首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 The aims of this study were to test the nutritional condition of young stands of Norway spruce and Scots pine in southernmost Norway, where atmospheric inputs of anthropogenic nitrogen and strong acids, as well as deposition of magnesium by sea spray, are relatively high. There has been general concern about forest health in this region, specifically about nutrient deficiencies and nitrogen saturation caused by the atmospheric pollution. To expand our knowledge about these subjects, needle analyses and graphic vector analyses, as well as tree vigour index and height growth response to fertiliser application, were used as diagnostic tools. The overall conclusion is that phosphorous limitation is probably more frequent than expected in the coastal zone of southern Norway, especially in spruce on shallow soils. It is hypothesised that phosphorous limitation might be a more general problem or will arise as one in a 30 – 60 km coastal zone stretching from southernmost Sweden along the coast to the north and then westwards along the south coast of Norway. Nitrogen saturation in southernmost Norway might already occur on some sites with shallow soils. Needle analyses and graphic vector analyses can yield erroneous results if stress factors other than nutrient supply, e. g. severe drought, determine the growth rate of trees. In addition, the graphic vector analyses require that nutrients applied to the test plots are available to roots early in the growing season, and that needle nutrient concentrations in late autumn reflect those when the needles were formed. Received: 30 May 1995/Accepted: 27 December 1995  相似文献   

2.
Summary The relationship between proteins and the macroelements potassium, magnesium, calcium, sulphur and phosphorus was studied in homogenates of needles of different ages from Scots pine (Pinus sylvestris L.) and Norway spruce [Picea abies (L.) Karst.]. Complete extractions by acid digestion, protein extractions by a buffer-detergent and non-protein extractions by a buffer alone showed that most of the potassium and magnesium of the needles was soluble independent of the proteins. Only a minor part (50–60 ppm, dry weight) of the magnesium could be referred to the chlorophyll content of the needles. Both potassium and magnesium appeared independent of the protein gel filtration. This was also valid for the minor fraction of the total calcium content, which was extractable in a buffer. Heterogeneous calcium deposits are also suggested by extraction using a chelator (EGTA). Part of the buffer-soluble sulphur and phosphorus compounds occurred independently of solubilized proteins, and had complex distribution patterns after gel filtration, even outside the high molecular separation range. It is suggested that further analyses along the present lines, compared with conventional analyses on total extracts, may extend the usefulness of mineral nutrient analyses in plants.  相似文献   

3.
Well‐drained forest soils are thought to be a significant sink for atmospheric methane. Recent research suggests that land use change reduces the soil methane sink by diminishing populations of methane oxidizing bacteria. Here we report soil CH4 uptake from ‘natural’ mature beech forests and from mature pine and spruce plantations in two study areas of Germany with distinct climate and soils. The CH4 uptake rates of both beech forests at Solling and Unterlüß were about two–three times the CH4 uptake rates of the adjacent pine and spruce plantations, indicating a strong impact of forest type on the soil CH4 sink. The CH4 uptake rates of sieved mineral soils from our study sites confirmed the tree species effect and indicate that methanotrophs were mainly reduced in the 0–5 cm mineral soil depth. The reasons for the reduction are still unknown. We found no site effect between Solling and Unterlüß, however, CH4 uptake rates from Solling were significantly higher at the same effective CH4 diffusivity. This potential site effect was masked by higher soil water contents at Solling. Soil pH (H2O) explained 71% of the variation in CH4 uptake rates of sieved mineral soils from the 0–5 cm depth, while cation exchange capacity, soil organic carbon, soil nitrogen and total phosphorous content were not correlated with CH4 uptake rates. Comparing 1998–99, annual CH4 uptake rates increased by 69–111% in the beech and spruce stands and by 5–25% in the pine stands, due primarily to differences in growing season soil moisture. Cumulative CH4 uptake rates from November throughout April were rather constant in both years. The CH4 uptake rates of each stand were separately predicted using daily average soil matric potential and a previously developed empirical model. The model results revealed that soil matric potential explains 53–87% of the temporal variation in CH4 uptake. The differences between measured and predicted annual CH4 uptake rates were less than 10%, except for the spruce stand at Solling in 1998 (17%). Based on data from this study and from the literature, we calculated a total reduction in the soil CH4 sink of 31% for German forests due in part to conversion of deciduous to coniferous forests.  相似文献   

4.
Agrobacterium-mediated gene transfer is the method of choice for many plant biotechnology laboratories; however, large- scale use of this organism in conifer transformation has been limited by difficult propagation of explant material, selection efficiencies and low transformation frequency. We have analyzed co-cultivation conditions and different disarmed strains of Agrobacterium to improve transformation. Additional copies of virulence genes were added to three common disarmed strains. These extra virulence genes included either a constitutively active virG or extra copies of virG and virB, both from pTiBo542. In experiments with Norway spruce, we increased transformation efficiencies 1000-fold from initial experiments where little or no transient expression was detected. Over 100 transformed lines expressing the marker gene -glucuronidase (GUS) were generated from rapidly dividing embryogenic suspension-cultured cells co- cultivated with Agrobacterium. GUS activity was used to monitor transient expression and to further test lines selected on kanamycin-containing medium. In loblolly pine, transient expression increased 10-fold utilizing modified Agrobacterium strains. Agrobacterium-mediated gene transfer is a useful technique for large-scale generation of transgenic Norway spruce and may prove useful for other conifer species.  相似文献   

5.
Long-term effects of elevated winter temperatures on cold hardiness were investigated for Norway spruce (Picea abies L. Karst.), lodgepole pine (Pinus contorta Dougl.) and Scots pine (Pinus sylvestris L.). Two-year-old seedlings with the same pre-history of growth and cold hardening in the field were maintained from early December to late March at two field sites in northern Sweden and in a cold room. The temperatures at these locations averaged –13·5, –8·9 and 5·5°C, respectively. Following treatments, carbohydrate contents and cold tolerances were assessed. Needle respiration was also analysed during the 5·5°C treatment. Cold tolerance of lodgepole pine and Scots pine was much reduced following the 5·5°C treatment. Cold tolerance was somewhat reduced in lodgepole pine following the –8·9 °C treatment, but was essentially maintained in spruce throughout all treatments. The cold tolerance of needles was strongly correlated with their soluble sugar contents. Spruce maintained cold hardiness by having larger reserves of sugars and lower rates of respiration which decreased more rapidly as sugars were depleted. Tolerance of lodgepole pine to frost desiccation was also much reduced following the 5·5°C treatment.  相似文献   

6.
Boreal forests are highly sensitive to climate and human impacts and therefore suitable as biological indicator for environmental changes. In this context, our study was aimed at getting deeper insight into the climate-dependence of the onset, intensity and end of wood formation of Scots pine during the growing season.We monitored the intra-annual growth dynamics of, on average, 42-year-old Scots pine trees over five consecutive years, 2000-2004, at two sites located 80 and 300 km south of the tree line in northern Finland. For that purpose, the cambium of the trees was weekly wounded with a pin and the resulting wound tissue, microscopically detectable in transverse thin-sections through the newly built wood, was taken as a time marker. During this 5-year study period, the intra-annual wood formation at the southern site was mainly positively associated with summer temperature. However, at the northern site such an association was either entirely missing or negative. At both sites, two thirds of the radial growth was produced within only 4 weeks from mid-June to mid-July, independent of whether the growing season started earlier or later.Moreover, we measured the widths of all tree rings from bark to pith (inter-annual growth) of the same study trees and assembled them to 51-year long tree-ring site chronologies. Since 1999, these two site chronologies - after having run fairly parallel over the preceding decades - were running in divergent directions thus corroborating our results derived from the intra-annual climate/growth analysis. Whereas the chronology of the southern site follows the average temperature of May and July very closely from 1961 up to 2004, the chronology of the northern site follows the July temperature, but only up to 1998, and from 1999 to 2004 is running just opposite to the distinctly rising July temperature. During the same period, there was - unlike in the years before - nearly no snow cover in May at the northern site, whereas at the southern site there was no change of the normally existing slight snow cover in May. This deviating weather situation may have led to a temperature-induced, temporary drought stress for the Scots pines at the northern site.  相似文献   

7.
This study investigated the sensitivity of managed boreal forests to climate change, with consequent needs to adapt the management to climate change. Model simulations representing the Finnish territory between 60 and 70 degrees N showed that climate change may substantially change the dynamics of managed boreal forests in northern Europe. This is especially probable at the northern and southern edges of this forest zone. In the north, forest growth may increase, but the special features of northern forests may be diminished. In the south, climate change may create a suboptimal environment for Norway spruce. Dominance of Scots pine may increase on less fertile sites currently occupied by Norway spruce. Birches may compete with Scots pine even in these sites and the dominance of birches may increase. These changes may reduce the total forest growth locally but, over the whole of Finland, total forest growth may increase by 44%, with an increase of 82% in the potential cutting drain. The choice of appropriate species and reduced rotation length may sustain the productivity of forest land under climate change.  相似文献   

8.
Foliar elements were analysed in Scots pine, Sitka spruce and Norway spruce over a 6 year period before and during continuous exposure to SO2 and O3 in an open-air fumigation experiment. Sulphur dioxide treatment elevated foliar sulphur concentration in all species, and there were increases in foliar nitrogen in the two spruce species but not in pine. The concentrations of cations were frequently increased by SO2 treatment, but there was no correlation between the sulphur concentration of needles and their total cation charge. SO2-related elevations of foliar magnesium were correlated with the concentration of this element in soil solution, but the mechanism by which other cations were enhanced remains unclear. The only consistent effects on nutrient ratios were for SO2 treatments to increase sulphur/cation ratios.  相似文献   

9.
Global warming and changes in rainfall amount and distribution may affect soil respiration as a major carbon flux between the biosphere and the atmosphere. The objectives of this study were to investigate the site to site and interannual variation in soil respiration of six temperate forest sites. Soil respiration was measured using closed chambers over 2 years under mature beech, spruce and pine stands at both Solling and Unterlüß, Germany, which have distinct climates and soils. Cumulative annual CO2 fluxes varied from 4.9 to 5.4 Mg C ha?1 yr?1 at Solling with silty soils and from 4.0 to 5.9 Mg C ha?1 yr?1 at Unterlüß with sandy soils. With one exception soil respiration rates were not significantly different among the six forest sites (site to site variation) and between the years within the same forest site (interannual variation). Only the respiration rate in the spruce stand at Unterlüß was significant lower than the beech stand at Unterlüß in both years. Soil respiration rates of the sandy sites at Unterlüß were limited by soil moisture during the rather dry and warm summer 1999 while soil respiration at the silty Solling site tended to increase. We found a threshold of ?80 kPa at 10 cm depth below which soil respiration decreased with increasing drought. Subsequent wetting of sandy soils revealed high CO2 effluxes in the stands at Unterlüß. However, dry periods were infrequent, and our results suggest that temporal variation in soil moisture generally had little effect on annual soil respiration rates. Soil temperature at 5 cm and 10 cm depth explained 83% of the temporal variation in soil respiration using the Arrhenius function. The correlations were weaker using temperature at 0 cm (r2 = 0.63) and 2.5 cm depth (r2 = 0.81). Mean Q10 values for the range from 5 to 15 °C increased asymptotically with soil depth from 1.87 at 0 cm to 3.46 at 10 cm depth, indicating a large uncertainty in the prediction of the temperature dependency of soil respiration. Comparing the fitted Arrhenius curves for same tree species from Solling and Unterlüß revealed higher soil respiration rates for the stands at Solling than in the respective stands at Unterlüß at the same temperature. A significant positive correlation across all sites between predicted soil respiration rates at 10 °C and total phosphorus content and C‐to‐N ratio of the upper mineral soil indicate a possible effect of nutrients on soil respiration.  相似文献   

10.
The carbohydrate metabolism of the needles of Scots pine (Pinus sylvestris) and Norway spruce (Picea abies) has been examined in trees that were exposed to SO2, and O3, in an open-air fumigation experiment located in the Liphook forest in southern England. Two-year-old seedlings were planted in 1985 in seven experimental plots. Five plots received fumigation treatments of SO2, O3 or a combination of these gases to give a 2 × 3 factorial design with one additional ambient plot Fumigation with SO2, occurred from May 1987 to December 1990 and O3, fumigation occurred from March to December 1988, May to December 1989 and February to December 1990. Five samples of needles for investigation of carbohydrate metabolism were taken between February and July 1989. The concentrations of soluble carbohydrates (including sucrose and hexoses) were greatly reduced in the needles taken from Scots pine growing in the treated plots, and were also reduced, but to a lesser extent, in the needles taken from Norway spruce. Little variation in the concentration of starch in the needles of either species was detected. The activities of the two final enzymes of sucrose synthesis, sucrose phosphate synthase and sucrose 6-phos-phate phosphatase, were greatly reduced in the needles of Scots pine and were also reduced, but to a lesser extent, in the needles of Norway spruce in the fumigated plots. These reductions could be correlated with decreases in rates of photosynthetic CO2 assimilation determined by independent groups of researchers working on the Liphook site.  相似文献   

11.
 Plant responses to saturation vapour pressure deficit (SVPD) were studied by subjecting black spruce [Picea mariana (Mill) B.S.P.] and jack pine seedlings (Pinus banksiana Lamb.) to humid (0.3 – 0.8 kPa) or dry (2.0 – 2.5 kPa SVPD) regimes for 4 weeks using a computer-controlled environmental system to control diurnal variation in SVPD. Dry matter accumulation in needles was not altered by increasing SVPD. However, root growth declined by 60% which increased shoot to root ratio and reduced total seedling dry weight in both black spruce and jack pine. Relative growth rate of jack pine also declined to about half the rate of plants grown under humid conditions. In situ root marking studies showed that the decline in root growth of jack pine under the high SVPD was the result of reduced lateral root initiation, whereas root elongation was unaffected by humidity. A 4-week exposure to dry air increased abscisic acid (ABA) levels in needles, but not roots, of jack pine whereas ABA levels in black spruce were not altered. A short (3-day) exposure failed to increase needle ABA levels in either species. These results suggest that the responses of conifers to dry air were not the result of ABA accumulation. Received: 24 March 1996 / Accepted: 30 May 1996  相似文献   

12.
Genetic linkage maps were constructed for loblolly pine (Pinus taeda L.) and radiata pine (P. radiata D. Don) using a common set of RFLP and microsatellite markers. The map for loblolly pine combined data from two full-sib families and consisted of 20 linkage groups covering 1281 cM. The map for radiata pine had 14 linkage groups and covered 1223 cM. All of the RFLP probes readily hybridise between loblolly and radiata pine often producing similar hybridisation patterns. There were in total 60 homologous RFLP loci mapped in both species which could be used for comparative purposes. A set of 20 microsatellite markers derived from radiata pine were also assayed; however, only 9 amplified and revealed polymorphic loci in both species. Single-locus RFLP and microsatellite markers were used to match up linkage groups and compare order between species. Twelve syntenic groups were obtained each consisting of from 3 to 9 homologous loci. The order of homologous loci was colinear in most cases, suggesting no major chromosomal rearrangements in the evolution of these species. Comparative mapping between loblolly and radiata pine should facilitate genetic research in both species and provide a framework for mapping in other pine species. Received: 25 November 1998 / /Accepted: 19 December 1998  相似文献   

13.
 In a 2-year experiment at an open-air ozone fumigation field, the effects of fungicide application and low-level ozone exposure, single and combined, on fine root and mycorrhiza condition of Scots pine (Pinus sylvestris) seedlings were studied. Two different fungicides, copper oxychloride and propiconazole, with different modes of actions, were used. Propiconazole treatment reduced mycorrhizal infection in both years while copper oxychloride treatment and ozone exposure slightly stimulated mycorrhizal infection after the first year. Different mycorrhizal morphotypes showed different kinds of responses to the two fungicides. Light brown morphotype appeared to be the most sensitive one to propiconazole treatment. After the second year, ectendomycorrhizas disappeared in propiconazole treatment while in control treatment ectendomycorrhizas formed the majority of the light brown morphotype. The root biomass was not affected by fungicide treatments, but ozone exposure increased the total amount of short roots and the fresh weight of propiconazole treated roots. No significant differences in the concentrations of ergosterol, starch and total phenolics in pine roots between treatments were found. However, ergosterol concentration correlated positively with the mycorrhizal infection level. Both fungicides reduced the soil respiration compared to controls. At the ultrastructural level, both fungicides caused increased transparency and gradual granulation and degeneration of cytoplasm in the fungal symbiont of mycorrhizal short roots. Slightly elevated ozone did not have harmful effects on root ultrastructure. These results suggest that fungicides have deleterious effects on the quantity and quality of mycorrhizas in Scots pine roots and also side-effects on non-target soil fungi. Some of these deleterious effects were noticeable only at the ultrastructural level. Received: 23 June 1997 / Accepted: 11 December 1997  相似文献   

14.
15.
 To investigate the effects of ozone exposure and soil drought, singly and in combination, on gas exchange, antioxidant contents and pigments in current-year needles of Norway spruce [Picea abies (L.) Karst.] 4-year-old seedlings were fumigated in growth chambers with either charcoal-filtered air or with 100 nl l–1 ozone for 106 days. After 3 weeks a 20% reduction in gas exchange was observed in ozone-treated seedlings. However, no further decrease occurred in spite of continued ozone exposure. Whole needle ascorbate and apoplastic ascorbate increased until the end of the experiment and contents were 62% and 82%, respectively, higher than in ozone-free controls. This increase in ascorbate might have protected net photosynthesis from further decline. Ozone pre-treated plants and ozone-free controls were subjected to soil drought for 38 days which caused stomatal narrowing. Thereby ozone uptake was reduced when compared to well watered seedlings. At the end of the experiment drought alone, and even more in combination with ozone, had also caused an increase in ascorbate. Glutathione increased only in drought-stressed seedlings. The redox states of the ascorbate and the glutathione pools were not affected by any treatment. Superoxide dismutase activity declined under both stresses but was most reduced by ozone alone. While chlorophyll and neoxanthin contents remained unchanged, carotenes were significantly decreased upon drought. The combination of O3 and drought induced increased lutein contents, an increased pool size of the xanthophyll cycle as well as an increased epoxidation status of the xanthophyll cycle. These results suggest that spruce needles seem to be able to acclimate to ozone stress but also to drought stress by increasing their ascorbate pools and protecting pigments. Received: 15 September 1997 / Accepted: 24 March 1998  相似文献   

16.
1 As the phenological window hypothesis was reported to be significant in influencing the fitness of many herbivores feeding on tree foliage, could it also explain the performance of an insect such as the white pine weevil Pissodes strobi mainly attacking the bark phloem of conifers? 2 Under field conditions, adult weevils were caged on Norway spruce trees presenting a natural variation in their shoot growth phenology. 3 We evaluated white pine weevil biological performances, including oviposition, the number of emerged insects, survival, adult mean weight and tree defense responses as reflected by the production of induced resin canals. 4 None of the white pine weevil biological parameters was significantly affected by Norway spruce phenology. 5 The number of eggs per hole, the number of oviposition holes per leader, the number of emerged adults and their mean weight were not affected by host phenology. 6 The intensity of the traumatic response observed was variable and not correlated with budburst phenology. 7 Trees with higher traumatic responses, forming two or more layers of traumatic ducts, had lower adult emergence and estimated survival. 8 The distance between the first layer of traumatic resin ducts and the start of the annual ring was not correlated with the number of emerged weevils. 9 Norway spruce, which is an exotic tree in North America and a relatively recent host for the white pine weevil, might not possess the defense mechanisms necessary to fight off the white pine weevil.  相似文献   

17.
1 Feeding damage and mortality caused to planted Scots pine seedlings by the pine weevils Hylobius abietis and Hylobius pinastri were studied on burned and unburned sites with 0, 10 and 50 m3 per hectare levels of green tree retention from the second to the fourth summer after logging and burning of the sites. 2 The rate of severe feeding damage to pine seedlings caused by pine weevils was higher on burned clearcut sites than on unburned ones, whereas burning did not increase the feeding damage rate on sites with groups of retention trees. The damage rate in the fourth summer was approximately the same on burned and unburned sites. 3 Pine weevil feeding was the major cause of mortality of freshly planted pine seedlings on unburned sites. On burned sites, mortality was higher than the rate of severe feeding damage, particularly in the second summer after burning, possibly owing to fungal attack and abiotic factors. 4 At a retention tree level of 50 m3, feeding damage to the seedlings was lower than on clearcuts and at a 10 m3 retention tree level. Furthermore, on sites with 50 m3 of retention trees, scarification of the soil was found to decrease feeding damage more effectively than on clearcuts and 10 m3 sites. If the seedlings were situated in the centre of scarified patches, scarification alone was as effective as insecticide treatment on unscarified soil for decreasing feeding damage and mortality. 5 The results suggest that when burning is applied as silvicultural treatment after clear‐cuts, retention of trees is recommended to reduce the damages caused by pine weevils on pine seedlings.  相似文献   

18.
 A mathematical, computer-based, dynamic sway model of a Sitka spruce (Picea sitchensis) tree was developed and tested against measurements of the movement of a tree within a forest. The model tree was divided into segments each with a stiffness, mass and damping parameter. Equations were formulated to describe the response of every segment which together form a system of coupled differential equations. These were solved with the aid of matrices and from the resulting modes, the transfer function of the tree was found and used to calculate the movement of the tree in the wind. Comparison of the modelled movement of a tree in response to the measured wind speed above a forest canopy gave good agreement with the measured movement of the top of the tree but less satisfactory agreement close to the base. The comparison also pointed to the complexity of tree response to the wind and inadequacies in the model. In particular, the branches need to be treated as coupled cantilevers attached to the stem rather than simply as masses lumped together. Received: 18 February 1997 / Accepted: 16 December 1997  相似文献   

19.
Summary The effect of ozone, needle age, and season on the pH of homogenate and acid contents of Scots pine and Norway spruce needles is presented. In addition enzyme activities of cytochrome C-oxidase (cyt. C-ox), phosphoenolpyruvate-carboxylase (PEPC), shikimic acid-dehydrogenase (SHDH) and malate-dehydrogenase (MDH) were measured in Scots pine needles. In freshly sprouted spruce needles the level of quinic acid is high and the pH of the needle homogenate is low. Shikimic acid starts at low levels, increases with increasing needle age and becomes dominant, whereas the quinic acid content decreases. Malic acid has a marked seasonal trend; no trend was found in citric acid. Ozone (200 g/m3) decreased shikimic acid and quinic acid, whereas pH, malic acid and citric acid increased. Ozone (100 g/m3) had a similar effect, except in the current-year spruce needles. In Scots pine needles ozone led to increased enzymatic activities of cyt. C-ox, PEPC and SHDH, and a decrease in the activity of MDH. This effect was more pronounced in summer than in autumn, but the visible damage was greater in autumn. These effects can be found with other stresses and are not specific for ozone.  相似文献   

20.
 Concentrations of pigments in needles of yellowish Norway spruce [Picea abies (L.) Karst] trees suffering from either N, Mg or K deficiency in field sites in southeast Norway are reported. The yellowish trees had a considerably lower (roughly 50%) pigment concentration, as well as a lower chlorophyll/carotenoid ratio, compared to green trees within the same sites. Yellowing was interpreted as a general bleaching of colour, as well as a slight turn from the green (chlorophylls) towards yellow (lutein). Concentrations of pigments were highly intercorrelated. N deficiency was especially associated with low α-carotene concentrations. This was interpreted as α-carotene being the most sensitive pigment to stress. However, this pigment might be specifically sensitive to N deficiency. Carbohydrate concentrations were slightly higher in yellowish trees. Received: 5 June 1997 / Accepted: 29 August 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号