首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous studies from this laboratory (M. Bronner-Fraser (1985). J. Cell Biol. 101, 610) have demonstrated that an antibody to a cell surface receptor complex caused alterations in avian neural crest cell migration. Here, these observations are extended to examine the distribution and persistency of injected antibody, the dose dependency of the effect, and the long-term influences of antibody injection. The CSAT antibody, which recognizes a cell surface receptor for fibronectin and laminin, was injected lateral to the mesencephalic neural tube at the onset of cranial neural crest migration. Injected antibody molecules did not cross the midline, but appeared to diffuse throughout the injected half of the mesencephalon, where they remained detectable by immunocytochemistry for about 22 hr. Embryos were examined either during neural crest migration (up to 24 hr after injection) or after formation of neural crest-derived structures (36-48 hr after injection). In those embryo fixed within the first 24 hr, the major defects were a reduction in the neural crest cell number on the injected side, a buildup of neural crest cells within the lumen of the neural tube, and ectopically localized neural crest cells. In embryos allowed to survive for 36 to 48 hr after injection, the neural crest derivatives appeared normal on both the injected and control side, suggesting that the embryos compensated for the reduction in neural crest cell number on the injected side. However, the embryos often had severely deformed neural tubes and ectopic aggregates of neural crest cells. In contrast, several control antibodies had no effect. These findings suggest that the CSAT receptor complex is important in the normal development of the neural crest and neural tube.  相似文献   

2.
We have used a quantitative cell attachment assay to compare the interactions of cranial and trunk neural crest cells with the extracellular matrix (ECM) molecules fibronectin, laminin and collagen types I and IV. Antibodies to the beta 1 subunit of integrin inhibited attachment under all conditions tested, suggesting that integrins mediate neural crest cell interactions with these ECM molecules. The HNK-1 antibody against a surface carbohydrate epitope under certain conditions inhibited both cranial and trunk neural crest cell attachment to laminin, but not to fibronectin. An antiserum to alpha 1 intergrin inhibited attachment of trunk, but not cranial, neural crest cells to laminin and collagen type I, though interactions with fibronectin or collagen type IV were unaffected. The surface properties of trunk and cranial neural crest cells differed in several ways. First, trunk neural crest cells attached to collagen types I and IV, but cranial neural crest cells did not. Second, their divalent cation requirements for attachment to ECM molecules differed. For fibronectin substrata, trunk neural crest cells required divalent cations for attachment, whereas cranial neural crest cells bound in the absence of divalent cations. However, cranial neural crest cells lost this cation-independent attachment after a few days of culture. For laminin substrata, trunk cells used two integrins, one divalent cation-dependent and the other divalent cation-independent (Lallier, T. E. and Bronner-Fraser, M. (1991) Development 113, 1069-1081). In contrast, cranial neural crest cells attached to laminin using a single, divalent cation-dependent receptor system. Immunoprecipitations and immunoblots of surface labelled neural crest cells with HNK-1, alpha 1 integrin and beta 1 integrin antibodies suggest that cranial and trunk neural crest cells possess biochemically distinct integrins. Our results demonstrate that cranial and trunk cells differ in their mechanisms of adhesion to selected ECM components, suggesting that they are non-overlapping populations of cells with regard to their adhesive properties.  相似文献   

3.
INO (inhibitor of neurite outgrowth) is a monoclonal antibody that blocks axon outgrowth, presumably by functionally blocking a laminin-heparan sulfate proteoglycan complex (Chiu, A. Y., W. D. Matthew, and P. H. Patterson. 1986. J. Cell Biol. 103: 1382-1398). Here the effect of this antibody on avian neural crest cells was examined by microinjecting INO onto the pathways of cranial neural crest migration. After injection lateral to the mesencephalic neural tube, the antibody had a primarily unilateral distribution. INO binding was observed in the basal laminae surrounding the neural tube, ectoderm, and endoderm, as well as within the cranial mesenchyme on the injected side of the embryo. This staining pattern was indistinguishable from those observed with antibodies against laminin or heparan sulfate proteoglycan. The injected antibody remained detectable for 18 h after injection, with the intensity of immuno-reactivity decreasing with time. Embryos ranging from the neural fold stage to the 9-somite stage were injected with INO and subsequently allowed to survive for up to 1 d after injection. These embryos demonstrated severe abnormalities in cranial neural crest migration. The predominant defects were ectopic neural crest cells external to the neural tube, neural crest cells within the lumen of the neural tube, and neural tube deformities. In contrast, embryos injected with antibodies against laminin or heparan sulfate proteoglycan were unaffected. When embryos with ten or more somites were injected with INO, no effects were noted, suggesting that embryos are sensitive for only a limited time during their development. Immunoprecipitation of the INO antigen from 2-d chicken embryos revealed a 200-kD band characteristic of laminin and two broad smears between 180 and 85 kD, which were resolved into several bands at lower molecular mass after heparinase digestion. These results indicate that INO precipitates both laminin and proteoglycans bearing heparan sulfate residues. Thus, microinjection of INO causes functional blockage of a laminin-heparan sulfate proteoglycan complex, resulting in abnormal cranial neural crest migration. This is the first evidence that a laminin-heparan sulfate proteoglycan complex is involved in aspects of neural crest migration in vivo.  相似文献   

4.
The mechanisms of neural crest cell interaction with laminin were explored using a quantitative cell attachment assay. With increasing substratum concentrations, an increasing percentage of neural crest cells adhere to laminin. Cell adhesion at all substratum concentrations was inhibited by the CSAT antibody, which recognizes the chick beta 1 subunit of integrin, suggesting that beta 1-integrins mediate neural crest cell interactions with laminin. The HNK-1 antibody, which recognizes a carbohydrate epitope, inhibited neural crest cell attachment to laminin at low coating concentrations (greater than 1 microgram ml-1; Low-LM), but not at high coating concentration of laminin (10 micrograms ml-1; High-LM). Attachment to Low-LM occurred in the absence of divalent cations, whereas attachment to High-LM required greater than 0.1 mM Ca2+ or Mn2+. Neural crest cell adherence to the E8 fragment of laminin, derived from its long arm, was similar to that on intact laminin at high and low coating concentrations, suggesting that this fragment contains the neural crest cell binding site(s). The HNK-1 antibody recognizes a protein of 165,000 Mr which is also found in immunoprecipitates using antibodies against the beta 1 subunit of integrin and is likely to be an integrin alpha subunit or an integrin-associated protein. Our results suggest that the HNK-1 epitope on neural crest cells is present on or associated with a novel or differentially glycosylated form of beta 1-integrin, which recognizes laminin in the apparent absence of divalent cations. We conclude that neural crest cells have at least two functionally independent means of attachment to laminin which are revealed at different substratum concentrations and/or conformations of laminin.  相似文献   

5.
We have examined the distribution in Xenopus embryos of beta 1 subunits of integrin, as recognized by cross-reactive antibodies against the avian integrin beta 1 subunit. These antibodies recognize a doublet of bands of approximately 120 kD in Xenopus embryos. The distribution pattern of these integrin cell surface receptors was compared with that of two possible ligands, fibronectin and laminin, in the extracellular matrix during the time of neural crest cell migration. Integrin immunoreactivity in the early neurula was observed lightly outlining somite and epidermal cells and the notochord. The integrin immunostaining increased with developmental age and was observed on most cell types in the embryo but was particularly notable in the intersomitic clefts through which motoraxons grow. The immunoreactivity in this region was not, however, wholly on the axon surfaces, since intersomitic integrin remained detectable in embryos in which the neural tube had been ablated. Fibronectin and laminin were more extensively distributed than integrin at all stages examined. Immunoreactivity for both was observed around the neural tube, notochord, somites, epidermis, dorsal mesentery, and lateral plate mesoderm. The distribution of laminin and fibronectin around the somites was particularly interesting since it was non-uniform and similar to that of integrin. Strongest staining was observed in the intersomitic clefts, and weakest staining was observed on the medial surface of the somites, which faces the neural tube and notochord. The major differences in distribution pattern between the fibronectin and laminin immunoreactivities were that only fibronectin was detected in the mesenchyme of the dorsal fin. Our results demonstrate that a molecule homologous to avian integrin is present in Xenopus embryos during neural crest cell migration and motoraxon outgrowth. Its presence in the intersomitic clefts and on the surface of many embryonic cell types together with the abundant distribution of its ligands are consistent with a potentially important developmental function in neurite outgrowth and/or muscle development.  相似文献   

6.
Mesenchymal cell migration and neurite outgrowth are mediated in part by binding of cell surface beta 1,4-galactosyltransferase (GalTase) to N-linked oligosaccharides within the E8 domain of laminin. In this study, we determined whether cell surface GalTase functions during neural crest cell migration and neural development in vivo using antibodies raised against affinity-purified chicken serum GalTase. The antibodies specifically recognized two embryonic proteins of 77 and 67 kD, both of which express GalTase activity. The antibodies also immunoprecipitated and inhibited chick embryo GalTase activity, and inhibited neural crest cell migration on laminin matrices in vitro. Anti-GalTase antibodies were microinjected into the head mesenchyme of stage 7-9 chick embryos or cranial to Henson's node of stage 6 embryos. Anti-avian GalTase IgG decreased cranial neural crest cell migration on the injected side but did not cross the embryonic midline and did not affect neural crest cell migration on the uninjected side. Anti-avian GalTase Fab crossed the embryonic midline and perturbed cranial neural crest cell migration throughout the head. Neural fold elevation and neural tube closure were also disrupted by Fab fragments. Cell surface GalTase was localized to migrating neural crest cells and to the basal surfaces of neural epithelia by indirect immunofluorescence, whereas GalTase was undetectable on neural crest cells prior to migration. These results suggest that, during early embryogenesis, cell surface GalTase participates during neural crest cell migration, perhaps by interacting with laminin, a major component of the basal lamina. Cell surface GalTase also appears to play a role in neural tube formation, possibly by mediating neural epithelial adhesion to the underlying basal lamina.  相似文献   

7.
8.
9.
Neural crest cells migrate along pathways containing laminin and other extracellular matrix molecules. In the present study, we functionally and biochemically identify an alpha 1 beta 1 integrin heterodimer which bears the HNK-1 epitope on neural crest cells. Using a quantitative cell adhesion assay, we find that this heterodimer mediates attachment to laminin substrata prepared in the presence of Ca2+. Interestingly, neural crest cells bind to laminin-Ca2+ substrata in the presence or absence of divalent cations in the cell attachment medium. In contrast, the attachment of neural crest cells to laminin substrata prepared in the presence of EDTA, heparin, Mg2+, or Mn2+ requires divalent cations. Interactions with these laminin substrata are mediated by a different integrin heterodimer, since antibodies against beta 1 but not alpha 1 integrins inhibit neural crest cell attachment. Thus, the type of laminin substratum appears to dictate the choice of laminin receptor used by neural crest cells. The laminin conformation is determined by the ratio of laminin to Ca2+, though incorporation of heparin during substratum polymerization alters the conformation even in the presence of Ca2+. Once polymerized, the substratum appears stable, not being altered by soaking in either EDTA or divalent cations. Our findings demonstrate: (a) that the alpha 1 beta 1 integrin can bind to some forms of laminin in the absence of soluble divalent cations; (b) that substratum preparation conditions alter the conformation of laminin such that plating laminin in the presence of Ca2+ and/or heparin modulates its configuration; and (c) that neural crest cells utilize different integrins to recognize different laminin conformations.  相似文献   

10.
During early embryonic development, cranial neural crest cells emerge from the developing mid- and hindbrain. While numerous studies have focused on integrin involvement in trunk neural crest cell migration, comparatively little is known about mechanisms of cranial neural crest cell migration. We show that fibronectin, but not laminin, vitronectin, or type I collagen can support cranial neural crest cell migration and segmentation in vitro. These behaviors require both the RGD and "synergy" sites located within the central cell-binding domain of fibronectin. While these two sites are sufficient for cranial neural crest cell migration, we find that the second Heparin-binding domain of fibronectin can provide additional support for cranial neural crest cell migration in vitro. Finally, using a function blocking monoclonal antibody, we show that cranial neural crest cell migration on fibronectin requires the integrin alpha5beta1.  相似文献   

11.
We have examined the distribution and function of the defined cell adhesion molecules, N-cadherin and N-CAM, in the emigration of cranial neural crest cells from the neural tube in vivo. By immunocytochemical analysis, both N-cadherin and N-CAM were detected on the cranial neural folds prior to neural tube closure. After closure of the neural tube, presumptive cranial neural crest cells within the dorsal aspect of the neural tube had bright N-CAM and weak N-cadherin immunoreactivity. By the 10- to 11-somite stage, N-cadherin was prominent on all neural tube cells with the exception of the dorsal-most cells, which had little or no detectable immunoreactivity. N-CAM, but not N-cadherin, was observed on some migrating neural crest cells after their departure from the cranial neural tube. To examine the functional significance of these molecules, perturbation experiments were performed by injecting antibodies against N-CAM or N-cadherin into the cranial mesenchyme adjacent to the midbrain. Fab' fragments or whole IgGs of monoclonal and polyclonal antibodies against N-CAM caused abnormalities in the cranial neural tube and neural crest. Predominantly observed defects included neural crest cells in ectopic locations, both within and external to the neural tube, and mildly deformed neural tubes containing some dissociating cells. A monoclonal antibody against N-cadherin also disrupted cranial development, with the major defect being grossly distorted neural tubes and some ectopic neural crest cells outside of the neural tube. In contrast, nonblocking N-CAM antibodies and control IgGs had few effects. Embryos appeared to be sensitive to the N-CAM and N-cadherin antibodies for a limited developmental period from the neural fold to the 9-somite stage, with older embryos no longer displaying defects after antibody injection. These results suggest that the cell adhesion molecules N-CAM and N-cadherin are important for the normal integrity of the cranial neural tube and for the emigration of neural crest cells. Because cell-matrix interactions also are required for proper emigration of cranial neural crest cells, the results suggest that the balance between cell-cell and cell-matrix adhesion may be critical for this process.  相似文献   

12.
The possible role of a 140-kD cell surface complex in neural crest adhesion and migration was examined using a monoclonal antibody JG22, first described by Greve and Gottlieb (1982, J. Cell. Biochem. 18:221-229). The addition of JG22 to neural crest cells in vitro caused a rapid change in morphology of cells plated on either fibronectin or laminin substrates. The cells became round and phase bright, often detaching from the dish or forming aggregates of rounded cells. Other tissues such as somites, notochords, and neural tubes were unaffected by the antibody in vitro even though the JG22 antigen is detectable in embryonic tissue sections on the surface of the myotome, neural tube, and notochord. The effects of the JG22 on neural crest migration in vivo were examined by a new perturbation approach in which both the antibody and the hybridoma cells were microinjected onto neural crest pathways. Hybridoma cells were labeled with a fluorescent cell marker that is nondeleterious and that is preserved after fixation and tissue sectioning. The JG22 antibody and hybridoma cells caused a marked reduction in cranial neural crest migration, a build-up of neural crest cells within the lumen of the neural tube, and some migration along aberrant pathways. Neural crest migration in the trunk was affected to a much lesser extent. In both cranial and trunk regions, a cell free zone of one or more cell diameters was generally observed between neural crest cells and the JG22 hybridoma cells. Two other monoclonal antibodies, 1-B and 1-N, were used as controls. Both 1-B and 1-N bind to bands of the 140-kD complex precipitated by JG22. Neither control antibody affected neural crest adhesion in vitro or neural crest migration in situ. This suggests that the observed alterations in neural crest migration are due to a functional block of the 140-kD complex.  相似文献   

13.
The interaction of β1 integrin receptors and different extracellular matrix molecules during neuronal development was investigated by comparing both migration and morphological differentiation of D3 wild-type embryonic stem (ES) cell line-derived neural precursor cells with those of the β1 integrin knockout ES cell line G201. Analysing neurosphere explants on laminin and fibronectin as major β1 integrin ligands, the maximal spreading of outward migrating neuronal cells was determined. Compared with gelatine as a standard substrate, migration was found to be significantly increased for D3-derived neurospheres on fibronectin and laminin-1. These matrix effects were found to be even enhanced for G201 preparations. In addition, also the differentiation of wild-type and β1 integrin −/− neurones – as determined by MAP-2- and HNK-1-immunoreactive processes – was found to be increased on fibronectin and laminin when compared to gelatine standards. In the respective knockout preparations on these matrices, again perturbation effects were less pronounced than on gelatine. Our observations indicate that laminin and fibronectin are involved both in β1 integrin-dependent and -independent signalling mechanisms during neurogenesis. Upregulation of compensatory mechanisms such as β1 integrin-independent receptors for laminin and fibronectin might be responsible for the much less pronounced perturbations of G201 neural precursor migration and differentiation on these two substrates than on gelatine.  相似文献   

14.
The neural crest provides a useful paradigm for cell migration and modulations in cell adhesion during morphogenesis. In the present review, we describe the major findings on the role of the extracellular matrix glycoprotein fibronectin and its corresponding integrin receptor in the locomotory behavior of neural crest cells. In vivo, fibronectin is associated with the migratory routes of neural crest cells and, in some cases, it disappears from the environment of the cells as they stop migrating. In vitro, neural crest cells show a great preference for fibronectin substrates as compared to other matrix molecules. Both in vivo and in vitro, neural crest cell migration can be specifically inhibited by antibodies or peptides that interfere with the binding of fibronectin to its integrin receptor. However, the migratory behavior of neural crest cells cannot result solely from the interaction with fibronectin. Thus, neural crest cells exhibit a particular organization of integrin receptors on their surface and develop a cytoskeletal network which differs from that of non-motile cells. These properties are supposed to permit rapid changes in the shape of cells and to favor a transient adhesion to the substratum. Recent findings have established that different forms of fibronectin may occur, which differ by short sequences along the molecule. The functions of most of these sequences are not known, except for 1 of them which carries a binding site for integrin receptors. We have demonstrated that this site is recognized by neural crest cells and plays a crucial role in their displacement. It is therefore possible that the forms of fibronectin carrying this sequence are not evenly distributed in the embryo, thus allowing migrating neural crest cells to orientate in the embryo. Fibronectin would then not only play a permissive role in embryonic cell motility, but have an instructive function in cell behavior.  相似文献   

15.
The influence of the neural tube on early development of neural crest cells into sensory ganglia was studied in the chick embryo. Silastic membranes were implanted between the neural tube and the somites in 30-somite-stage embryos at the level of somites 21-24, thus separating the early migrated population of neural crest cells from the neural tube. Neural crest cells and peripheral ganglia were visualized by immunofluorescence using the HNK-1 monoclonal antibody and several histochemical techniques. Separation of crest cells from the neural tube caused the selective death of the neural crest cells from which dorsal root ganglia (DRG) would have developed. Complete disappearance of HNK-1 positive cells was evident already 10 hr after silastic implantation, before early differentiation sensory neurons could have reached their peripheral targets. In older embryos, DRG were absent at the level of implantation. In contrast, the development of ventral roots, sympathetic ganglia and adrenal gland was normal, and so was somitic differentiation into cartilage and muscle, while morphogenesis of the vertebrae was perturbed. To overcome the experimentally induced crest cell death, the silastic membranes were impregnated with a 3-day-old embryonic chick neural tube extract. Under these conditions, crest cells which were separated from the tube survived for a period of 30 hr after operation, compared to less than 10 hr in respective controls. The extract of another tissue, the liver, did not protract survival of DRG progenitor cells. Among the cells which survived with neural tube extract, some even succeeded in extending neurites; nevertheless, in absence of normal connections with the central nervous system (CNS) they finally died. Treatment of silastic implanted embryos with nerve growth factor (NGF) did not prevent the experimentally induced crest cell death. These results demonstrate that DRG develop from a population of neural crest cells which depends for its survival and probably for its differentiation upon a signal arising from the CNS, needed as early as the first hours after initiation of migration. Recovery experiments suggest that the subpopulation of crest cells which will develop along the sensory pathway probably depends for its survival and/or differentiation upon a factor contained in the neural tube, which is different from NGF.  相似文献   

16.
In all higher vertebrate embryos the sensory ganglia of the trunk develop adjacent to the neural tube, in the cranial halves of the somite-derived sclerotomes. It has been known for many years that ganglia do not develop in the most cranial (occipital) sclerotomes, caudal to the first somite. Here we have investigated whether this is due to craniocaudal variation in the neural tube or crest, or to an unusual property of the sclerotomes at occipital levels. Using the monoclonal antibody HNK-1 as a marker for neural crest cells in the chick embryo, we find that the crest does enter the cranial halves of the occipital sclerotomes. Furthermore, staining with zinc iodide/osmium tetroxide shows that some of these crest-derived cells sprout axons within these sclerotomes. By stage 23, however, no dorsal root ganglia are present within the five occipital sclerotomes, as assessed both by haematoxylin/eosin and zinc iodide/osmium tetroxide staining. Moreover, despite this loss of sensory cells, motor axons grow out in these segments, many of them later fasciculating to form the hypoglossal nerve. The sclerotomes remain visible until stages 27/28, when they dissociate to form the base of the skull and the atlas and axis vertebrae. After grafting occipital neural tube from quail donor embryos in place of trunk neural tube in host chick embryos, quail-derived ganglia do develop in the trunk sclerotomes. This shows that the failure of occipital ganglion development is not the result of some fixed local property of the neural crest or neural tube at occipital levels. We therefore suggest that in the chick embryo the cranial halves of the five occipital sclerotomes lack factors essential for normal sensory ganglion development, and that these factors are correspondingly present in all the more caudal sclerotomes.  相似文献   

17.
The interaction of β1 integrin receptors and different extracellular matrix molecules during neuronal development was investigated by comparing both migration and morphological differentiation of D3 wild-type embryonic stem (ES) cell line-derived neural precursor cells with those of the β1 integrin knockout ES cell line G201. Analysing neurosphere explants on laminin and fibronectin as major β1 integrin ligands, the maximal spreading of outward migrating neuronal cells was determined. Compared with gelatine as a standard substrate, migration was found to be significantly increased for D3-derived neurospheres on fibronectin and laminin-1. These matrix effects were found to be even enhanced for G201 preparations. In addition, also the differentiation of wild-type and β1 integrin −/− neurones – as determined by MAP-2- and HNK-1-immunoreactive processes – was found to be increased on fibronectin and laminin when compared to gelatine standards. In the respective knockout preparations on these matrices, again perturbation effects were less pronounced than on gelatine. Our observations indicate that laminin and fibronectin are involved both in β1 integrin-dependent and -independent signalling mechanisms during neurogenesis. Upregulation of compensatory mechanisms such as β1 integrin-independent receptors for laminin and fibronectin might be responsible for the much less pronounced perturbations of G201 neural precursor migration and differentiation on these two substrates than on gelatine.  相似文献   

18.
Cell attachment and neurite outgrowth by embryonic neural retinal cells were measured in separate quantitative assays to define differences in substrate preference and to demonstrate developmentally regulated changes in cellular response to different extracellular matrix glycoproteins. Cells attached to laminin, fibronectin, and collagen IV in a concentration-dependent fashion, though fibronectin was less effective for attachment than the other two substrates. Neurite outgrowth was much more extensive on laminin than on fibronectin or collagen IV. These results suggest that different substrates have distinct effects on neuronal differentiation. Neural retinal cell attachment and neurite outgrowth were inhibited on all three substrates by two antibodies, cell substratum attachment antibody (CSAT) and JG22, which recognize a cell surface glycoprotein complex required for cell interactions with several extracellular matrix constituents. In addition, retinal cells grew neurites on substrates coated with the CSAT antibodies. These results suggest that cell surface molecules recognized by this antibody are directly involved in cell attachment and neurite extension. Neural retinal cells from embryos of different ages varied in their capacity to interact with extracellular matrix substrates. Cells of all ages, embryonic day 6 (E6) to E12, attached to collagen IV and CSAT antibody substrates. In contrast, cell attachment to laminin and fibronectin diminished with increasing embryonic age. Age-dependent differences were found in the profile of proteins precipitated by the CSAT antibody, raising the possibility that modifications of these proteins are responsible for the dramatic changes in substrate preference of retinal cells between E6 and E12.  相似文献   

19.
Summary The distribution of fibronectin and laminin was determined in the basement membrane surrounding the caudal neural tube and at the site of initial apposition of the caudal neural folds by means of indirect immunofluorescence histochemistry on 9.0- to 10.5-day mouse embryos fixed in Carnoy's solution and serially sectioned in paraffin. At early phases of development of normal (+/+) and abnormal (vl/vl) embryos the dorsolateral neural basement membrane overlying putative neural crest cells caudal to the hindlimb shows a patchy fibronectin reaction, with laminin virtually absent. In older embryos, both components are present but are discontinuous overlying the neural crest. The results suggest that since discontinuities occur in the basement membrane of abnormal as well as normal embryos, the neural crest cells are not prevented from emigrating from the abnormal neural tube; thus the faulty neural fold fusion that characterizesvl/vl embryos does not appear to be due to a suppression of emigration by the basement membrane. The results also demonstrate the advantages and reliability of embedding in paraffin for analysis of serially sectioned pathological material by means of indirect immunofluorescence, provided that normal controls and abnormals are processed simultaneously.  相似文献   

20.
Expression of the HNK-1/NC-1 epitope in early vertebrate neurogenesis   总被引:4,自引:0,他引:4  
Summary A family of glycoconjugates has recently been shown to share a common carbohydrate epitope recognized by the mouse monoclonal antibody HNK-1. The specificity of HNK-1 was found to be similar to that of another monoclonal antibody, NC-1. These two IgM monoclonal antibodies were raised after immunization of mice with a human T-cell line and avian neural crest-derived ganglia, respectively. The antigens recognized by these antibodies include the myelin-associated glycoprotein, MAG, a glycolipid of defined structure, and a set of molecules involved in cell adhesion. The timing and pattern of appearance of these antigens are distinct. Moreover, the epitope may be absent on an antigen at a given stage or in a given tissue. Therefore, although the molecules able to carry the NC-1/ HNK-1 epitope are numerous and expressed in various tissues, the use of the monoclonal antibodies on tissue sections has proven adequate for following the migration of avian neural crest cells, the major cell lineage recognized by NC-1 and HNK-1 during early embryogenesis. Analogies in several other species have been found on the basis of HNK-1 reactivity. In this study we show that NC-1 and HNK-1 can be used successfully to label migrating neural crest cells in dog, pig and human. On the other hand, the NC-l/HNK-1 epitope was not present on migrating crest cells in amphibians or mice and was found only transiently on the neural crest of rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号