首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Amphetamine (AMPH) and cocaine are indirect dopamine agonists that activate multiple signaling cascades in the striatum. Each cascade has a different subcellular location and duration of action that depend on the strength of the drug stimulus. In addition to activating D1 dopamine-Gs-coupled-protein kinase A signaling, acute psychostimulant administration activates extracellular-regulated kinase transiently in striatal cells; conversely, inhibition of extracellular-regulated kinase phosphorylation decreases the ability of psychostimulants to elevate locomotor behavior and opioid peptide gene expression. Moreover, a drug challenge in rats with a drug history augments and prolongs striatal extracellular-regulated kinase phosphorylation, possibly contributing to behavioral sensitization. In contrast, AMPH activates phosphoinositide-3 kinase substrates, like protein kinase B/Akt, only in the nuclei of striatal cells but this transient increase induced by AMPH is followed by a delayed decrease in protein kinase B/Akt phosphorylation whether or not the rats have a drug history, suggesting that the phosphoinositide-3 kinase pathway is not essential for AMPH-induced behavioral sensitization. Chronic AMPH or cocaine also alters the regulation of inhibitory G protein-coupled receptors in the striatum, as evident by a prolonged decrease in the level of regulator of G protein signaling 4 after non-contingent or contingent (self-administered) drug exposure. This decrease is exacerbated in behaviorally sensitized rats and reversed by re-exposure to a cocaine-paired environment. A decrease in regulator of G protein signaling 4 levels may weaken its interactions with metabotropic glutamate receptor 5, Galphaq, and phospholipase C beta that may enhance drug-induced signaling. Alteration of these protein-protein interactions suggests that the striatum responds to psychostimulants with a complex molecular repertoire that both modulates psychomotor effects and leads to long-term neuroadaptations.  相似文献   

2.
Moody TW  Chiles J  Casibang M  Moody E  Chan D  Davis TP 《Peptides》2001,22(1):109-115
Neurotensin (NT) is an autocrine growth factor for some small cell lung cancer (SCLC) cells. In this communication, the effects of a non-peptide NT receptor antagonist, SR48692, were investigated using SCLC cells. (3)H-SR48692 bound with high affinity (IC(50) = 20 nM) to NCI-H209 cells. Also, NT and SR48692 inhibited specific (125)I-NT binding with high affinity (IC(50) values of 2 and 200 nM). In contrast, the NT(2) receptor agonist, levocabastine, had little effect on specific (125)I-NT binding, second messenger production and proliferation using NCI-H209 cells. SR48692 (5 microM) antagonized the ability of NT (10 nM) to cause elevated cytosolic Ca2+ in Fura-2 AM loaded NCI-H209 cells. SR48692 antagonized the ability of NT to cause elevation of c-fos mRNA in these cells. Using a MTT proliferation assay, SR48692 inhibited NCI-H209 and H345 proliferation in a concentration-dependent manner. Using a clonogenic assay, 1 microM SR48692, reduced NCI-H209 colony number. Also, SR48692 (0.4 mg/kg per day) inhibited NCI-H209 xenograft proliferation in nude mice. These results suggest that SR48692 is a NT(1) receptor antagonist which inhibits SCLC growth.  相似文献   

3.
Regulators of G protein signaling (RGS) modulate heterotrimeric G proteins in part by serving as GTPase-activating proteins for Galpha subunits. We examined a role for RGS9-2, an RGS subtype highly enriched in striatum, in modulating dopamine D2 receptor function. Viral-mediated overexpression of RGS9-2 in rat nucleus accumbens (ventral striatum) reduced locomotor responses to cocaine (an indirect dopamine agonist) and to D2 but not to D1 receptor agonists. Conversely, RGS9 knockout mice showed heightened locomotor and rewarding responses to cocaine and related psychostimulants. In vitro expression of RGS9-2 in Xenopus oocytes accelerated the off-kinetics of D2 receptor-induced GIRK currents, consistent with the in vivo data. Finally, chronic cocaine exposure increased RGS9-2 levels in nucleus accumbens. Together, these data demonstrate a functional interaction between RGS9-2 and D2 receptor signaling and the behavioral actions of psychostimulants and suggest that psychostimulant induction of RGS9-2 represents a compensatory adaptation that diminishes drug responsiveness.  相似文献   

4.
Central administration of the neuropeptide neurotensin (NT) was shown to induce antinociceptive responses both spinally and supraspinally. Although NTS2 receptors play an important role in modulating the activity of spinal neurons, we have recently implicated NTS1 receptors in NT's analgesic effects in acute spinal pain paradigms. The current experiments were thus designed to examine the antinociceptive effects of intrathecal administration of NTS1 agonists in formalin-induced tonic pain in rats. We first established, using immunoblotting and immunohistochemical approaches, that NTS1 receptors were present in small- and medium-sized dorsal root ganglion cells and localized in the superficial layers of the dorsal horn of the spinal cord. We then examined the effects of intrathecal injection of NT (1–15 μg/kg) or NTS1 preferring agonists on the nocifensive response to intraplantar formalin. Both NTS1-agonists, PD149163 (10–120 μg/kg) and NT69L (1–100 μg/kg), dose-dependently attenuated the formalin-induced behaviors. Accordingly, NTS1 agonists markedly suppressed pain-evoked c- fos expression in the superficial, nucleus proprius and neck regions of the spinal dorsal horn. The concomitant administration of PD149163 with the NTS1 antagonist SR48692 (3 μg/kg) significantly reversed PD149163-induced antinociception, confirming the implication of NTS1 in tonic pain. In contrast, NT69L's analgesic effects were partly abolished by co-administration of SR48692, indicating that NT69L-induced effects may also be exerted through interaction with NTS2. These results demonstrate that NTS1 receptors play a key role in the mediation of the analgesic effects of NT in persistent pain and suggest that NTS1-selective agonists may represent a new line of analgesic compounds.  相似文献   

5.
Neurotensin (NT) is a peptide with biological affinity to neurotensin receptors (NTR), while SR48692 is a non-peptide molecule with competitive/inhibitory activity to the same receptors. This paper aims to bring a scientific contribution to elucidate the paradigm concerning the capture of NT agonist or antagonist (SR48692) by tumor cells, depending on the competition between NT and SR48692 for identical receptors. For this reason, we have tested the therapeutic efficacy of a single dose of both 177Lu-DOTA-NT and 177Lu-DOTA-SR48692 administered to positive NTR malignant hepatoma bearing rats. Additionally, in order to evaluate the competition between NT and SR we have studied under similar circumstances, the therapeutic effects of the following combinations: 177Lu-DOTA-NT/DOTA-SR48692 and 177Lu-DOTA-SR48692/DOTA-NT. Male Wistar rats inoculated with RS1 hepatoma cells were divided in four treatment groups and one control group and treated intraperitoneally with a dose of 74-GBq (specific activity of 2 Ci/mg) per compound. At different time after compounds administration, five animals from each group were sacrificed, and removed several specimens: blood, tumor, liver, pancreas, spleen, kidney, bone marrow and small intestine. The radiobiological effects of these different regimens were evaluated by biochemistry (thiols, malonaldialdehyde and total antioxidant status) and flow cytometry (DNA ploidy, cell proliferation status, proliferative index). Treatment with the aforementioned compounds resulted in the tumor regression and the increased density of cells in G1 corresponding to a decrease of S and G2 that indicate the arrest in G1. Redox parameters recorded a proportional increase subsequently to radiotherapy induction. Our data evidenced in vivo a therapeutic potential of the two radiolabeled compounds in radionuclide therapy of murine RS-1 hepatoma. In addition, the combination between the radiolabeled compound and its unlabeled counterpart may become a promising strategy to improve the therapeutic effects.  相似文献   

6.
Antipsychotic drugs (APDs) have been primarily characterized for their effects on dopaminergic terminal regions in the brain, especially within the corpus striatum. Efferent GABA pathways are the primary outflow of striatal processing via their projections to the substantia nigra and the globus pallidus (GP). In the current study, we analyzed changes in pallidal GABA function following acute APD administration by means of in vivo microdialysis, followed by immunolabeling of presynaptic GABA terminal density in the contralateral hemisphere of the same animals. Acute administration of the atypical APD, clozapine (10 or 30 mg/kg, s.c.), produced a dose-dependent decrease in extracellular GABA. A corresponding dose-dependent increase in the density of presynaptic terminal GABA immunolabeling in the GP was found. In contrast, the typical APD, haloperidol (1 or 3 mg/kg, s.c.), had no significant effects on either measure, although a non-significant increase in extracellular GABA and decrease in the density of GABA terminal immunolabeling was noted. Paw retraction tests conducted during the time of microdialysis showed that haloperidol produced a typical pattern of highly pronounced motor impairment, while clozapine showed an atypical profile of minimal catalepsy. These complementary results obtained from in vivo neurochemistry and presynaptic neurotransmitter labeling suggest that systemic clozapine suppresses neuronal GABA release within the GP. This decrease in released pallidal GABA may play a role in the low motor side-effect liability of atypical APDs.  相似文献   

7.
Amphetamine is a central nervous system psychostimulant with a high potential for abuse. Recent literature has shown that genetic and drug‐induced elevations in dopamine transporter (DAT) expression augment the neurochemical and behavioral potency of psychostimulant releasers. However, it remains to be determined if the well‐documented differences in DAT levels across striatal regions drive regionally distinct amphetamine effects within individuals. DAT levels and dopamine uptake rates have been shown to follow a gradient in the striatum, with the highest levels in the dorsal regions and lowest levels in the nucleus accumbens shell; thus, we hypothesized that amphetamine potency would follow this gradient. Using fast scan cyclic voltammetry in mouse brain slices, we examined DAT inhibition and changes in exocytotic dopamine release by amphetamine across four striatal regions (dorsal and ventral caudate‐putamen, nucleus accumbens core and shell). Consistent with our hypothesis, amphetamine effects at the DAT and on release decreased across regions from dorsal to ventral, and both measures of potency were highly correlated with dopamine uptake rates. Separate striatal subregions are involved in different aspects of motivated behaviors, such as goal‐directed and habitual behaviors, that become dysregulated by drug abuse, making it critically important to understand regional differences in drug potencies.

  相似文献   


8.
beta-Lactotensin (beta-LT: His-Ile-Arg-Leu) is an ileum-contracting peptide derived from residues No. 146-149 of bovine beta-lactoglobulin. The ileum-contracting activity of beta-LT was blocked by the NT1 antagonist SR48692. beta-LT was selective for the neurotensin NT2 receptor while neurotensin was selective for the NT1 receptor. beta-LT is the first natural ligand showing selectivity for the NT2 receptor. beta-LT showed hypertensive activity after intravenous administration at a dose of 30 mg/kg in conscious rats, while neurotensin showed hypotensive activity. The hypertensive activity of beta-LT was blocked by levocabastine (1 mg/kg, i.v.), an NT2 antagonist. SR48692, which blocked the hypotensive activity of neurotensin, had no effect on the hypertensive activity of beta-LT. These results suggest that the hypertensive activity of beta-LT is mediated by the NT2 receptor. It was concluded that the NT1 and NT2 receptors mediate the opposite effect on blood pressure.  相似文献   

9.
10.
Abstract: The present experiments assessed the effects of SR 48692, a selective nonpeptide antagonist of neurotensin receptors, on mesolimbic dopaminergic neurotransmission. Dopamine release evoked by the electrical stimulation of the median forebrain bundle (20 Hz, 10 s) was measured in the nucleus accumbens of urethane-anesthetized rats using differential pulse amperometry combined with carbon fiber electrodes. SR 48692 (0.1 mg/kg, i.p.) alone did not affect this release, whereas it dose-dependently (0.03–1 mg/kg, i.p.) enhanced the haloperidol (50 µg/kg, i.p.)-induced facilitation of the electrically evoked DA release. The increase induced by haloperidol (92 ± 26% above control values 30 min after injection) was potentiated by SR 48692 (264 ± 75% at 0.03 mg/kg, 428 ± 113% at 0.1 mg/kg, and 480 ± 135% at 1 mg/kg). Effects identical to those of SR 48692 were obtained with SR 48527, a chemically related compound with a high affinity for neurotensin receptors, but not with SR 49711, its low-affinity antipode. The potentiating effects of SR 48692 were positively related to the stimulation frequency (from 6 to 20 Hz) and to the dose of haloperidol (from 12.5 to 50 µg/kg) and were abolished after prior kainic acid lesion (1 µg/1 µl) of the nucleus accumbens. Thus, the effects of SR 48692 required the integrity of postsynaptic elements of the nucleus accumbens and occurred under the combination of two, at least partly, interdependent conditions: strong D2 autoreceptor blockade and high-intensity stimulation likely to release neurotensin. It is interesting that these potentiating effects of SR 48692 did not appear in the striatum. In conclusion, these findings suggest that endogenous neurotensin may attenuate the facilitation of D2 receptor blockade on mesolimbic but not nigrostriatal dopamine transmission.  相似文献   

11.
The psychostimulant drug amphetamine is often prescribed to treat Attention-Deficit/Hyperactivity Disorder. The behavioral effects of the psychostimulant drug amphetamine depend on its ability to increase monoamine neurotransmission in brain regions such as the nucleus accumbens (NAC) and medial prefrontal cortex (mPFC). Recent behavioral data suggest that the endocannabinoid system also plays a role in this respect. Here we investigated the role of cannabinoid CB1 receptor activity in amphetamine-induced monoamine release in the NAC and/or mPFC of rats using in vivo microdialysis. Results show that systemic administration of a low, clinically relevant dose of amphetamine (0.5mg/kg) robustly increased dopamine and norepinephrine release (to ~175-350% of baseline values) in the NAC shell and core subregions as well as the ventral and dorsal parts of the mPFC, while moderately enhancing extracellular serotonin levels (to ~135% of baseline value) in the NAC core only. Although systemic administration of the CB1 receptor antagonist SR141716A (0-3mg/kg) alone did not affect monoamine release, it dose-dependently abolished amphetamine-induced dopamine release specifically in the NAC shell. SR141716A did not affect amphetamine-induced norepinephrine or serotonin release in any of the brain regions investigated. Thus, the effects of acute CB1 receptor blockade on amphetamine-induced monoamine transmission were restricted to dopamine, and more specifically to mesolimbic dopamine projections into the NAC shell. This brain region- and monoamine-selective role of CB1 receptors is suggested to subserve the behavioral effects of amphetamine.  相似文献   

12.
The effects of neurotensin (NT) alone or in combination with the dopamine antagonist sulpiride were tested on the release of endogenous acetylcholine (ACh) from striatal slices. NT enhanced potassium (25 mM)-evoked ACh release from striatal slices in a dose-dependent manner. This effect was tetrodotoxin-insensitive, suggesting an action directly on cholinergic elements. The dopamine antagonist sulpiride (5 x 10(-5) M) significantly increased (63%) potassium-evoked ACh release from striatal slices; potassium-evoked ACh release was further increased (90%) in the presence of NT (10(-5) M) and sulpiride (5 x 10(-5) M). The second set of experiments tested the effects of 6-hydroxydopamine (6-OHDA) lesions of the substantia nigra on NT-induced increases of potassium-evoked ACh release. These lesions did not alter the NT regulation of potassium-evoked ACh release from striatal slices, but did significantly increase spontaneous (33%) and potassium-evoked (40%) ACh release from striatal slices. Striatal choline acetyltransferase activity was not affected by 6-OHDA lesions. In addition, following 6-OHDA lesions, sulpiride was ineffective in altering ACh release from striatal slices. Furthermore, evoked ACh release in the presence of the combination of NT and sulpiride was not different from that in the presence of NT alone. These results suggest that in the rat striatum, NT regulates cholinergic interneuron activity by interacting with NT receptors associated with cholinergic elements. Moreover, the NT modulation of cholinergic activity is independent of either an interaction of NT with D2 dopamine receptors or the sustained release of dopamine.  相似文献   

13.
To test for the relative contributions of the dopaminergic and serotoninergic systems in the striatum to the effects of d-fenfluramine, an indirect serotonin receptor agonist, we assessed the expression of Fos/Jun proteins induced by d-fenfluramine given alone or in the presence of dopaminergic or serotoninergic agents. To determine the neuronal targets of d-fenfluramine in the striatum, we identified the phenotypes of striatal neurons in which d-fenfluramine induced Fos expression. Our results demonstrated that d-fenfluramine evokes nuclear expression of Fos/Jun B proteins in the striatum, and that the Fos expression was dose-dependent and accompanied by transient induction of c-fos mRNA. Fos expression was blocked by p-chloroamphetamine, a serotoninergic neurotoxin. Pretreatment with SCH 23390, a D1-dopamine receptor antagonist, led to a marked decrease in Fos/Jun B expression in the caudoputamen, but not in the cortex, whereas pretreatment with methiothepin, a nonselective serotonin 5-HT1 receptor antagonist, blocked Fos expression completely in the cortex and only partially in the caudoputamen. The expression of Fos/Jun B in the striatum occurred mainly in dynorphin-containing neurons and in a subpopulation of striatal interneurons that exhibited NADPH-diaphorase activity. Most of the enkephalin-containing neurons of the striatum did not show Fos/Jun B staining. These results suggest that the mechanism by which d-fenfluramine induces c-fos and jun B expression in the rat caudoputamen depends at least in part on activation of the dopaminergic system by serotonin.  相似文献   

14.
Knowledge of the effects of chronic nicotine is critical considering its widespread use in tobacco products and smoking cessation therapies. Although nicotine is well known to up-regulate alpha4* nAChR sites and function in the cortex, its actions in the striatum are uncertain because of the presence of multiple subtypes with potentially opposing effects. We therefore investigated the effect of long-term nicotine treatment on nAChR sites and function in the primate striatum, which offers the advantage of similar proportions of alpha3*/alpha6* and alpha4* nAChRs. Nicotine was given in drinking water, which resembles smoking in its intermittent but chronic delivery. Plasma nicotine and cotinine levels were similar to smokers. Chronic nicotine treatment (> 6 months) enhanced alpha4* nAChR-evoked [(3)H]dopamine release in striatal subregions, with an overall pattern of increase throughout the striatum when normalized to uptake. This increase correlated with elevated striatal alpha4* nAChRs. Under the same conditions, striatal alpha3*/alpha6* nAChR sites and function were decreased or unchanged. These divergent actions of chronic nicotine treatment on alpha4* versus alpha6* nAChRs, as well as effects on dopamine uptake, allow for a complex control of striatal activity to maintain dopaminergic function. Such knowledge is important for understanding nicotine dependence and the consequences of nicotine administration for the treatment of neurological disorders.  相似文献   

15.
BACKGROUND: Recently, we synthesized a nonviral gene vector capable of transfecting cell lines taking advantage of neurotensin (NT) internalization. The vector is NT cross-linked with poly-L-lysine, to which a plasmid DNA was bound to form a complex (NT-polyplex). Nigral dopamine neurons are able to internalize NT, thus representing a target for gene transfer via NT-polyplex. This hypothesis was tested here using reporter genes encoding green fluorescent protein or chloramphenicol acetyl transferase. MATERIALS AND METHODS: NT-polyplex was injected into the substantia nigra. Double immunofluorescence labeling was used to reveal the cell type involved in the propidium iodide-labeled polyplex internalization and reporter gene expression. RESULTS: Polyplex internalization was observed within dopamine neurons but not within glial cells, and was prevented by both hypertonic sucrose solution and SR-48692, a selective nonpeptide antagonist of NT receptors. Reporter gene expression was observed in dopamine neurons from 48 hr up to 15 days after NT-polyplex injection, and was prevented by SR-48692. However, no expression was seen when the NT-polyplex was injected into the ansiform lobule of the cerebellum, which contains low- but not high-affinity NT receptors. Neither internalization nor expression was observed in cultured glial cells, despite the NT-polyplex binding to those cells that was prevented by levocabastine, a low-affinity NT receptor antagonist. CONCLUSIONS: These results suggest that high-affinity NT receptors mediate the uptake of NT-polyplex with the subsequent reporter gene expression in vivo. NT polyfection may be used to transfer genes of physiologic interest to nigrostriatal dopamine neurons, and to produce transgenic animal models of dopamine-related diseases.  相似文献   

16.

Background

The repeated administration of psychostimulant drugs produces a persistent and long-lasting increase (“sensitization”) in their psychomotor effects, which is thought to be due to changes in the neural circuitry that mediate these behaviors. One index of neuronal activation used to identify brain regions altered by repeated exposure to drugs involves their ability to induce immediate early genes, such as c-fos. Numerous reports have demonstrated that past drug experience alters the ability of drugs to induce c-fos in the striatum, but very few have examined Fos protein expression in the two major compartments in the striatum—the so-called patch/striosome and matrix.

Methodology/Principal Findings

In the present study, we used immunohistochemistry to investigate the effects of pretreatment with methamphetamine on the ability of a subsequent methamphetamine challenge to induce Fos protein expression in the patch and matrix compartments of the dorsolateral and dorsomedial caudate-putamen and in the ventral striatum (nucleus accumbens). Animals pretreated with methamphetamine developed robust psychomotor sensitization. A methamphetamine challenge increased the number of Fos-positive cells in all areas of the dorsal and ventral striatum. However, methamphetamine challenge induced Fos expression in more cells in the patch than in the matrix compartment in the dorsolateral and dorsomedial caudate-putamen. Furthermore, past experience with methamphetamine increased the number of methamphetamine-induced Fos positive cells in the patch compartment of the dorsal caudate putamen, but not in the matrix or in the core or shell of the nucleus accumbens.

Conclusions/Significance

These data suggest that drug-induced alterations in the patch compartment of the dorsal caudate-putamen may preferentially contribute to some of the enduring changes in brain activity and behavior produced by repeated treatment with methamphetamine.  相似文献   

17.
18.
Amphetamine has well‐established actions on pre‐synaptic dopamine signaling, such as inhibiting uptake and degradation, activating synthesis, depleting vesicular stores, and promoting dopamine‐transporter reversal and non‐exocytotic release. Recent in vivo studies have identified an additional mechanism: augmenting vesicular release. In this study, we investigated how amphetamine elicits this effect. Our hypothesis was that amphetamine enhances vesicular dopamine release in dorsal and ventral striata by differentially targeting dopamine synthesis and degradation. In urethane‐anesthetized rats, we employed voltammetry to monitor dopamine, electrical stimulation to deplete stores or assess vesicular release and uptake, and pharmacology to isolate degradation and synthesis. While amphetamine increased electrically evoked dopamine levels, inhibited uptake, and up‐regulated vesicular release in both striatal sub‐regions in controls, this psychostimulant elicited region‐specific effects on evoked levels and vesicular release but not uptake in drug treatments. Evoked levels better correlated with vesicular release compared with uptake, supporting enhanced vesicular release as an important amphetamine mechanism. Taken together, these results suggested that amphetamine enhances vesicular release in the dorsal striatum by activating dopamine synthesis and inhibiting dopamine degradation, but targeting an alternative mechanism in the ventral striatum. Region‐distinct activation of vesicular dopamine release highlights complex cellular actions of amphetamine and may have implications for its behavioral effects.  相似文献   

19.
15 nM/kg b.m. of neurotensin (NT) caused a significant inhibition of LMA within 30 min of administration and this effect persisted up for to the 240 th minute of the experiment. A 15 nM/kgb.m. dose also caused a reduction in SLA which persisted up to the 120 th minute. Sixty minutes after an intraperitoneal administration of NT a decrease in the cholesterol and NEFA levels and an increase in the TG and glycerol levels were observed. These effects were inhibited by the NTR2-blocker (levocabastine) and were not subject to change after an in vivo application of SR 48692.  相似文献   

20.
Recent investigations have shown that three major striatal-signaling pathways (protein kinase A/DARPP-32, Akt/glycogen synthase kinase 3, and ERK) are involved in the regulation of locomotor activity by the monoaminergic neurotransmitter dopamine. Here we used dopamine transporter knock-out mice to examine which particular changes in the regulation of these cell signaling mechanisms are associated with distinct behavioral responses to psychostimulants. In normal animals, amphetamine and methylphenidate increase extracellular levels of dopamine, leading to an enhancement of locomotor activity. However, in dopamine transporter knock-out mice that display a hyperactivity phenotype resulting from a persistent hyperdopaminergic state, these drugs antagonize hyperactivity. Under basal conditions, dopamine transporter knock-out mice show enhanced striatal DARPP-32 phosphorylation, activation of ERK, and inactivation of Akt as compared with wild-type littermates. However, administration of amphetamine or methylphenidate to these mice reveals that inhibition of ERK signaling is a common determinant for the ability of these drugs to antagonize hyperactivity. In contrast, psychostimulants activate ERK and induce hyperactivity in normal animals. In hyperactive mice psychostimulant-mediated behavioral inhibition and ERK regulation are also mimicked by the serotonergic drugs fluoxetine and 5-carboxamidotryptamine, thereby revealing the involvement of serotonin-dependent inhibition of striatal ERK signaling. Furthermore, direct inhibition of the ERK signaling cascade in vivo using the MEK inhibitor SL327 recapitulates the actions of psychostimulants in hyperactive mice and prevents the locomotor-enhancing effects of amphetamine in normal animals. These data suggest that the inhibitory action of psychostimulants on dopamine-dependent hyperactivity results from altered regulation of striatal ERK signaling. In addition, these results illustrate how altered homeostatic state of neurotransmission can influence in vivo signaling responses and biological actions of pharmacological agents used to manage psychiatric conditions such as Attention Deficit Hyperactivity Disorder (ADHD).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号