首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The cellular processing of insulin and insulin receptors was studied using a rat fibroblast cell line that had been transfected with a normal human insulin receptor gene, expressing approximately 500 times the normal number of native fibroblast insulin receptors. These cells bind and internalize insulin normally. Biochemical assays based on the selective precipitation by polyethylene glycol of intact insulin-receptor complexes but not of free intracellular insulin were developed to study the time course of intracellular insulin-receptor dissociation. Fibroblasts were incubated with radiolabeled insulin at 4 degrees C, and internalization of insulin-receptor complexes was initiated by warming the cells to 37 degrees C. Within 2 min, 90% of the internalized radioactivity was composed of intact insulin-receptor complexes. The total number of complexes reached a maximum by 5 min and decreased rapidly thereafter with a t 1/2 of approximately 10 min. There was a distinct delay in the appearance, rate of rise, and peak of intracellular free and degraded insulin. The dissociation of insulin from internalized insulin-receptor complexes was markedly inhibited by monensin and chloroquine. Furthermore, chloroquine markedly increased the number of cross-linkable intracellular insulin-receptor complexes, as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis autoradiography. These findings suggest that acidification of intracellular vesicles is responsible for insulin-receptor dissociation. Physical segregation of dissociated intracellular insulin from its receptor was monitored, based on the ability of dissociated insulin to rebind to receptor upon neutralization of acidic intracellular vesicles with monensin. The results are consistent with the view that segregation of insulin and receptor occurs 5-10 min after initiation of dissociation. These studies demonstrate the intracellular itinerary of insulin-receptor complexes, including internalization, dissociation of insulin from the internalized receptor within an acidified compartment, segregation of insulin from the receptor, and subsequent ligand degradation.  相似文献   

2.
The aim of this study was to localise hyaluronan (HA)-binding proteins (HABPs) in ovine vertebral tissues using biotinylated HA oligosaccharides (bHA oligos) as novel affinity probes and to compare this with the distribution of tissue HA visualised using biotinylated aggrecan G1 domain-link protein complex. The bHA oligos, with a size of 6-18 disaccharides were prepared by partial digestion of HA with ovine testicular hyaluronidase, labelled with biotin hydrazide and purified by a combination of aggrecan G1 domain and avidin affinity chromatography. Hyaluronan and HABPs were both prominent pericellular components of hypertrophic cells of the vertebral epiphyseal growth plate and enlarged cells in the cartilaginous end plate of the disc. The bHA oligo probe also visualised HABPs intracellularly in hypertrophic cells, which also contained intracellular HA. Monolayer cultures of ovine annulus fibrosus and nucleus pulposus cells rapidly internalised the bHA oligo affinity probe which was subsequently visualised by indirect fluorescence using avidin-FITC, to cytoplasm and discrete nuclear regions. The results indicate that the abundant pericellular and intracellular HA associated with cartilaginous cells in the vertebral tissues is colocalised with HABPs. The bHA oligo affinity probe may have further applications in investigations of intracellular HABPs, HA endocytosis and the roles they play in cellular regulatory processes.  相似文献   

3.
Endocytosis and intracellular fate of liposomes using pyranine as a probe   总被引:6,自引:0,他引:6  
Lipid vesicles (liposomes) containing pH-sensitive fluorophores were used as probes for the study of liposome entry and intracellular fate. Pyranine [8-hydroxy-1,3,6-pyrenetrisulfonate (HPTS)] was entrapped in the liposome aqueous core during preparation to provide a means of detecting internalization into living cells. HPTS is highly water soluble and shows a strong pH-dependent shift in its fluorescence excitation spectrum. Fluorescence emission (FEM) is slightly pH dependent with excitation (lambda EX) at 350-415 nm but highly pH dependent with lambda EX at 450 nm. Liposomes bearing a net negative charge bound rapidly to CV-1 cells and underwent endocytosis. One hour after liposome addition, high FEM with lambda EX at 413 nm and low FEM with lambda EX at 450 nm suggest that most cell-associated liposomes had been internalized and resided at a mean pH of approximately 6.6. Collapse of cellular H+ gradients with NH4Cl or monensin treatment rapidly and reversibly increased FEM with lambda EX at 450 nm. Direct examination by fluorescence microscopy corroborates the fluorometric data on internalization; over time, FEM remained high with lambda EX at 350-405 nm but decreased with lambda EX at 450-490 nm, showing that all lipid vesicles were internalized within 40 min at 37 degrees C. Acidification of intracellular liposomes increased over 3 h, reaching a minimum value of approximately pH 5.5. HPTS persisted within acidic cellular vesicles for 2-3 days, and cytoplasmic dye was observed infrequently, suggesting that liposome fusion with cellular membranes seldom occurs. Material delivered to the endocytic pathway via lipid vesicles labeled an assortment of intracellular organelles of varying motility and morphology, including dynamic tubular structures whose lumen is acidic.  相似文献   

4.
5.
The activity of kinase suppressor of ras (KSR), a kinase or a molecular scaffold upstream from Raf-1, is involved in the MEK/ERK MAP kinase cascade which can signal cell growth, survival, or differentiation, depending on the cellular context. We provide evidence here that KSR is upregulated in HL60 cells undergoing differentiation induced by low (0.3-3 nM) concentrations of 1,25-dihydroxyvitamin D(3) (1,25D(3)), and an antisense oligo (AS), but not a sense oligo, to KSR inhibits this differentiation. The inhibition of differentiation by AS-KSR oligo was less apparent when the concentration of 1,25D(3) was increased, suggesting that at the higher concentrations of 1,25D(3) KSR is not essential for the signaling of the differentiated phenotype. The reduced differentiation of HL60 cells exposed to AS-KSR was paralleled by reduced phosphorylation of Raf-1 Ser 259, and of p90RSK, used here as read-out for MAPK cascade activity. Conversely, ectopic expression of Flag-tagged wild type KSR potentiated the differentiation-inducing effects of low concentrations of 1,25D(3). Additional data suggest that the kinase activity of KSR is required for these effects, as transfection of a kinase inactive KSR construct did not significantly increase the 1,25D(3)-induced differentiation. Enzyme assays performed with KSR immunoprecipitated from 1,25D(3)-treated cells showed kinase activity when recombinant Raf-1 was used as the substrate, but not when the 1,25D(3)-treated cells were pretreated with AS-KSR oligos. Taken together, these data suggest that KSR participates in signaling of monocytic differentiation by augmenting the strength of the signal transmitted through Raf-1 to downstream targets.  相似文献   

6.
Apoptosis was studied in parental and mdr-1 expressing U937, HL60 and K562 myeloid leukemic cell lines using mdr unrelated inducers of apoptosis such as Ara-C, cycloheximide, serum deprivation, ceramide, monensin and UV irradiation. Apoptosis was efficiently induced by all these treatments in U937 and HL60 cells while K562 cells exhibited an apoptosis-resistant phenotype except with UV and monensin. The pattern of apoptosis resistance in mdr-1 expressing U937 (U937-DR) and HL60 (HL60-DR100) was similar to that presented by K562. This apoptosis-resistant phenotype of mdr cells was not overcome by concentrations of verapamil inhibiting the P-gp 170 pump. The acquisition of this phenotype was posterior to the mdr-1 expressing phenotype since a HL60-DR5 variant, selected at the beginning of the induction of resistance, presented a low level of mdr-1 expression without resistance to apoptosis. The variations observed in the Fas (CD95) expression between sensitive and resistant cells were not sufficient to account for apoptosis resistance. However, a high expression in Abl antigen was found in all the apoptosis-resistant cells. RT-PCR and Western blot analysis showed that this increase in Abl antigen content was accompanied by the expression in U937-DR and HL60-DR100 cells of a hybrid bcr/abl mRNA and a 210 kD Bcr/Abl protein which was constitutive in K562. This expression was due to the translocation of abl and the amplification of the bcr-abl translocated gene. These results are in agreement with the role of Bcr/Abl tyrosine protein kinase as an inhibitor of apoptosis independently of the mdr-1 expression. They also suggest that translocation of the abl gene in the bcr region is a highly probable rearrangement in the mdr-1 expressing myeloid cells and that Bcr/Abl tyrosine kinase effect on apoptosis needs the regulation of intracellular pH and is inactive against UV-induced apoptosis.  相似文献   

7.
Our data demonstrate that the uptake of surface Ia into an intracellular compartment of B lymphoma or normal spleen cells is limited to about 20% after 2 to 3 h. The extent of internalization does not vary with several types of stimulation, including LPS, phorbol esters, anti-Ig-plus phorbol ester-stimulated EL-4 T cell supernatant, and Con A supernatant. Resting and activated B cells had similar rates of internalization. The rate and extent of uptake of surface Ia molecules into an intracellular compartment was monitored quantitatively through the use of a mAb radiolabeled with 125I. The internalization of Ia molecules was compared to that of transferrin receptor, a receptor that undergoes rapid internalization and recycling and accumulates in a intracellular pool that can be trapped by monensin. The internalization of Ia was not affected by monensin, although its synthetic pathway is disturbed by this drug. The potential use of internalized Ia for formation of T cell-triggering complexes of Ia and Ag fragments is not ruled out by these data, but it appears unlikely that internalization provides the major mechanism permitting Ia interaction with Ag.  相似文献   

8.
9.
The intracellular transport and fate of nucleic acids is poorly understood. To study this process, we injected fluorescent oligodeoxyribonucleotides (oligos) into the cytoplasm of CV-1 epithelial cells and primary human fibroblasts. Rapid nuclear accumulation was found with the phosphodiester (PD), phosphorothioate (PT), and methylphosphonate (MP) forms of a 28-mer oligo complimentary to the rev mRNA of the human immunodeficiency virus type 1. Migration of the oligos in the cytoplasm was slower than diffusion of a coinjected dextran, but the oligos freely diffused into the nucleus. Nuclear incorporation was temperature but not energy dependent. The intranuclear distribution of the oligos was influenced by the chemistry of internucleoside linkages. The PD oligos and, to a lesser extent, the PT oligos colocalized with small nuclear ribonucleoproteins (snRNPs), whereas the MP oligos colocalized with concentrated regions of genomic DNA. These data have important implications for our understanding of the transport and accumulation of exogenous nucleic acids in mammalian nuclei, and the assay described could potentially be used for testing the efficacy of oligos designed as therapeutic agents.  相似文献   

10.
Previously, we have developed a genetically structured mathematical model to describe the inhibition of Escherichia coli lac operon gene expression by antigene oligos. Our model predicted that antigene oligos targeted to the operator region of the lac operon would have a significant inhibitory effect on beta-galactosidase production. In this investigation, the E. coli lac operon gene expression in the presence of antigene oligos was studied experimentally. A 21-mer oligo, which was designed to form a triplex with the operator, was found to be able to specifically inhibit beta-galactosidase production in a dose-dependent manner. In contrast to the 21-mer triplex-forming oligonucleotide (TFO), several control oligos showed no inhibitory effect. The ineffectiveness of the various control oligos, along with the fact that the 21-mer oligo has no homology sequence with lacZYA, and no mRNA is transcribed from the operator, suggests that the 21-mer oligo inhibits target gene expression by an antigene mechanism. To simulate the kinetics of lac operon gene expression in the presence of antigene oligos, a genetically structured kinetic model, which includes transport of oligo into the cell, growth of bacteria cells, and lac operon gene expression, was developed. Predictions of the kinetic model fit the experimental data quite well after adjustment of the value of the oligonucleotide transport rate constant (9.0 x 10(-)(3) min(-)(1)) and oligo binding affinity constant (1.05 x 10(6) M(-)(1)). Our values for these two adjusted parameters are in the range of reported literature values.  相似文献   

11.
Augmented biological activity in vitro has been demonstrated in oligonucleotides (oligos) modified to provide nuclease resistance, to enhance cellular uptake or to increase target affinity. How chemical modification affects the duration of effect of an oligo with potent activity has not been investigated directly. We postulated that modification with internucleotide phosphorothioates and 3' alkylamine provided additional nuclease protection which could significantly extend the biological activity of a 26 mer, (T2). We showed this analog, sT2a, could maximally inhibit interferon gamma-induced HLA-DR mRNA synthesis and surface expression in both HeLa and retinal pigmented epithelial cells and could continue to be effective, in the absence of oligo, 15 days following initial oligo treatment; an effect not observed with its 3'amine counterpart, T2a. In vitro stability studies confirmed that sT2a conferred the greatest stability to nucleases and that cellular accumulation of 32P-sT2a in both cell types was also greater than other T2 oligos. Using confocal microscopy, we revealed that the intracellular distribution of sT2a favored greater nuclear accumulation and release of oligo from cytoplasmic vesicles; a pattern not observed with T2a. These results suggest that phosphorothioate-3'amine modification could increase the duration of effect of T2 oligo by altering nuclease resistance as well as intracellular accumulation and distribution; factors known to affect biological availability.  相似文献   

12.
Certain phosphorothioate oligodeoxynucleotide (S-oligo) analogs, unlike their normal congeners, have been found to exhibit significant anti-HIV activity [Matsukura et al., Proc. Natl. Acad. Sci. USA 84 (1987) 7706-7710]. Here we report melting temperatures (Tm) of a series of S-oligos compared with those of the corresponding normal oligomers. The Tm's for AT base pairs of S-oligos are significantly depressed relative to normal oligos, while GC-containing S-oligos show much less Tm depression. The Tm's of S-dT oligomers with poly(rA) are reduced relative to the duplexes with normal dA oligomers. These results provide a rational basis for the S-d(CG) sequences as anti-message inhibitors of gene expression. We also describe an automated synthesis of 5'-acridine linked oligothymidylates using phosphoramidite-linked acridine. During this synthesis we noted the replacement of thiophenol for the 6-chloro substituent on acridine. We have measured the Tm's of the compounds with 3 and 5 methylene groups linked to normal and phosphorothioate dTn (with n = 3-40) on duplex formation with the equivalent dAn, and have found small increases of Tm for the 5-methylene-linked acridine derivative. We have monitored the uptake of these fluorescently labeled oligos into HL60 cells, and found that the shorter oligos are more rapidly taken up than the longer, and the normal oligos faster than the S-oligos. The temperature dependence of the cellular uptake suggests an energy-dependent process, and a possible membrane receptor for oligos. These results have significance for the potential use of such compounds as inhibitors of gene expression.  相似文献   

13.
We examined the metabolism and intracellular transport of the D-erythro and L-threo stereoisomers of a fluorescent analogue of sphingomyelin, N-(N-[6-[(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino] caproyl])-sphingosylphosphorylcholine (C6-NBD-SM), in Chinese hamster ovary (CHO-K1) fibroblast monolayers. C6-NBD-SM was integrated into the plasma membrane bilayer by transfer of C6-NBD-SM monomers from liposomes to cells at 7 degrees C. The cells were washed, and within 10-15 min of being warmed to 37 degrees C, C6-NBD-SM was internalized from the plasma membrane to a perinuclear location that colocalized with the centriole and was distinct from the lysosomes and the Golgi apparatus. This perinuclear region was also labeled by internalized rhodamine-conjugated transferrin. C6-NBD-SM endocytosis was not inhibited when the microtubules were disrupted with nocodazole; rather, the fluorescent lipid was distributed in vesicles throughout the cell periphery instead of being internalized to the perinuclear region of the cell. The metabolism of C6-NBD-SM to other fluorescent sphingolipids at 37 degrees C and its effect on C6-NBD-SM transport was also examined. To study plasma membrane lipid recycling, C6-NBD-SM was first inserted into the plasma membrane of CHO-K1 cells and then allowed to be internalized by the cells at 37 degrees C. Any C6-NBD-SM remaining at the plasma membrane was then removed by incubation with nonfluorescent liposomes at 7 degrees C, leaving cells containing only internalized fluorescent lipid. The return of C6-NBD-SM to the plasma membrane from intracellular compartments upon further 37 degrees C incubation was then observed. The half-time for a complete round C6-NBD-SM recycling between the plasma membrane and intracellular compartments was approximately 40 min. Pretreatment of cells with either monensin or nocodazole did not inhibit C6-NBD-SM recycling.  相似文献   

14.
Abstract: Mutations in the presenilin genes PS1 and PS2 cause the most common form of early-onset familial Alzheimer's disease. The influence of PS1 mutations on the generation of endogenous intracellular amyloid β-protein (Aβ) species was assessed using a highly sensitive immunoblotting technique with inducible mouse neuro-blastoma (Neuro 2a) cell lines expressing the human wild-type (wt) or mutated PS1 (M146L or Δexon 10). The induction of mutated PS1 increased the intracellular levels of two distinct Aβ species ending at residue 42 that were likely to be Aβ1–42 and its N-terminally truncated variant(s) Aβx-42. The induction of mutated PS1 resulted in a higher level of intracellular Aβ1–42 than of intracellular Aβx-42, whereas extracellular levels of Aβ1–42 and Aβx-42 were increased proportionally. In addition, the intracellular generation of these Aβ42 species in wt and mutated PS1 -induced cells was completely blocked by brefeldin A, whereas it exhibited differential sensitivities to monensin: the increased accumulation of intracellular Aβx-42 versus inhibition of intracellular Aβ1–42 generation. These data strongly suggest that Aβx-42 is generated in a proximal Golgi, whereas Aβ1–42 is generated in a distal Golgi and/or a post-Golgi compartment. Thus, it appears that PS1 mutations enhance the degree of 42-specific γ-secretase cleavage that occurs in the normal β-amyloid precursor protein processing pathway (a) in the endoplasmic reticulum or the early Golgi apparatus prior to β-secretase cleavage or (b) in the distinct sites where Aβx-42 and Aβ1–42 are generated.  相似文献   

15.
Morphological and biochemical experiments were carried out to investigate the interaction of human serum high density lipoproteins (HDL) with mouse peritoneal macrophages. It is demonstrated that resident mouse peritoneal macrophages express HDL receptors. Subsequent to receptor-mediated binding, HDL are internalized and intracellularly transported into endosomes. These endosomes do not fuse with the lysosomal compartment but interact with the margin of intracellular plasma lipid droplets. Macrophages do not degrade, but rather resecrete internalized HDL particles as described for the transferrin-receptor pathway. HDL binding to freshly isolated macrophages is saturable at a concentration of approximately 320 ng HDL-protein/mg cell protein and a Scatchard plot indicates the presence of some 130 000-190 000 receptors/cell with a Kd of approximately 9 X 10(-7) M. Binding of HDL on the macrophage surface is significantly enhanced in cholesterol-laden macrophages, whereas the increase in the rate of uptake and secretion is less pronounced. Within the HDL fraction the HDL2 subclass showed higher binding, uptake and secretion activity as compared with HDL3. From these experimental data we postulate that cholesterol uptake from macrophages is mediated by HDL particles which interact with these cells via a receptor-mediated retroendocytosis pathway.  相似文献   

16.
The observation that myeloperoxidase precursor and larger intermediate (Mr 91,000 and 81,000, respectively) were extracted in the presence of detergent from isolated granule fractions of human promyelocytic leukemia HL-60 cells under mildly acidic conditions was investigated. In contrast, under conditions of neutral pH, only the Mr 74,000 intermediate and mature species were extracted. Extraction of the Mr 91,000 and 81,000 forms was also enhanced in the presence of EDTA. Kinetic studies of the processing of the different myeloperoxidase species confirmed the intermediate nature of the Mr 81,000 and 74,000 forms. Support for a role of an acidic intracellular compartment was obtained through evidence that the acid-extractable precursor and intermediates accumulated in HL-60 cells which had been treated with 1 microM monensin. Under these conditions, the production of mature heavy (Mr 63,000) and light (Mr 13,500) subunits of myeloperoxidase was consistently inhibited by greater than 40% over a 16-h period. The effects of monensin on processing of myeloperoxidase were completely reversed if monensin was removed during this 16-h period. These data support the idea that an acidic compartment may be involved in the transport of myeloperoxidase precursors to azurophil granules and/or their processing to a smaller intermediate form (Mr 74,000) of the enzyme.  相似文献   

17.
In this article, the effects of allicin, a biological active compound of garlic, on HL60 and U937 cell lines were examined. Allicin induced growth inhibition and elicited apoptotic events such as blebbing, mitochondrial membrane depolarization, cytochrome c release into the cytosol, activation of caspase 9 and caspase 3 and DNA fragmentation. Pretreatment of HL60 cells with cyclosporine A, an inhibitor of the mitochondrial permeability transition pore (mPTP), inhibited allicin-treated cell death. HL60 cell survival after 1 h pretreatment with cyclosporine A, followed by 16 h in presence of allicin (5 microM) was approximately 80% compared to allicin treatment alone (approximately 50%). Also N-acetyl cysteine, a reduced glutathione (GSH) precursor, prevented cell death. The effects of cyclosporine A and N-acetyl cysteine suggest the involvement of mPTP and intracellular GSH level in the cytotoxicity. Indeed, allicin depleted GSH in the cytosol and mitochondria, and buthionine sulfoximine, a specific inhibitor of GSH synthesis, significantly augmented allicin-induced apoptosis. In HL60 cells treated with allicin (5 microM, 30 min) the redox state for 2GSH/oxidized glutathione shifted from EGSH -240 to -170 mV. The same shift was observed in U937 cells treated with allicin at a higher concentration for a longer period of incubation (20 microM, 2 h). The apoptotic events induced by various concentrations of allicin correlate to intracellular GSH levels in the two cell types tested (HL60: 3.7 nmol/10(6) cells; U937: 7.7 nmol/10(6) cells). The emerging mechanistic basis for the antiproliferative function of allicin, therefore, involves the activation of the mitochondrial apoptotic pathway by GSH depletion and by changes in the intracellular redox status.  相似文献   

18.
Qiao  Hongyan  Gao  Yanmin  Liu  Qian  Wei  Yanan  Li  Jiaojiao  Wang  Zhaoguan  Qi  Hao 《Biotechnology letters》2022,44(10):1189-1199

Large scale DNA oligo pools are emerging as a novel material in a variety of advanced applications. However, GC content and length cause significant bias in amplification of oligos. We systematically explored the amplification of one oligo pool comprising of over ten thousand distinct strands with moderate GC content in the range of 35–65%. Uniqual amplification of oligos result to the increased Gini index of the oligo distribution while a few oligos greatly increased their proportion after 60 cycles of PCR. However, the significantly enriched oligos all have relatively high GC content. Further thermodynamic analysis demonstrated that a high value of both GC content and Gibbs free energy could improve the replication of specific oligos during biased amplification. Therefore, this double-G (GC content and Gibbs free energy) driven replication advantage can be used as a guiding principle for the sequence design for a variety of applications, particularly for data storage.

  相似文献   

19.
We investigated the effects of (dihydro)cytochalasin B, colchicine, monensin and trifluoperazine on uptake and processing of large unilamellar liposomes by rat Kupffer cells in maintenance culture. The phospholipid vesicles were labeled in the lipid moiety with phosphatidyl[14C]choline and contained [3H]inulin or [125I]iodoalbumin as nondegradable and degradable markers of the aqueous vesicle content, respectively. Cytochalasin B and dihydrocytochalasin B, inhibitors of microfilament function, reduced inert inulin label uptake by 75% maximally, but residual uptake was not followed by release of lipid degradation products from the cells. By contrast, colchicine, an inhibitor of microtubule assembly, reduced uptake of liposomal inulin by maximally 55% but could not inhibit release of lipid degradation products from the cells. It is concluded that the cytochalasins partly inhibit uptake but fully prevent the arrival of internalized liposomes in the lysosomal compartment, while the action of colchicine is to slow down the overall process of uptake and subsequent transportation to the lysosomes. Monensin reduced inulin uptake to an extent similar to that found with colchicine, but reversibly blocked degradation of liposomal lipid and encapsulated protein. The kinetics of degradation of liposomal constituents suggests that residual uptake in the presence of monensin represents accumulation in an intracellular compartment. Trifluoperazine did not affect binding, internalization or degradation of encapsulated protein at low concentration (6 microM), but completely inhibited release of liposomal lipid degradation products under these conditions. At intermediate concentration (14 microM), the drug also reduced the internalization, while a high concentration (22 microM) was required to inhibit protein degradation as well. We conclude that trifluoperazine has multiple sites of action in the uptake and processing of liposomal constituents by Kupffer cells.  相似文献   

20.
Lipoprotein lipase synthesized by cultured rat preadipocytes is present in three compartments: an intracellular, a surface-related 3-min heparin-releasable, and that secreted into the culture medium. 30 min after addition of 6 microM monensin, the lipoprotein lipase activity in the heparin-releasable compartment starts to decrease; by 4 h of monensin treatment the lipoprotein lipase activity in the heparin-releasable pool and in the culture medium is about 10% of that found in control dishes. The intracellular activity, which had been identified as lipoprotein lipase by an antiserum to lipoprotein lipase, increases slowly and doubles by 24 h. However, since the cellular compartment accounts for 10-25% of total activity, this increase does not account for the missing enzyme activity. To determine whether this enzyme molecule is synthesized but is not active, incorporation of labeled leucine, mannose and galactose into immunoadsorbable lipoprotein lipase was studied in control, monensin- or tunicamycin-treated cells. Addition of tunicamycin (5 micrograms/ml) for 24 h caused a 30-50% reduction in immunoadsorbable lipoprotein lipase, but the enzyme activity was reduced by 90%. On the other hand, 4 h monensin treatment reduced both incorporation of [3H]leucine into immunoadsorbable lipoprotein lipase and heparin-releasable and medium lipoprotein lipase activity by 57 to 77%. The immunoadsorbable lipoprotein lipase in the intracellular compartment has a [14C]mannose to [3H]galactose ratio of 0.15 and this ratio increased 6-fold in monensin-treated cells. The intracellular lipoprotein lipase in monensin-treated cells had the same affinity for both the native and synthetic substrate as the lipoprotein lipase in control cells, yet its spontaneous secretion into the culture medium and its release by 3 min heparin treatment was markedly decreased. The present results indicate that: the presence of asparagine-linked oligosaccharide (formation of which is inhibited by tunicamycin) is mandatory for the expression of lipoprotein lipase activity; lipoprotein lipase is active also in a high mannose form; and terminal glycosylation and oligosaccharide processing, which is inhibited by monensin, may be important for the appearance of heparin-releasable lipoprotein lipase and secretion of lipoprotein lipase into the medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号