首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract.  1. Effects of sand burial and nutrients on the ability of sand-dune willow ( Salix cordata ) to tolerate or resist herbivory by the beetle Altica subplicata were evaluated in field experiments.
2. To assess tolerance, all combinations of sand burial (none, 50%), nutrients (presence, absence), and beetles (presence, absence) were applied to caged plants and growth responses to herbivory were measured. Sand burial increased plant growth rate, but decreased S. cordata 's tolerance to herbivory. Although nutrients increased growth, tolerance to herbivory was unaffected.
3. To assess resistance, plants were exposed to all combinations of sand burial and nutrients, and then to natural beetle colonisation. The presence of nutrients, but not sand burial, significantly increased the percentage of plants with beetles, for both adults and larvae. This decreased resistance to beetles of plants grown with added nutrients occurred only in the absence of sand burial.
4. The performance and preference of beetles were examined in laboratory experiments. Larvae developed faster and had increased pupation success on plants with nutrients added. Beetles also showed a marginally significant feeding preference for leaves grown with added nutrients. Thus, S. cordata tolerance to herbivory was affected by sand burial, whereas resistance, preference, and performance were affected by nutrient level.  相似文献   

2.
Plasticity and overcompensation in grass responses to herbivory   总被引:5,自引:0,他引:5  
Several hypotheses predict defoliation-induced increases in individual plant fitness. In this paper we examine three such hypotheses: the Herbivore Optimization Hypothesis (HOH); the Continuum of Responses Hypothesis (CRH); and the Growth Rate Model (GRM). All three have in common predictions based on responses of defoliated individuals with the objective of explaining community and higher level phenomena. The latter two extend theory by specifying conditions for overcompensatory responses. They differ in whether overcompensation is sensitive to conditions external (CRH) or internal (GRM) to the plant. We tested these hypotheses with field experiments in a grassland system in which two native, perennial grass species replace each other along a short topographic/resource gradient. We detected positive, neutral, and negative changes in plant mass in response to partial defoliation. Patterns of responses to the edaphic and competitive environment combinations were unique to each species and neither the CRH nor the GRM were able to consistently predict responses in these grasses. Predictions of the HOH were fully supported only by the species naturally limited to lower-resource environments: overcompensation occurred in natural environments and it occurred at herbivory levels these plants experience naturally. Thus, the overcompensatory response can be important for the maintenance of local plant population distributions. However, new mechanistic theory is needed to account for the trend common to both species: overcompensatory responses to herbivory were greater in the edaphic environment in which each species was naturally most abundant.  相似文献   

3.
To investigate whether selenium (Se) accumulation in plants provides a chemical defense against generalist insect herbivores, the feeding preference and performance of a mix of orthopteran species were investigated. The selenium hyperaccumulator Stanleya pinnata and accumulator Brassica juncea were used in herbivory studies in the laboratory, and S. pinnata was also used in a manipulative field experiment. In laboratory studies, both crickets and grasshoppers avoided plants pretreated with selenate, while those given no choice died after eating leaves with elevated Se (447 +/- 68 and 230 +/- 68 microg Se g(-1) DW, respectively). B. juncea has previously been shown to accumulate selenate, while S. pinnata hyperaccumulates methyl-selenocysteine. Thus, these findings demonstrate that both inorganic and organic forms of selenium protect plants from herbivory. Grasshoppers fed S. pinnata contained methylselenocysteine in their midgut and absorbed this form into surrounding tissues. In a manipulative field experiment, methylselenocysteine protected S. pinnata from invertebrate herbivory and increased its long-term survival rate over an entire growth season. * In native habitats of selenium hyperaccumulators, orthopterans represent a major group of insect herbivores. Protection offered by organic selenium accumulation against these herbivores may have promoted the evolution of selenium hyperaccumulation in plants.  相似文献   

4.
We discuss the influence of positive and negative feedback on the stability of a system, which is not clear-cut, and involves complex, mathematical problems. We show in particular that positive feedback can have a stabilising effect on some systems. We also point out the role that positive feedback plays in the digital treatment of signals required by cellular signalling, drawing on analogies from electronics, and the role that negative feedback plays in making a system robust against alteration of its parameters. Both positive and negative feedback can be seen as important enhancers of the properties of biological systems.  相似文献   

5.
6.
7.
G Villani  A Pierre  B Salles 《Biochimie》1984,66(6):471-476
Using a two-site immunometric assay (IRMA) we quantified the concentration of single-stranded DNA binding protein (SSB) in several E. coli strains. We found approximately 7,000 monomers of SSB present per bacterium, and this number remained constant throughout the exponential phase of growth. Two ssb- mutants (ssb-1 and ssb-113) are defective in the induction of the S.O.S. pathway. One of the first functions expressed upon induction of the S.O.S. pathway is the amplification of recA protein (RECA), which we monitored by an IRMA assay similar to the one used for SSB quantification. By combining the two assays we determined the level of SSB and RECA in ssb- mutants or in SSB and RECA overproducer strains. We found: a) a normal induction of RECA following UV irradiation of E. coli bacteria overproducing SSB, b) a normal level of SSB in wild type and ssb-1 and ssb-113 mutants either in the absence or in the presence of S.O.S. inducing agents. We confirmed a severe impairment in the induction of RECA in these two mutants after nalidixic acid treatment. Our results suggest that the concentrations of RECA and SSB protein in E. coli are regulated by independent biochemical pathways.  相似文献   

8.
In order to examine the factors influencing xenobiotic toxicity against larval mosquitoes, the larvicidal performances of two conventional insecticides (temephos and Bacillus thuringiensis var. israelensis: Bti) and a new potential phyto-insecticide (decomposed leaf litter) were compared under different conditions against three detritivorous larval mosquito types. Bioassays performed under standard conditions indicated differential tolerance levels according to the xenobiotic and the larval type. Bioassays performed under different conditions of xenobiotic dose and geometry of the water column indicated differential effects of those parameters on mortality rates. This allowed us to distinguish the performances of temephos versus those of Bti and leaf litter. These toxicological performances were examined as indicators for analysis of xenobiotic bioavailability for mosquito larvae in environmental water, and also for their comparative interest in field mosquito control.  相似文献   

9.
Aim Climbing plants are characterized by long, wide vessel elements, which may be vulnerable to cold‐ or drought‐induced embolism. However, the difference in vulnerability between lianas (woody climbing plants) and vines (herbaceous climbing plants) has not yet been reported. Here we hypothesize that both lianas and vines are more sensitive to variations in water and temperature than are self‐supporting plants. Consequently, the proportions of lianas and vines in flora are expected to decline significantly along geographical and environmental gradients. Location China. Methods A unique dataset describing 82 floras in China was examined. The proportion of lianas in the flora (LPF) and the proportion of vines in the flora (VPF) were calculated independently. The proportion of the climbing plants in total spermatophyte flora (CPF) was also calculated. LPF and VPF were compared along latitudinal, mean annual rainfall (Rain), and mean January temperature (T1) gradients. Local linear regression analyses showed the changing tendencies of LPF and VPF. Prediction models of LPF using geographical and environmental factors were studied in some subranges. Results (1) LPF was highest in the tropics (13.8% on average), decreased linearly with increasing latitude within the latitude < 42 °N subrange, and reached < 1% north of 42 °N in China. VPF fluctuated slightly from tropical (4.7%), to subtropical (4.2%) to warm temperate (4.5%) regions, but declined significantly in temperate (3.2%) and dry (1.5%) zones in China. (2) LPF decreased significantly with decreasing rainfall, and decreased significantly with decreasing T1 in areas where T1 > −10 °C. In contrast, VPF tended to be constant in areas where T1 > −5 °C or Rain > 1000 mm, and declined under extreme water or temperature stresses. (3) Predictions of LPF using Rain and T1 in areas where T1 > −10 °C, and using latitude and altitude within the latitude < 42 °N subrange were both reliable. According to the geographical model for LPF and a constant VPF, tropical Asian forests would have a LPF as high as 25.4% and the highest CPF would be c. 30%. Conclusions We conclude that liana diversity is more sensitive to temperature and water availability than that of vines and other plants. Geographical and environmental gradients affected LPF but not VPF. Shorter life spans and underground nutrient storage may be effective strategies adopted by vines to avoid drought and cold stresses.  相似文献   

10.
11.
The development of Sabellaria alveolata, a gregarious reef-building polychaete species, is maximal in Mont-Saint-Michel Bay (France), where trophic capacity is now threatened by increasing shellfish farming. As no data are available concerning the ecophysiological response of this species, the purpose of the present study was to obtain clearance rate and retention efficiency values to provide a first order of magnitude for the trophic role of this species. Data were obtained using a flow-through system with novel troughs suitable for 225 cm2 reef blocks containing a mean number of 940 +/- 102 (S.E.) individuals. The experimental diet used consisted of a mixture of two live microalgae, Skeletonema costatum (3800 cell ml-1) and Isochrysis galbana (23,700 cell ml-1), chosen to cover a broad size range (2 to 16 microns equivalent spherical diameter, ESD), as determined by a particle counter. On the basis of a mean clearance rate of 0.7 lh-1 obtained with reef blocks, the mean rate for an individual was estimated at 7.5 x 10(-4) L h-1. Particles larger than 6 microns ESD were cleared with 100% efficiency, but S. alveolata was unable to retain particles smaller than 2 microns ESD. The results are compared with data obtained for other polychaete species, and clearance rate values are extrapolated to an entire reef.  相似文献   

12.
Microclimatic conditions have a strong influence on the distribution of vascular epiphytes, among which orchids often occur in sunnier and more drought‐prone situations than ferns. However, very few studies have looked at the distribution of ferns and orchids in Australian tropical rainforests. By using transmitted light measurements at the locations of individual epiphytes and vapour pressure deficit from the canopy and base of host trees, we were able to determine the patterns of light and humidity in the rainforest environment, and the responses of ferns and orchids to variation in the physical environments. We surveyed five sites, ranging from 800 to 1180 m in elevation in the lower montane rainforests of north‐east Australia. Data loggers recorded the vapour pressure deficit (VPD) at the forest floor and canopy of each site. Light was correlated with height within the host tree and VPD differed significantly over position in the host tree and elevation. There was a strong partitioning of taxonomic groups over the light and VPD gradients. Orchids occurred in environments that had higher mean light levels and mean daily maximum VPD (27% and 0.43 kPa, respectively) than ferns (21% and 0.28 kPa). There was also strong microclimatic partitioning of species within taxonomic groups, suggesting that microclimatic factors play an important role in the realized niche spaces of epiphytes within the tropical Australian rainforest. Thus, the tested ecological generalizations made on tropical rainforest epiphytes apply in Australia.  相似文献   

13.
14.
15.
16.
Analysis of a diverse cross‐sample of plant‐insect interactions suggests that the abundance of vitamin C (L ‐ascorbic acid, ascorbate or AsA) in plants influences their susceptibility to insect feeding. These effects may be mediated by AsAs roles as an essential dietary nutrient, as an antioxidant in the insect midgut, or as a substrate for plant‐derived ascorbate oxidase, which can lead to generation of toxic reactive oxygen species. Ascorbate can also influence the efficacy of plant defenses such as myrosinases and tannins, and alter insects' susceptibility to natural enemies. Conversely, herbivores appear to influence both de novo synthesis and redox cycling of AsA in their host plants, thereby potentially altering the nutritional value of crops and their susceptibility to pests. The recent development of genetically modified crops with enhanced AsA content provides both an impetus and a tool set for further studies on the role of AsA in plant‐insect interactions.  相似文献   

17.
A major challenge in ecology is to understand broadscale trends in the impact of environmental change. We provide the first integrative analysis of the effects of eutrophication on plants, herbivores, and their interactions in coastal wetlands across latitudes. We show that fertilisation strongly increases herbivory in salt marshes, but not in mangroves, and that this effect increases with increasing latitude in salt marshes. We further show that stronger nutrient effects on plant nitrogen concentration at higher latitudes is the mechanism likely underlying this pattern. This biogeographic variation in nutrient effects on plant–herbivore interactions has consequences for vegetation, with those at higher latitudes being more vulnerable to consumer pressure fuelled by eutrophication. Our work provides a novel, mechanistic understanding of how eutrophication affects plant–herbivore systems predictably across broad latitudinal gradients, and highlights the power of incorporating biogeography into understanding large‐scale variability in the impacts of environmental change.  相似文献   

18.
19.
When materials used in restorative dentistry, such as a glass-ionomer cement or a compomer, were applied to dentin, ion exchanges occur between the material and the dentin. This work is based on an assessment in vitro of the ion exchanges occurring over time between (i) a glass-ionomer cement and dentin and (ii) a compomer and dentin. An electron microprobe analysis, technique not previously used for such a study, permitted qualitative and quantitative analysis of the interface and of the peripheral dentin. Analysis of the distribution of the elements in the interface and nearby showed continuous, progressive exchanges between the glass-ionomer cement and the dentin and absence of diffusion between the compomer and the dentin.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号