首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于我国南方38个稻田试验点222个样本的表土有机碳数据,设5种施肥措施类型[无机氮肥(N)、无机氮磷肥配施(NP)、无机氮磷钾肥配施(NPK)、单施有机肥(O)和有机无机肥配施(OF)],研究了不同施肥措施下我国南方稻田表土有机碳含量的相对年变化量和固碳持续时间.结果表明:5种施肥措施下,稻田表土有机碳含量相对年变化量集中在0~0.4 g·kg-1·a-1,两熟制和三熟制的表土有机碳含量相对年均增量分别为0.20和0.26 g·kg-1·a-1;有机肥处理(O和OF)比无机肥处理(N、NP和NPK)的表土有机碳含量相对年增量更高,其中,OF处理最高,为0.32 g·kg-1·a-1;随着时间的延长,土壤有机碳的累积速率逐渐降低,N、NP、NPK、O和OF处理下表土固碳持续时间分别为22、28、38、57和54年.从土壤固碳角度考虑,有机无机肥配施为我国南方稻田最佳施肥措施.  相似文献   

2.
Evidences have shown that fertilizer application could affect soil organic carbon (SOC) content in cropland. South China is the main production region of rice, in which many different fertilization practices have been widely used during the last several decades, but the effect of different fertilization modes on SOC sequestration in paddy fields in this region was scarcely studied. Based on 274 samples taken from 44 paddy field experimental sites in South China, a meta-analysis was performed to quantify the relative annual change of SOC content (RAC) and SOC sequestration duration in paddy fields under five fertilization modes (inorganic nitrogen fertilization, N; inorganic nitrogen and phosphorus fertilization, NP; inorganic nitrogen, phosphorus, and potassium fertilization, NPK; organic fertilization, O; and inorganic combined with organic fertilization, OF). The results showed that the RAC under the five fertilization modes was 0–0.4 g kg−1 yr−1, with increments of 0.19 and 0.23 g kg−1 yr−1 in double cropping systems and triple cropping systems, respectively. The RAC under the O and OF treatments was higher than that under the N, NP and NPK treatments and was the highest (0.32 g kg−1 yr−1) under OF among the five treatments. The SOC accumulation rate decreased with time, and the SOC sequestration duration under N, NP, NPK, O and OF was approximately 23, 28, 46, 64 and 55 years, respectively. The accumulation enhancement rate of SOC over the whole SOC sequestration period under the N, NP, NPK, O and OF treatments was approximately 12.9%, 23.4%, 29.3%, 47.2% and 55.1%, respectively. The OF treatment performed the largest potential for SOC sequestration in paddy fields in South China under long-term conditions.  相似文献   

3.
An understanding of the dynamics of soil organic carbon (SOC) as affected by farming practices is imperative for maintaining soil productivity and mitigating global warming. The objectives of this study were to investigate the effects of long-term fertilization on SOC and SOC fractions for the whole soil profile (0–100 cm) in northwest China. The study was initiated in 1979 in Gansu, China and included six treatments: unfertilized control (CK), nitrogen fertilizer (N), nitrogen and phosphorus (P) fertilizers (NP), straw plus N and P fertilizers (NP+S), farmyard manure (FYM), and farmyard manure plus N and P fertilizers (NP+FYM). Results showed that SOC concentration in the 0–20 cm soil layer increased with time except in the CK and N treatments. Long-term fertilization significantly influenced SOC concentrations and storage to 60 cm depth. Below 60 cm, SOC concentrations and storages were statistically not significant between all treatments. The concentration of SOC at different depths in 0–60 cm soil profile was higher under NP+FYM follow by under NP+S, compared to under CK. The SOC storage in 0–60 cm in NP+FYM, NP+S, FYM and NP treatments were increased by 41.3%, 32.9%, 28.1% and 17.9%, respectively, as compared to the CK treatment. Organic manure plus inorganic fertilizer application also increased labile soil organic carbon pools in 0–60 cm depth. The average concentration of particulate organic carbon (POC), dissolved organic carbon (DOC) and microbial biomass carbon (MBC) in organic manure plus inorganic fertilizer treatments (NP+S and NP+FYM) in 0–60 cm depth were increased by 64.9–91.9%, 42.5–56.9%, and 74.7–99.4%, respectively, over the CK treatment. The POC, MBC and DOC concentrations increased linearly with increasing SOC content. These results indicate that long-term additions of organic manure have the most beneficial effects in building carbon pools among the investigated types of fertilization.  相似文献   

4.
苏南地区稻麦轮作系统对不同有机无机复混肥的响应   总被引:4,自引:0,他引:4  
通过田间试验,研究了苏南地区2006-2007年稻麦轮作体系下,施用菜粕堆肥有机无机复混肥(RCC)、猪粪堆肥有机无机复混肥(PMC)、中药渣堆肥有机无机复混肥(CMC)和化肥(CF)对小麦和水稻;产量及氮素利用率的影响.结果表明:各施肥处理的小麦和水稻产量均显著高于对照;RCC、PMC和CMC处理的小麦产量分别比化肥处理(6760 kg·hm-2)减少了13.1%、32.2%和39.3%;而不同有机无机复混肥处理的水稻产量(8504~9449 kg·hm-2)则显著高于化肥处理(7919 kg·hm-2),增产率达7.4%~19.3%.在小麦季,RCC、PMC和CMC处理的地上部干物质量、氮素积累量、氮素利用率普遍低于化肥处理,而水稻季则显著高于化肥处理或与之相当.综上,在苏南稻麦轮作体系下,3种有机无机复混肥均能提高水稻产量及氮素利用率,其中菜粕堆肥处理提高效果最为显著.  相似文献   

5.
长期施肥对红壤微生物生物量碳氮和微生物碳源利用的影响   总被引:28,自引:2,他引:26  
采集湖南省祁阳县红壤长期定位施肥19年的土壤样品,分析长期不同施肥红壤的微生物生物量碳、氮和微生物碳源利用率,以揭示长期施肥对红壤微生物学性状的影响.结果表明:施肥19年后,有机肥单施或与化肥配合施用均显著提高土壤微生物生物量碳、氮和微生物碳源利用率.单施有机肥的土壤微生物生物量碳、氮含量分别为231和81 mg·kg-1,化肥有机肥配施分别为148和73 mg·kg-1,均显著高于化肥配施秸秆、不施肥和单施化肥;施用有机肥和化肥配施秸秆的土壤微生物生物量氮占全氮的比例平均为6.0%,显著高于单施化肥和不施肥.Biolog-ECO分析中,平均吸光值(AWCD)的大小为:化肥有机肥配施、单施有机肥>对照>单施化肥、化肥配施秸秆.单施有机肥或与化肥有机肥配施增加了红壤微生物对碳水化合物、羧酸、氨基酸、聚合物、酚类和胺类的碳源利用率;化肥配施有机肥的红壤微生物对聚合物类碳源利用率最高,化肥配施秸秆的红壤微生物对碳水化合物类碳源的利用率最高.表明施用有机肥能显著提高红壤的微生物生物量碳、氮和微生物碳源利用率,提高红壤肥力,保持作物高产.  相似文献   

6.
Readily available chemical fertilizers have resulted in a decline in the use of organic manure (e.g., green manures), a traditionally sustainable source of nutrients. Based on this, we applied urea at the rate of 270 kg ha−1 with and without green manure in order to assess nitrogen (N) productivity in a double rice cropping system in 2017. In particular, treatment combinations were as follows: winter fallow rice-rice (WF-R-R), milk vetch rice-rice (MV-R-R), oil-seed rape rice-rice (R-R-R) and potato crop rice-rice (P-R-R). Results revealed that green manure significantly (p ≤ 0.05) improved the soil chemical properties and net soil organic carbon content increased by an average 117.47%, total nitrogen (N) by 28.41%, available N by 26.64%, total phosphorus (P) by 37.77%, available P by 20.48% and available potassium (K) by 33.10% than WF-R-R, however pH was reduced by 3.30% across the seasons. Similarly, net dry matter accumulation rate enhanced in green manure applied treatments and ranked in order: P-R-R > R-R-R > MV-R-R > WF-R-R. Furthermore, the total leaf dry matter transport (t ha−1 ) for the P-R-R in both seasons was significantly higher by an average 11.2%, 7.2% and 36 % than MV-R-R, R-R-R, and WF-R-R, respectively. In addition, net total nitrogen accumulation (kg ha−1 ) was found higher in green manure applied plots compared to the control. Yield and yield attributed traits were observed maximum in green manure applied plots, with treatments ranking as follows: P-R-R > R-R-R > MV-R-R > WF-R-R. Thus, results obtained highlight ability of green manure to sustainably improve soil quality and rice yield.  相似文献   

7.
研究了不同施肥模式下下辽河平原潮棕壤稻田土壤速效养分的供应能力及水稻的养分分配.结果表明:各处理0~20 cm速效养分供应能力均高于20~40 cm,其变异也大于20~40 cm(速效氮除外);有机、无机肥相结合有利于提高土壤速效养分的供应能力;水稻氮和磷的分配主要集中在籽实中,钾的分配则主要集中在秸秆中.采用秸秆还田措施有利于缓解钾肥资源的不足,保持钾素的循环再利用,维持土壤钾库,减少钾肥投入,降低农业生产成本,减轻环境污染.  相似文献   

8.
长期施肥对双季稻种植下土壤有机碳库和固碳量的影响   总被引:5,自引:0,他引:5  
研究了长期施用化肥和猪粪(PM)、稻草(RS)对双季稻集约化种植下30年期间(1981-2010年)土壤有机碳(SOC)及其组分的影响.结果表明:化肥平衡施用处理(NPK)的SOC、颗粒有机C(POC)和KMnO4氧化C(KMnO4C)组分高于化肥非平衡施用处理(NP和NK);猪粪、稻草与化肥(NK+PM、NP+RS和NPK+RS)长期配合施用处理的SOC、POC和KMnO4 C组分显著增加.连续种植30年60季水稻后,猪粪与NK配施处理0~45 cm土层的SOC(84.71 t C·hm-2)、POC(8.94 t C·hm-2)和KMnO4 C(21.09 t C·hm-2)数量最高,其次是NPK+RS处理;NK+PM处理(485 kg C·hm-2·a-1)的固C量最高,其次是NPK+RS处理(375 kg C·hm-2·a-1).化肥与猪粪、稻草配施处理SOC的固C效率(CSE)明显高于单施化肥处理;施肥处理POC的固C效率(0.4%~1.2%)低于KMnO4C(3.0%~8.3%).采用腐殖化常数值(h)和Jenkinson方程的衰减常数(k)可以预测不同处理2010年的SOC储量,通过Jenkinson方程可以计算维持1981年的SOC储量水平所需要的C投入量(AE).双季稻种植下,长期连续施用NK+PM、NP+RS和NPK+RS处理的SOC含量增加是由于年C输入量高于AE所致.在南方亚热带双季稻种植区,化肥与猪粪、稻草长期配施将促进水稻土有机碳的固定.  相似文献   

9.
Characterizing the dynamics of nitrogen (N) leaching from organic and conventional paddy fields is necessary to optimize fertilization and to evaluate the impact of these contrasting farming systems on water bodies. We assessed N leaching in organic versus conventional rice production systems of the Ili River Valley, a representative aquatic ecosystem of Central Asia. The N leaching and overall performance of these systems were measured during 2009, using a randomized block experiment with five treatments. PVC pipes were installed at soil depths of 50 and 180 cm to collect percolation water from flooded organic and conventional paddies, and inorganic N (NH4-N+NO3-N) was analyzed. Two high-concentration peaks of NH4-N were observed in all treatments: one during early tillering and a second during flowering. A third peak at the mid-tillering stage was observed only under conventional fertilization. NO3-N concentrations were highest at transplant and then declined until harvest. At the 50 cm soil depth, NO3-N concentration was 21–42% higher than NH4-N in percolation water from organic paddies, while NH4-N and NO3-N concentrations were similar for the conventional and control treatments. At the depth of 180 cm, NH4-N and NO3-N were the predominant inorganic N for organic and conventional paddies, respectively. Inorganic N concentrations decreased with soil depth, but this attenuation was more marked in organic than in conventional paddies. Conventional paddies leached a higher percentage of applied N (0.78%) than did organic treatments (0.32–0.60%), but the two farming systems leached a similar amount of inorganic N per unit yield (0.21–0.34 kg N Mg−1 rice grains). Conventional production showed higher N utilization efficiency compared to fertilized organic treatments. These results suggest that organic rice production in the Ili River Valley is unlikely to reduce inorganic N leaching, if high crop yields similar to conventional rice production are to be maintained.  相似文献   

10.
稻田内源甲烷的氧化是稻田甲烷减排的重要途径。而甲烷氧化菌是土壤中甲烷氧化的主要施动者,在长期不同施肥条件下,土壤微生物群落的演变是否影响到土壤甲烷氧化菌群落结构及其活性,进而影响到田土壤CH4向大气的实际排放强度还不清楚。为此,选择太湖地区一个长期肥料试验的稻田土壤为研究对象,分析长期不同肥料施用对土壤甲烷氧化能力的影响及其与土壤中甲烷氧化菌群落结构变化的可能关系。结果表明,长期不同的施肥措施下稻田土壤对甲烷的氧化能力产生了明显差异,伴随着土壤中甲烷氧化菌(MOBI和MOBII)的基因群落多样性的显著变化。长期单一施用氮肥为主的化肥显著降低了土壤对甲烷的氧化能力,同时显著降低了稻田土壤甲烷氧化菌的多样性和丰富度;不同施肥下甲烷氧化菌多样性的变化与土壤的甲烷氧化能力的变化趋势相一致。因此,研究显示长期不同施肥处理下甲烷氧化菌群落结构的改变可能是引起水稻土甲烷氧化能力变化的一个主要因素,有机无机配合施用可以明显降低稻田土壤甲烷的大气释放潜能。但长期不同施肥处理下甲烷氧化菌活性的变化还有待于进一步研究。  相似文献   

11.
搜集1994—2011年国内外有关中国旱地施肥处理的102个定位试验点的1146对田间试验数据,采用Meta-analysis方法定量分析了不同施肥条件下我国旱地耕层土壤有机碳(Soil Organic Carbon,SOC)的变化特征。结果表明,与对照(CK)相比,不同施肥措施均能显著提高耕层SOC含量,但不同施肥措施的效应不同。氮磷钾肥配施有机肥处理下SOC增速最大,为0.38 g kg-1a-1,单施磷肥处理增速最小,SOC增速仅为0.032 g kg-1a-1;添加有机肥的处理SOC增速远大于仅有无机化肥投入的施肥处理。不同施肥处理下SOC增速存在一定的空间分异特征且不同时期试验SOC相对变化速率也不相同,早期试验中SOC增速大于中、后期试验;不同种植制度对SOC变化速率的影响亦不同,有机肥的投入可以降低种植制度对SOC变化的影响。SOC积累与否及其幅度并不完全取决于初始SOC含量;随试验年限的增加,SOC增加速率呈降低趋势,仅采用短期试验(11 a)数据可能高估施肥措施下的固碳潜力。  相似文献   

12.
采用盆栽试验,研究了有机无机肥配施对麦-稻轮作系统中水稻氮素累积动态和土壤氮素供应动态的影响,并从微生物学角度探讨了有机无机肥协同提高水稻氮肥利用率的机制.结果表明:有机无机肥配施处理的土壤微生物生物量碳、氮和矿质态氮在水稻分蘖期前低于化肥处理,而在抽穗期至灌浆期显著高于其他处理.土壤氮素供应动态与水稻吸收利用氮素规律吻合程度最高,促进了水稻产量、生物量和氮素累积量的增加,显著提高了水稻的氮肥利用率.其主要机制是有机无机肥配施促进了土壤微生物繁殖,使其在水稻生育前期固持了较多的矿质氮,在水稻生育中、后期这些氮素逐渐被释放以供水稻吸收利用,较好地满足了水稻各阶段生长发育对氮素养分的需求.  相似文献   

13.
不同施肥条件下冷、暖型小麦旗叶光合生理特性的研究   总被引:1,自引:0,他引:1  
以2类4个小麦品种为试验材料,通过田间小区试验,比较了灌浆结实期冷、暖型小麦在不施肥(CK)、单施磷肥(P)、单施氮肥(N)和氮磷配施(NP)等4种施肥条件下旗叶的光合生理特性。结果表明,不同施肥条件下,冷型小麦的旗叶叶面积、叶绿素含量、可溶性蛋白质含量及净光合速率均高于暖型小麦。其中,在不施肥和单施磷肥条件下,两类小麦之间各项生理指标的差异均达显著或极显著水平;在施用氮肥(单施氮肥和氮磷配施)条件下,两类小麦之间的差异有所减小,但冷型小麦仍然高于暖型小麦。冷型小麦旗叶优良的光合生理特性具有不随施肥条件的改变而发生根本性变化的特点,对土壤肥力状况有较强的适应性;而暖型小麦对土壤氮素营养要求较高。  相似文献   

14.
Anthropogenic nitrogen (N) deposition significantly affects forest soil microbial biomass and extracellular enzymatic activities (EEA). However, the influence of mixed N fertilizations on soil microbial biomass and EEA remains unclear. In this work, NH4NO3 was chosen as inorganic N, while urea and glycine were chosen as organic N. They were used to fertilize subtropical forest soil monthly for 1 year with different ratios (inorganic N : organic N?=?10 : 0, 7 : 3, 3 : 7 and 1 : 9 respectively.) and N inputs were equivalent to 7.2 g?N?m?2?y?1. Soil samples were harvested every 2 months. Subsequently, soil microbial biomass and enzymatic activities were assayed. Multiple regression analysis (MRA) and principle components analysis (PCA) were utilized to illustrate the relationship between soil microbial biomass and EEA. Results showed that soil EEA displayed different changes in response to various mixed N fertilizations. Invertase, cellulase, cellobiohydrolase, alkaline phosphatase, and catalase activities under mixed N fertilization were higher than those of single inorganic N (NH4NO3) fertilization. Polyphenol oxidase activities were depressed after inorganic N fertilization and accelerated after mixed N fertilization. Acid phosphatase activities were accelerated in all N fertilization plots, while the influence of various mixed N fertilizations were not significant. Soil microbial biomass was enhanced by mixed N fertilization, while no significant changes were observed after inorganic N fertilization. The result revealed that although N fertilization may alleviate soil N-limitation, single inorganic N fertilization may disturb the balance of inorganic N and organic N, and depress the increases of soil enzymatic activities and microbial biomass in the end. Soil enzymes activities and microbial biomass showed the highest activities after medium organic N fertilization (inorganic : organic N?=?3 : 7), which might be the most suitable N fertilizer for soil microbes. Meanwhile, PCA showed that the alleviation of N-limited reached a maximum after medium organic N fertilization. All results indicated that soil EEA, microbial biomass, and their relationship are all affected by N type and inorganic to organic N ratio.  相似文献   

15.
Restoration of soil organic carbon (SOC) in arable lands represents potential sink for atmospheric CO2. The strategies for restoration of SOC include the appropriate land use management, cropping sequence, fertilizer and organic manures application. To achieve this goal, the dynamics of SOC and nitrogen (N) in soils needs to be better understood for which the long-term experiments are an important tool. A study was thus conducted to determine SOC and nitrogen dynamics in a long-term experiment in relation to inorganic, integrated and organic fertilizer application in rice-cowpea system on a sandy loam soil (Typic Rhodualf). The fertilizer treatments during rice included (i) 100% N (@ 100 kg N ha?1), (ii) 100% NP (100 kg N and 50 kg P2O5 ha?1), (iii) 100% NPK (100 kg N, 50 kg P2O5 and 50 kg K2O ha?1) as inorganic fertilizers, (iv) 50% NPK + 50% farm yard manure (FYM) (@ 5 t ha?1) and (v) FYM alone @ 10 t ha?1 compared with (vi) control treatment i.e. without any fertilization. The N alone or N and P did not have any significant effect on soil carbon and nitrogen. The light fraction carbon was 53% higher in NPK + FYM plots and 56% higher in FYM plots than in control plots, in comparison to 30% increase with inorganic fertilizers alone. The microbial biomass carbon and water-soluble carbon were relatively higher both in FYM or NPK + FYM plots. The clay fraction had highest concentration of C and N followed by silt, fine sand and coarse sand fractions in both surface (0–15 cm) and subsurface soil layers (15–30 cm). The C:N ratio was lowest in the clay fraction and increased with increase in particle size. The C and N enrichment ratio was highest for the clay fraction followed by silt and both the sand fractions. Relative decrease in enrichment ratio of clay in treatments receiving NPK and or FYM indicates comparatively greater accumulation of C and N in soil fractions other than clay.  相似文献   

16.
施氮和冬种绿肥对土壤活性有机碳及碳库管理指数的影响   总被引:3,自引:3,他引:0  
为探讨冬季绿肥改良土壤的生态效应及确定合适比例的氮肥与绿肥翻压量,在“冬季绿肥 双季稻”复种型农作制度基础上,设置4×4双因素试验,研究不同紫云英翻压量和施氮水平对土壤活性有机碳库各组分及碳库管理指数的影响.结果表明: 单施绿肥能够显著促进土壤总有机碳和活性有机碳的累积.与对照相比,单施绿肥处理土壤总有机碳含量和活性有机碳含量分别平均增加22.2%、26.7%,但单施氮肥处理的土壤有机碳含量下降了0.6%~3.4%.与不施肥相比,单施绿肥和绿肥氮肥配施处理的土壤碳库管理指数分别平均增加了24.55和15.17,而单施氮肥处理减少了2.59.单施绿肥、绿肥氮肥配施和单施氮肥处理的土壤平均微生物生物量碳分别比对照高54.0%、95.2%和14.3%.活性有机碳含量与碳库管理指数存在极显著(P<0.01)的相关性,与可溶性有机碳、微生物生物量碳也存在显著的相关性(P<0.05).水稻产量与活性有机碳含量和碳库管理指数均存在极显著的相关性,且相关系数明显大于总有机碳.可见在当地土壤肥力条件下,施有机肥或有机无机肥适当配施能提高土壤有机碳含量和土壤碳库管理指数,有利于改善土壤质量,提高土壤肥力.  相似文献   

17.
张烁  张宇  吴海波  刘洋荥  张鹏 《植物研究》2018,38(3):384-390
以小黑杨当年播种苗为材料,研究了不同施氮量(12,24和48 mg·株-1)和不同形态氮素(有机氮和无机氮)施肥对小黑杨幼苗生长的影响,以探讨小黑杨对氮基酸类有机氮素施肥的生长响应。结果表明:无论施无机氮(硝酸铵)还是有机氮(精氨酸),小黑杨幼苗的苗高、地径、总生物量都是随施氮量的增加而增加,但是中等施氮量处理的幼苗氮利用效率最高。无机氮(硝酸铵)和有机氮(精氨酸)处理的幼苗在相同施氮水平下生长表现无明显差异,施用有机氮可以与施用无机氮获得相同的促进苗木生长的效果。不同氨基酸及其组合肥料施用对小黑杨幼苗生长的影响显著。单一氨基酸施肥情况下,施用精氨酸促进苗木生长的效果最好,谷氨酸次之,甘氨酸最差;氨基酸组合施肥情况下,有精氨酸的组合施肥苗木生长好,有甘氨酸的组合施肥苗木生长差。不同氨基酸施肥处理对小黑杨幼苗各器官氮含量没有明显影响。  相似文献   

18.
Jiang  D.  Dai  T.  Jing  Q.  Cao  W.  Zhou  Q.  Zhao  H.  Fan  X. 《Photosynthetica》2004,42(3):439-446
Based on a 20-year fertilization experiment with wheat-maize double cropping system, the effects of different long-term fertilization treatments on leaf photosynthetic characteristics and grain yield in different winter wheat (Triticum aestivum L.) cultivars were studied in the growing seasons of 2000–2001 and 2001–2002. A total of nine fertilization treatments were implemented, i.e. no fertilizer (CK), N fertilizer (N), N and P fertilizers (NP), N and K fertilizers (NK), N, P, and K fertilizers (NPK), only organic manure (M), organic manure and N fertilizer (MN), organic manure and N and P fertilizers (MNP), and organic manure and N, P, and K fertilizers (MNPK). With the treatments of combined organic manure and inorganic fertilizers (TMI), net photosynthetic rate (P N), maximal activity of photosystem 2, PS2 (Fv/Fm), and chlorophyll content (SPAD value) of flag leaves and leaf area index (LAI) were much higher at the mid grain filling stage (20 or 23 d post anthesis, DPA), and exhibited slower declines at the late grain filling stage (30 DPA), compared with the treatments of only inorganic fertilizers (TI). The maximal canopy photosynthetic traits expressed as P N×LAI and SPAD×LAI at the mid grain filling stage were also higher in TMI than those in TI, which resulted in different grain yields in TMI and TI. Among the treatments of TMI or among the treatments of TI, both flag leaf and canopy photosynthetic abilities and yield levels increased with the supplement of inorganic nutrients (N, P, and K fertilizers), except for the treatment of NK. Under NK, soil contents of N and K increased while that of P decreased. Hence the unbalanced nutrients in soil from the improper input of nutrients in NK treatment were probably responsible for the reduced flag leaf and canopy photosynthetic characteristics and LAI, and for the fast declining of flag leaf photosynthetic traits during grain filling, resulting in the reduced yield of NK similar to the level of CK.  相似文献   

19.
Agricultural soils in North America can be a sink for rising atmospheric CO2 concentrations through the formation of soil organic matter (SOM) or humus. Humification is limited by the availability of nutrients such as nitrogen (N). Recommended management practices (RMPs) that optimize N availability foster humus formation. This review examines the management practices that contribute to maximizing N availability for optimizing sequestration of atmospheric CO2 into soil humus. Farming practices that enhance nutrient use, reduce or eliminate tillage, and increase crop intensity, together, affect N availability and, therefore, C sequestration. N additions, from especially, livestock manure and leguminous cover crops are necessary for increasing grain and biomass yields and returning crop residues to the soil thereby increasing soil organic carbon (SOC) concentration. Conservation tillage practices enhance also the availability of N and increase SOC concentration. Increase in cropping intensity and/or crop rotations produce higher quantity and quality of residues, increase availability of N, and therefore foster increase in C sequestration. The benefit of C sequestration from N additions may be negated by CO2 and N2O emissions associated with production and application of N fertilizers. More studies need to be conducted to ascertain the benefits of adding N via manuring versus N fertilizer additions. Furthermore, site specific adaptive research is needed to identify RMPs that optimize soil N use efficiency while improving crop yield and C sequestration thereby curbing greenhouse gas (GHG) emissions. Due to the wide range of climate in North America, there is a large range of C sequestration potential in agricultural soils through N management. Humid croplands may have the potential to sequester 8–298 Tg C yr?1 while dry croplands may sequester 1–35 Tg C yr?1. These estimates, however, are highly uncertain and wide-ranging. Clearly, more research is needed to quantify, more precisely, the C sequestration potential across different N management scenarios especially in Mexico and Canada.  相似文献   

20.
中国亚热带主要稻作制农田生态系统的养分平衡   总被引:2,自引:0,他引:2  
傅庆林  孟赐福 《生态学杂志》1994,13(3):53-56,34
中国亚热带主要稻作制农田生态系统的养分平衡傅庆林,孟赐福(浙江省农科院土肥所,杭州310021)NutrientBalanceinFarmlaudEcosystemUnderMajorRice-BasedCroppingSystemsinSubtro...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号