabeled ligand-binding assays and in vitro biological evaluation indicate that the stereoconfiguration of the iPrPhe residue plays a crucial role in determining the binding affinity, bioactivity and selectivity of [beta-iPrPhe3]deltorphin I analogs: a (2S,3R) configuration of the iPrPhe3 residue in [beta-iPrPhe3]deltorphin I provided the most desirable biological properties with binding affinity (IC50 = 2 nM), bioassay potency (IC50 = 1.23 nM in MVD assay) and exceptional selectivity for the delta-opioid receptor over the mu-opioid receptor (30 000). Further conformational studies based on two-dimensional NMR and computer-assisted molecular modeling suggested a model for the possible bioactive conformation in which the Tyr1 and (2S,3R)-beta-iPrPhe3 residues adopt trans side-chain conformations, and the linear peptide backbone favors a distorted beta-turn conformation.  相似文献   

14.
Crystal structure of the human TbetaR2 ectodomain--TGF-beta3 complex   总被引:4,自引:0,他引:4  
Transforming growth factor-beta (TGF-beta) is the prototype of a large family of structurally related cytokines that play key roles in maintaining cellular homeostasis by signaling through two classes of functionally distinct Ser/Thr kinase receptors, designated as type I and type II. TGF-beta initiates receptor assembly by binding with high affinity to the type II receptor. Here, we present the 2.15 A crystal structure of the extracellular ligand-binding domain of the human TGF-beta type II receptor (ecTbetaR2) in complex with human TGF-beta3. ecTbetaR2 interacts with homodimeric TGF-beta3 by binding identical finger segments at opposite ends of the growth factor. Relative to the canonical 'closed' conformation previously observed in ligand structures across the superfamily, ecTbetaR2-bound TGF-beta3 shows an altered arrangement of its monomeric subunits, designated the 'open' conformation. The mode of TGF-beta3 binding shown by ecTbetaR2 is compatible with both ligand conformations. This, in addition to the predicted mode for TGF-beta binding to the type I receptor ectodomain (ecTbetaR1), suggests an assembly mechanism in which ecTbetaR1 and ecTbetaR2 bind at adjacent positions on the ligand surface and directly contact each other via protein--protein interactions.  相似文献   

15.
We have shown previously that the octapeptide angiotensin II (Ang II) activates the AT1 receptor through an induced-fit mechanism (Noda, K., Feng, Y. H., Liu, X. P., Saad, Y., Husain, A., and Karnik, S. S. (1996) Biochemistry 35, 16435-16442). In this activation process, interactions between Tyr4 and Phe8 of Ang II with Asn111 and His256 of the AT1 receptor, respectively, are essential for agonism. Here we show that aromaticity, primarily, and size, secondarily, of the Tyr4 side chain are important in activating the receptor. Activation analysis of AT1 receptor position 111 mutants by various Ang II position 4 analogues suggests that an amino-aromatic bonding interaction operates between the residue Asn111 of the AT1 receptor and Tyr4 of Ang II. Degree and potency of AT1 receptor activation by Ang II can be recreated by a reciprocal exchange of aromatic and amide groups between positions 4 and 111 of Ang II and the AT1 receptor, respectively. In several other bonding combinations, set up between Ang II position 4 analogues and receptor mutants, the gain of affinity is not accompanied by gain of function. Activation analysis of position 256 receptor mutants by Ang II position 8 analogues suggests that aromaticity of Phe8 and His256 side chains is crucial for receptor activation; however, a stacked rather than an amino-aromatic interaction appears to operate at this switch locus. Interaction between these residues, unlike the Tyr4:Asn111 interaction, plays an insignificant role in ligand docking.  相似文献   

16.
Hepatocyte growth factor (HGF), a plasminogen-related growth factor, is the ligand for Met, a receptor tyrosine kinase implicated in development, tissue regeneration, and invasive tumor growth. HGF acquires signaling activity only upon proteolytic cleavage of single-chain HGF into its alpha/beta heterodimer, similar to zymogen activation of structurally related serine proteases. Although both chains are required for activation, only the alpha-chain binds Met with high affinity. Recently, we reported that the protease-like HGF beta-chain binds to Met with low affinity (Stamos, J., Lazarus, R. A., Yao, X., Kirchhofer, D., and Wiesmann, C. (2004) EMBO J. 23, 2325-2335). Here we demonstrate that the zymogen-like form of HGF beta also binds Met, albeit with 14-fold lower affinity than the protease-like form, suggesting optimal interactions result from conformational changes upon cleavage of the single-chain form. Extensive mutagenesis of the HGF beta region corresponding to the active site and activation domain of serine proteases showed that 17 of the 38 purified two-chain HGF mutants resulted in impaired cell migration or Met phosphorylation but no loss in Met binding. However, reduced biological activities were well correlated with reduced Met binding of corresponding mutants of HGF beta itself in assays eliminating dominant alpha-chain binding contributions. Moreover, the crystal structure of HGF beta determined at 2.53 A resolution provides a structural context for the mutagenesis data. The functional Met binding site is centered on the "active site region" including "triad" residues Gln(534) [c57], Asp(578) [c102], and Tyr(673) [c195] and neighboring "activation domain" residues Val(692), Pro(693), Gly(694), Arg(695), and Gly(696) [c214-c219]. Together they define a region that bears remarkable resemblance to substrate processing regions of serine proteases. Models of HGF-dependent Met receptor activation are discussed.  相似文献   

17.
Gonadotropin-releasing hormone (GnRH) binding sites have been characterized in the fully mature common carp ovary, using an analog of salmon GnRH ([D-Arg6,Trp7,Leu8,Pro9-NEt]-GnRH; sGnRH-A) as a labeled ligand. Binding of sGnRH-A to carp follicular membrane preparation was found to be time-, temperature-, and pH-dependent. Optimal binding was achieved after 40 min of incubation at 4 degrees C at pH 7.6; binding was found to be unstable at room temperature. Binding of radioligand was a function of tissue concentration, with a linear correlation over the range of 8.0-40.0 micrograms membrane protein per tube. Incubation of membrane preparations with increasing levels of [125I]sGnRH-A revealed saturable binding at radioligand concentrations greater than 400 nM. The binding of [125I]sGnRH-A to the carp ovary was also found to be reversible; addition of unlabeled sGnRH-A (10(-6) M) after reaching equilibrium resulted in complete dissociation of [125I]sGnRH-A within 30 min, and the log dissociation plot indicated the existence of a single class of binding sites. Addition of unlabeled sGnRH-A displaced the bound [125I]sGnRH-A in a dose-related manner. Hill plot as well as Scatchard analysis suggested the presence of one class of high affinity GnRH binding sites. Bound [125I]sGnRH-A was also found to be displaceable by other GnRH peptides, including sGnRH ([Trp7,Leu8]-GnRH), cGnRH-II ([His5,Trp7,Tyr8]-GnRH) and a GnRH antagonist ([D-pGlu1,D-Phe2,D-PTrp3,6]-GnRH; GnRH-ANT) in a parallel fashion, indicating that these peptides bind to the same class of binding sites.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Mosberg HI 《Biopolymers》1999,51(6):426-439
The elaboration of a pharmacophore model for the delta opioid receptor selective ligand JOM-13 (Tyr-c[D-Cys-Phe-D-Pen]OH) and the parallel, independent development of a structural model of the delta receptor are summarized. Although the backbone conformation of JOM-13's tripeptide cycle is well defined, considerable conformational lability is evident in the Tyr(1) residue and in the Phe(3) side chain, key pharmacophore elements of the ligand. Replacement of these flexible features of the ligand by more conformationally restricted analogues and subsequent correlation of receptor binding and conformational properties allowed the number of possible binding conformations of JOM-13 to be reduced to two. Of these, one was chosen as more likely, based on its better superposition with other conformationally constrained delta receptor ligands. Our model of the delta opioid receptor, constructed using a general approach that we have developed for all rhodopsin-like G protein-coupled receptors, contains a large cavity within the transmembrane domain that displays excellent complementarity in both shape and polarity to JOM-13 and other delta ligands. This binding pocket, however, cannot accommodate the conformer of JOM-13 preferred from analysis of ligands, alone. Rather, only the "alternate" allowed conformer, identified from analysis of the ligands but "disfavored" because it does not permit simultaneous superposition of all pharmacophore elements of JOM-13 with other delta ligands, fits the binding site. These results argue against a simple view of a single, common fit to a receptor binding site and suggest, instead, that at least some binding site interactions of different ligands may differ.  相似文献   

19.
Staphylococcus aureus protein A (SpA) is the most popular affinity ligand for immunoglobulin G1 (IgG1). However, the molecular basis for the dissociation dynamics of SpA-IgG1 complex is unclear. Herein, coarse-grained (CG) molecular dynamics (MD) simulations with the Martini force field were used to study the dissociation dynamics of the complex. The CG-MD simulations were first verified by the agreement in the structural and interactional properties of SpA and human IgG1 (hIgG1) in the association process between the CG-MD and all-atom MD at different NaCl concentrations. Then, the CG-MD simulation studies focused on the molecular insight into the dissociation dynamics of SpA-hIgG1 complex at pH 3.0. It is found that there are four steps in the dissociation process of the complex. First, there is a slight conformational adjustment of helix II in SpA. This is followed by the phenomena that the electrostatic interactions provided by the three hot spots (Glu143, Arg146 and Lys154) of helix II of SpA break up, leading to the dissociation of helix II from the binding site of hIgG1. Subsequently, breakup of the hydrophobic interactions between helix I (Phe132, Tyr133 and His137) in SpA and hIgG1 occurs, resulting in the disengagement of helix I from its binding site of hIgG1. Finally, the non-specific interactions between SpA and hIgG1 decrease slowly till disappearance, leading to the complete dissociation of the SpA-hIgG1 complex. This work has revealed that CG-MD coupled with the Martini force field is an effective method for studying the dissociation dynamics of protein-protein complex.  相似文献   

20.
To investigate the biologically active conformation of enkephalin, molecular-dynamics simulations were applied to [Met5]- and [D-Ala2,Met5]-enkephalins. The dynamic trajectory of monomeric extended [Met5]-enkephalin was analysed in terms of relative mobility between respective torsions of backbone chain. After 10 ps of the dynamics simulation, the conformational transition was converged into a stationary state among the beta-bend folded forms, where they are stabilized by several intramolecular hydrogen-bond formations. Similar conformational transition was also observed in the dynamics simulation of [D-Ala2,Met5]enkephalin, which is a more mu-receptor-specific peptide than [Met5]enkephalin. The geometrical correspondence between the monomeric enkephalin conformation in the stationary state and morphine molecule (a mu-specific rigid opiate) was surveyed by virtue of the triangular substructures generated by choosing three functional atoms in each molecule, and good resemblances were observed. On the other hand, the dynamics simulation of the antiparallel extended [Met5]enkephalin dimer showed a trajectory different from that of the monomeric one. Two intermolecular hydrogen bonds at Tyr1 (NH3+)...Met5(CO2-) end residues were held throughout the 100 ps simulation, the dimeric structure being consequently kept. The conformational transition of the backbone chains from the antiparallel extended form to the twisted one took place via an intermediate state. Many conformations revealed during the dynamics simulation showed that the relative orientations of each two Tyr1, Gly3, Phe4 and Met5 residues in the dimer are nearly related by a pseudo-C2-symmetry respectively, and both halves of the dimer structure could be further fitted to the monomeric folded enkephalin conformation. The monomeric and dimeric conformations of enkephalin at their stationary states are discussed in relation to the substrate-specificity for mu- and delta-opioid receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号