首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The IS 1-encoded protein InsA binds specifically to both ends of IS1, and acts as a repressor of IS1 gene expression and may be a direct inhibitor of the transposition process. We show here, using DNasel 'foot-printing' and gel retardation, that the InsA binding sites are located within the 24/25 bp minimal active ends of IS1 and that InsA induces DNA bending upon binding. Conformational modification of the ends of IS1 as a result of binding of the host protein integration host factor (IHF) to its site within the minimal ends has been previously observed. Using a collection of synthetic mutant ends we have mapped some of the nucleotide sequence requirements for InsA binding and for transposition activity. We show that sequences necessary for InsA binding are also essential for transposition activity. We demonstrate that InsA and IHF binding sites overlap since some sequence determinants are shared by both InsA and IHF. The data suggest that these ends contain two functional domains: one for binding of InsA and IHF, and the other for transposition activity. A third region, when present, may enhance transposition activity with an intact right end. This 'architecture' of the ends of IS1 is remarkably similar to that of IS elements IS10, IS50 and IS903.  相似文献   

2.
The regulatory role of the IS 1-encoded InsA protein in transposition   总被引:18,自引:4,他引:14  
We show here that the protein InsA, which is encoded by IS 1 and binds specifically to the terminal inverted repeats of this insertion sequence, negatively regulates IS 1 transposition activity. We demonstrate that it inhibits both IS 1-mediated cointegrate formation and transposition of a synthetic IS 1-based transposon (‘omegon’Ω-on). These results also indicate that the Ω-on which does not itself encode IS 1 transposition functions can be complemented in trans, presumably by the copies of IS 1 resident in the Escherichia coli chromosome. Using insA-lacZ gene fusions, we show that at least part of this effect can be explained by the ability of InsA to repress expression of IS 1-encoded genes both in cis or in trans. The experiments involving Ω-on transposition raise the possibility that InsA inhibits transposition directly by competition with the transposase for their cognate site within the ends of IS 1.  相似文献   

3.
Regulation of IS1 transposition by the insA gene product   总被引:13,自引:0,他引:13  
The IS1 element contains two adjacent genes called insA and insB, both required for IS1 transposition and IS1-mediated plasmid cointegration. These two genes are transcribed polycistronically from the promoter in the left terminal inverted repeat of IS1 (insL). We constructed overexpression systems of these genes with the tac promoter, which are regulated by an exogenous inducer, isopropyl-beta-D-thiogalactopyranoside (IPTG). Then we have examined, under various conditions of induction with IPTG, how overexpression of these genes affects IS1 transposition, using an assay based on plasmid cointegration. When the insA and insB genes were organized identically to the wild-type IS1 genes and simultaneously expressed using low concentrations of IPTG, activity of a mutant IS1 in cis was restored, but not in trans. Higher IPTG concentrations resulted in lower transposition activity. Expression in trans of insA and insB results in a 50 to 100-fold reduction of the frequency of cointegration mediated by wild-type IS1. Such a reduction is also observed when only the insA gene is overexpressed in trans. Overexpression of either mutant insA or insB does not affect the cointegration event. Tests with the insA-lacZ fusion gene showed that the InsA product inhibits the expression of IS1 genes directed by its own promoter in insL. These results suggest that the InsA product regulates IS1 transposition by inhibiting expression of IS1 transposition genes in addition to acting as part of a transposase complex.  相似文献   

4.
5.
6.
The role of the insE open reading frame in transposition of IS1 was reexamined by using an insE nonsense mutation that does not alter the amino acid sequence of InsA inhibitor or InsAB transposase. The mutant was active in all strains tested, showing that insE is not essential for formation of cointegrates.  相似文献   

7.
Haas M  Rak B 《Journal of bacteriology》2002,184(21):5833-5841
IS150, a member of the widespread IS3 family, contains two consecutive out-of-phase open reading frames, orfA and orfB, that partially overlap. These open reading frames encode three proteins, InsA, InsB, and the InsAB protein, which is jointly encoded by both open reading frames by means of programmed translational frameshifting. We demonstrate that the InsAB protein represents the IS150 element's transposase. In vivo, the wild-type IS150 element generates circular excision products and linear IS150 molecules. Circular and linear species have previously been detected with mutant derivatives of other members of the IS3 family. Our finding supports the assumption that these products represent true transposition intermediates of members of this family. Analysis of the molecular nature of these two species suggested that the circular forms are precursors of the linear molecules. Elimination of InsA synthesis within the otherwise intact element led to accumulation of large amounts of the linear species, indicating that the primary role of InsA may be to prevent abortive production of the linear species and to couple generation of these species to productive insertion events.  相似文献   

8.
Bacteriophage K139 was recently characterized as a temperate phage of O1 Vibrio cholerae. In this study we have determined the phage adsorption site on the bacterial cell surface. Phage-binding studies with purified lipopolysaccharide (LPS) of different O1 serotypes and biotypes revealed that the O1 antigen serves as the phage receptor. In addition, phage-resistant O1 El Tor strains were screened by using a virulent isolate of phage K139. Analysis of the LPS of such spontaneous phage-resistant mutants revealed that most of them synthesize incomplete LPS molecules, composed of either defective O1 antigen or core oligosaccharide. By applying phage-binding studies, it was possible to distinguish between receptor mutants and mutations which probably caused abortion of later steps of phage infection. Furthermore, we investigated the genetic nature of O1-negative strains by Southern hybridization with probes specific for the O antigen biosynthesis cluster (rfb region). Two of the investigated O1 antigen-negative mutants revealed insertions of element IS1004 into the rfb gene cluster. Treating one wbeW::IS1004 serum-sensitive mutant with normal human serum, we found that several survivors showed precise excision of IS1004, restoring O antigen biosynthesis and serum resistance. Investigation of clinical isolates by screening for phage resistance and performing LPS analysis of nonlysogenic strains led to the identification of a strain with decreased O1 antigen presentation. This strain had a significant reduction in its ability to colonize the mouse small intestine.  相似文献   

9.
10.
The transposase of the bacterial insertion sequence IS1 is normally expressed by inefficient translational frameshifting between an upstream reading frame which itself specifies a transposition inhibitor, InsA, and a second consecutive reading frame located immediately downstream. A fused-frame mutant which carries an additional base pair inserted at the point of frameshifting was constructed. This mutant exhibits high transposition activity and should express the transposase, InsAB', constitutively without frameshifting. Unexpectedly, a second protein species was observed to be expressed from this mutant. We demonstrate here that this protein, InsA*, results from continued frameshifting on the modified frameshift motif. The protein retains the activities of the repressor InsA. Its elimination, by further modification of the frameshift motif, results in a further increase in various transposition activities of IS1. These results support the hypothesis that a single IS1-encoded protein, InsAB', is necessary for transposition.  相似文献   

11.
Complete sequence of IS3.   总被引:35,自引:4,他引:31       下载免费PDF全文
  相似文献   

12.
13.
The nucleotide sequences of the Streptomyces transposable element IS110 and its insertion site in the DNA of a derivative of the temperate phage luminal diameter C31 were determined. The element is inserted about 460 bp from the right-hand end of luminal diameter C31 DNA, in a region of apparently non-coding DNA. The target site (in a run of seven C residues) is within an 11 bp sequence homologous with one end of IS110. The inserted element is flanked by runs of 11 and 15 C residues which form part of more extensive regions of homology between the left and right junction regions. Imperfect inverted repeats (10 matches out of 15 bp) are present near (but not at) the ends of IS110. The whole IS110 element contains about 1550 bp of which 71% are G-C bp. One major potentially protein-coding region (ORF 1215) was detected, of 1215 bp, the product of which, a presumptively soluble protein of MR 43,563, was not overtly related to any entry in a protein sequence database. A smaller open reading frame (ORF 330) was tentatively identified in the opposite strand of the ORF 1215 region.  相似文献   

14.
Characterization of in vitro constructed IS30-flanked transposons   总被引:1,自引:0,他引:1  
R Stalder  W Arber 《Gene》1989,76(2):187-193
In order to facilitate functional studies on the mobile genetic element IS30, a resident of the Escherichia coli chromosome, transposon structures with two copies of IS30 flanking the chloramphenicol-resistance gene cat were constructed in vitro. Transposons containing IS30 as direct repeats (Tn2700 and Tn2702) transpose from multicopy plasmids into the genome of phage P1-15, thus giving rise to special transduction for cat with frequencies between 10(-5) and 10(-8)/plaque-forming unit. In contrast, transposon structures with IS30 in inverted repeat (Tn2701 and Tn2703) showed no detectable (less than 10(-9] transposition activity in vivo. By restriction analysis, two insertion sites of Tn2700 and Tn2702 on the phage P1-15 genome were indistinguishable from those observed earlier with a single copy of the IS30 element. These two insertion sites were used several times independently by Tn2700 and Tn2702. This confirms the non-random target selection by the element and it indicates that transposition of Tn2700 and Tn2702 follows the same rules as that of IS30.  相似文献   

15.
Several plaque-forming phage P1 derivatives carrying DNA rearrangements associated with IS elements are described. They have IS1, IS3 and IS5 inserted in four distinct locations, all of which are non-essential regions for phage P1 propagation. One derivative carries a genome segment, inverted relative to the one in the P1 wild-type genome, between two inverted copies of IS1. The inverted DNA segment spans about 23 kb of the 90 kb long P1 genome and it includes the invertible C segment. This phage is as viable as an isomeric P1 which carries the relevant segment in its original orientation. These results are discussed with regard to the genome organization of phage P1.  相似文献   

16.
A new insertion sequence (IS) element, IS679 (2,704 bp in length), has been identified in plasmid pB171 of enteropathogenic Escherichia coli B171. IS679 has imperfect 25-bp terminal inverted repeats (IRs) and three open reading frames (ORFs) (here called tnpA, tnpB, and tnpC). A plasmid carrying a composite transposon (Tn679) with the kanamycin resistance gene flanked by an intact IS679 sequence and an IS679 fragment with only IRR (IR on the right) was constructed to clarify the transposition activity of IS679. A transposition assay done with a mating system showed that Tn679 could transpose at a high frequency to the F plasmid derivative used as the target. On transposition, Tn679 duplicated an 8-bp sequence at the target site. Tn679 derivatives with a deletion in each ORF of IS679 did not transpose, finding indicative that all three IS679 ORFs are essential for transposition. The tnpA and tnpC products appear to have the amino acid sequence motif characteristic of most transposases. A homology search of the databases found that a total of 25 elements homologous to IS679 are present in Agrobacterium, Escherichia, Rhizobium, Pseudomonas, and Vibrio spp., providing evidence that the elements are widespread in gram-negative bacteria. We found that these elements belong to the IS66 family, as do other elements, including nine not previously reported. Almost all of the elements have IRs similar to those in IS679 and, like IS679, most appear to have duplicated an 8-bp sequence at the target site on transposition. These elements have three ORFs corresponding to those in IS679, but many have a mutation(s) in an ORF(s). In almost all of the elements, tnpB is located in the -1 frame relative to tnpA, such that the initiation codon of tnpB overlaps the TGA termination codon of tnpA. In contrast, tnpC, separated from tnpB by a space of ca. 20 bp, is located in any one of three frames relative to tnpB. No common structural features were found around the intergenic regions, indicating that the three ORFs are expressed by translational coupling but not by translational frameshifting.  相似文献   

17.
Using electron microscopic heteroduplex analysis, we have demonstrated that an insertion found in a Mu prophage and in some infectious. Mu deletion-substitution mutants derived from it consists of bacterial insertion sequence IS2 linked directly to IS5. Other infectious Mu mutants derived from the same lysogen have only IS5 or a portion of IS2. In addition, we have found that an independent insertion in a transducing phage, lambda 13 dargB2, is IS5. The ends of IS5 are short, inverted duplications of each other. These observations support the notion that the DNA insertion previously designated IS5 on the basis of a single example in lambda KH100 is a bona fide bacterial insertion sequence.  相似文献   

18.
We have isolated and characterized a mutant of temperate phage Mu-1 carrying an IS2 insertion in the middle of its β region. This mutant gives rise spontaneously to secondary mutants which have deletions of different sizes adjacent to IS2. One particular derivative however, was found to have acquired an additional insertion sequence adjacent to IS2. This derivative gave rise to tertiary mutants carryinh a deletion next to the tandem insertion. The tandem insertion was located at the same place in the Mu β region as another 2.6 kb insertion independently isolated by Chow et al. (1977) and was found to be homologous to that insertion. The properties of this particular secondary mutant show that Mu phage particles lacking their S end are defective for growth and lysogenisation.  相似文献   

19.
IS91 is a 1,830-bp insertion sequence that inserts specifically at the sequence CAAG or GAAC of the target and does not duplicate any sequence upon insertion (23). By transposon mutagenesis, we have identified open reading frame 426 (ORF426; bp 454 to 1731) as the putative ORF for the transposase. It displays a cysteine-rich, potential metal-binding domain in its N-terminal region. Adjacent to ORF426, there is an ORF (ORF121) which precedes and terminally overlaps ORF426 by one amino acid. Tn1732 insertions in ORF121 do not affect the transposition frequency. IS91 has sequence similarities to IS801 from Pseudomonas syringae. Their putative transposases are 36% identical, including conservation of the cysteine-rich cluster. The information concerning IS801 insertion specificity and target duplication has been reevaluated in the light of our results.  相似文献   

20.
Heteroduplex experiments between the plasmid R6 and one strand of the deoxyribonucleic acid (DNA) of a lambda phage carrying the insertion sequence IS1 show that IS1 occurs on R6 at the two previously mapped junctions of resistance transfer factor (RTF) DNA with R-determinant DNA. From previous heteroduplex experiments, it then follows that IS1 occurs at the same junctions in R6-5, R100-1, and R1 plasmids. Heteroduplex experiments with the DNA from a lambda phage carrying the insertion sequence IS2 show that one copy of IS2 occurs in R6, R6-5, and R100-1 (but not R1) at a point within the RTF with coordinates 67.5 TO 68.9 kilobase units (kb). In an accompanying paper, Ptashne and Cohen (1975) show that the insertion sequence IS3 occurs on R6 and R6-5. R100-25, a traC mutant, differs from its parent R100-1 only in that it contains an additional copy of IS1 inserted within the tra gene region of 82.1 kb. R100-31, atraX, TC-s mutant of R100-1, is deleted in R100-1 sequences starting at one of the IS3 termini (46.9 kb) and extending with RTF to 61.0 kb. Heteroduplex studies of F plasmids with the DNA of a lambda phage bearing insertion sequence IS2 show that the sequence of F with coordinates 16.3-17.6F is IS2. The occurrence of IS1 at the two junctions of R-determinant DNA and RTF DNA in R plasmids provides a structural basis to explain the mechanism of the previously observed formation of molecules containing one RTF unit and several tandem copies of the R-determinant unit, when R plasmids in Proteus mirabilis are grown in the presence of antibiotics, and the segregation of an R plasmid into an RTF unit and an R-determinant unit. In general, correlation of our results with previous studies shows that insertion sequences play a role in a variety of F- and R-related intra- and intermolecular recombination phenomena.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号