首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In plants, matK and rbcL have been selected as core barcodes by the Consortium for the Barcode of Life (CBOL) Plant Working Group (PWG), and ITS/ITS2 and psbA‐trnH were suggested as supplementary loci. Yet, research on DNA barcoding of non‐flowering seed plants has been less extensive, and the evaluation of DNA barcodes in this division has been limited thus far. Here, we evaluated seven markers (psbA‐trnH, matK, rbcL, rpoB, rpoC1, ITS and ITS2) from non‐flowering seed plants. The usefulness of each region was assessed using four criteria: the success rate of PCR amplification, the differential intra‐ and inter‐specific divergences, the DNA barcoding gap and the ability to discriminate species. Among the seven loci tested, ITS2 produced the best results in the barcoding of non‐flowering seed plants. In addition, we compared the abilities of the five most‐recommended markers (psbA‐trnH, matK, rbcL, ITS and ITS2) to identify additional species using a large database of gymnosperms from GenBank. ITS2 remained effective for species identification in a wide range of non‐flowering seed plants: for the 1531 samples from 608 species of 80 diverse genera, ITS2 correctly authenticated 66% of them at the species level. In conclusion, the ITS2 region can serve as a useful barcode to discriminate non‐flowering seed plants, and this study will contribute valuable information for the barcoding of plant species.  相似文献   

2.
In 2009, the Consortium for the Barcode of Life (CBOL) recommended the combination of rbcL and matK as the plant barcode based on assessments of recoverability, sequencing quality, and levels of species discrimination. Subsequently, based on a study of more than 6600 samples belonging to 193 families from seven phyla, the internal transcribed spacer (ITS) 2 locus was proposed as a universal barcode sequence for all major plant taxa used in traditional herbal medicine. Neither of these two studies was based on a detailed analysis of a particular family. Here, Zingiberaceae plants, including many closely related species, were used to compare the genetic divergence and species identification efficiency of ITS2, rbcL, matK, psbK-psbI, trnH-psbA, and rpoB.The results indicate that ITS2 has the highest interspecific divergence and significant differences between inter- and intraspecific divergence, whereas matK and rbcL have much lower divergence values. Among 260 species belongingto 30 genera in Zingiberaceae, the discrimination ability of the ITS2 locus was 99.5% at the genus level and 73.1% at the species level. Thus, we propose that ITS2 is the preferred DNA barcode sequence for identifying Zingiberaceae plants.  相似文献   

3.
Many species in the family Lamiaceae have been widely used for the treatment of coronary heart disease,stroke,and other conditions,and authenticating each of these species has become an important topic...  相似文献   

4.
The genus Curcuma L. is commonly used as spices, medicines, dyes and ornamentals. Owing to its economic significance and lack of clear‐cut morphological differences between species, this genus is an ideal case for developing DNA barcodes. In this study, four chloroplast DNA regions (matK, rbcL, trnH‐psbA and trnL‐F) and one nuclear region (ITS2) were generated for 44 Curcuma species and five species from closely related genera, represented by 96 samples. PCR amplification success rate, intra‐ and inter‐specific genetic distance variation and the correct identification percentage were taken into account to assess candidate barcode regions. PCR and sequence success rate were high in matK (89.7%), rbcL (100%), trnH‐psbA (100%), trnL‐F (95.7%) and ITS2 (82.6%) regions. The results further showed that four candidate chloroplast barcoding regions (matK, rbcL, trnH‐psbA and trnL‐F) yield no barcode gaps, indicating that the genus Curcuma represents a challenging group for DNA barcoding. The ITS2 region presented large interspecific variation and provided the highest correct identification rates (46.7%) based on BLASTClust method among the five regions. However, the ITS2 only provided 7.9% based on NJ tree method. An increase in discriminatory power needs the development of more variable markers.  相似文献   

5.
Apiaceae (Umbelliferae) is a large angiosperm family that includes many medicinally important species. The ability to identify these species and their adulterants is important, yet difficult to do so because of their subtle fruit morphological differences and often lack of diagnostic features in preserved specimens. Moreover, dried roots are often the official medical organs, making visual identification to species almost impossible. DNA barcoding has been proposed as a powerful taxonomic tool for species identification. The Consortium for the Barcode of Life (CBOL) Plant Working Group has recommended the combination of rbcL+matK as the core plant barcode. Recently, the China Plant BOL Group proposed that the nuclear ribosomal DNA internal transcribed spacer (ITS), as well as a subset of this marker (ITS2), be incorporated alongside rbcL+matK into the core barcode for seed plants, particularly angiosperms. In this study, we assess the effectiveness of these four markers plus psbA‐trnH as Apiaceae barcodes. A total of 6032 sequences representing 1957 species in 385 diverse genera were sampled, of which 211 sequences from 50 individuals (representing seven species) were newly obtained. Of these five markers, ITS and ITS2 showed superior results in intra‐ and interspecific divergence and DNA barcoding gap assessments. For the matched data set (173 samples representing 45 species in five genera), the ITS locus had the highest identification efficiency (73.3%), yet ITS2 also performed relatively well with 66.7% identification efficiency. The identification efficiency increased to 82.2% when using an ITS+psbA‐trnH marker combination (ITS2+psbA‐trnH was 80%), which was significantly higher than that of rbcL+matK (40%). For the full sample data set (3052 ITS sequences, 3732 ITS2 sequences, 1011 psbA‐trnH sequences, 567 matK sequences and 566 rbcL sequences), ITS, ITS2, psbA‐trnH, matK and rbcL had 70.0%, 64.3%, 49.5%, 38.6% and 32.1% discrimination abilities, respectively. These results confirm that ITS or its subset ITS2 be incorporated into the core barcode for Apiaceae and that the combination of ITS/ITS2+psbA‐trnH has much potential value as a powerful, standard DNA barcode for Apiaceae identification.  相似文献   

6.
We evaluated nine plastid(matK, rbcL, rpoC1, rpoB,rpl36-rps8, ndhJ, trnL-F, trnH-psbA, accD) and two nuclear(ITS and ITS2) barcode loci in family Zingiberaceae by analyzing 60 accessions of 20 species belonging to seven genera from India.Bidirectional sequences were recovered for every plastid locus by direct sequencing of polymerase chain reaction(PCR)amplicons in all the accessions tested. However, only 35(58%)and 40 accessions(66%) yielded ITS and ITS2 sequences,respectively, by direct sequencing. In different bioinformatics analyses, matK and rbcL consistently resolved 15 species(75%)into monophyletic groups and five species into two paraphyletic groups. The 173 ITS sequences, including 138 cloned sequences from 23 accessions, discriminated only 12 species(60%), and the remaining species were entered into three paraphyletic groups. Phylogenetic and genealogic analyses of plastid and ITS sequences imply the possible occurrence of natural hybridizations in the evolutionary past in giving rise to species paraphyly and intragenomic ITS heterogeneity in the species tested. The results support using matK and rbcL loci for barcoding Zingiberaceae members and highlight the poor utility of ITS and the highly regarded ITS2 in barcoding this family, and also caution against proposing ITS loci for barcoding taxa based on limited sampling.  相似文献   

7.
DNA barcoding is a technique to identify species by using standardized DNA sequences. In this study, a total of 105 samples, representing 30 Parnassia species, were collected to test the effectiveness of four proposed DNA barcodes (rbcL, matK, trnH-psbA and ITS) for species identification. Our results demonstrated that all four candidate DNA markers have a maximum level of primer universality and sequencing success. As a single DNA marker, the ITS region provided the highest species resolution with 86.7%, followed by trnH-psbA with 73.3%. The combination of the core barcode regions, matK+rbcL, gave the lowest species identification success (63.3%) among any combination of multiple markers and was found unsuitable as DNA barcode for Parnassia. The combination of ITS+trnH-psbA achieved the highest species discrimination with 90.0% resolution (27 of 30 sampled species), equal to the four-marker combination and higher than any two or three marker combination including rbcL or matK. Therefore, matK and rbcL should not be used as DNA barcodes for the species identification of Parnassia. Based on the overall performance, the combination of ITS+trnH-psbA is proposed as the most suitable DNA barcode for identifying Parnassia species. DNA barcoding is a useful technique and provides a reliable and effective mean for the discrimination of Parnassia species, and in combination with morphology-based taxonomy, will be a robust approach for tackling taxonomically complex groups. In the light of our findings, we found among the three species not identified a possible cryptic speciation event in Parnassia.  相似文献   

8.
Isatis indigotica Fort. (Cruciferae) is a biennial medicinal plant. In order to protect the decreasing natural genetic resources of I. indigotica, three candidate DNA barcodes (ITS2, trnL-F and rbcL) were employed to establish an accurate and effective identification system for I. indigotica. The results demonstrated that all three candidate DNA barcodes have performed very well in I. indigotica. The interspecific genetic distances were obviously greater than the intraspecific distance among I. indigotica as indicated by ITS2, trnL-F and rbcL. Sequence alignment analysis of I. indigotica genotypes revealed that four SNPs (54, 108, 146 and 181 bp) located in ITS2, three (2, 30, 709 bp) in trnL-F and one (531 bp) in rbcL, respectively. UPGMA phylogenetic tree constructed from trnL-F and rbcL could allote I. indigotica to the correct corresponding genus, whereas rbcL could not distinguish I. indigotica from its adulterants. Meanwhile, UPGMA tree of ITS2 could accurately identify I. indigotica from its adulterants according to the corresponding species. Consequently, it can be concluded that ITS2 is a more suitable and accurate DNA barcode for identifying I. Indigotica and its adulterants than trnL-F and rbcL.  相似文献   

9.
DNA条形码技术是利用基因组中一段短的标准序列进行物种的鉴定并探索其亲缘进化关系。本研究对采自海南不同地区降香黄檀五个居群24份样品的psbA-trnH,rbcL,核ITS及ITS2序列进行PCR扩增和测序,比较各序列扩增和测序效率。种间和种内变异,采用BLAST1和邻接 (NJ) 法构建系统聚类树方法评价不同序列的鉴定能力。结果表明ITS2在所研究的材料中具有最高的扩增和测序效率,而ITS扩增效率较低。ITS2完整序列在区分黄檀属不同种间差异具有较大优势。因此可利用ITS2从分子水平区分降香黄檀与其他混伪种。  相似文献   

10.
Identifying the ichthyoplankton of a coral reef using DNA barcodes   总被引:1,自引:0,他引:1  
Marine fishes exhibit spectacular phenotypic changes during their ontogeny, and the identification of their early stages is challenging due to the paucity of diagnostic morphological characters at the species level. Meanwhile, the importance of early life stages in dispersal and connectivity has recently experienced an increasing interest in conservation programmes for coral reef fishes. This study aims at assessing the effectiveness of DNA barcoding for the automated identification of coral reef fish larvae through large‐scale ecosystemic sampling. Fish larvae were mainly collected using bongo nets and light traps around Moorea between September 2008 and August 2010 in 10 sites distributed in open waters. Fish larvae ranged from 2 to 100 mm of total length, with the most abundant individuals being <5 mm. Among the 505 individuals DNA barcoded, 373 larvae (i.e. 75%) were identified to the species level. A total of 106 species were detected, among which 11 corresponded to pelagic and bathypelagic species, while 95 corresponded to species observed at the adult stage on neighbouring reefs. This study highlights the benefits and pitfalls of using standardized molecular systems for species identification and illustrates the new possibilities enabled by DNA barcoding for future work on coral reef fish larval ecology.  相似文献   

11.
Herbal medicinal materials have been used worldwide for centuries to maintain health and to treat disease. However, adulteration of herbal medicines remains a major concern of users and industry for reasons of safety and efficacy. Identification of herbal medicinal materials by DNA technology has been widely applied,started from the mid-1990s. In recent years, DNA barcoding of global plant species using four standard barcodes (rbcL, matK, trnH-psbA and ITS) has been a major focus in the fields of biodiversity and conservation. These DNA barcodes can also be used as reliable tools to facilitate the identification of herbal medicinal materials for the safe use of herbs, quality control, and forensic investigation. Many studies have applied these DNA barcodes for the identification of herbal medicinal species and their adulterants. The present article reviews efforts in the identification of herbal medicinal materials using the standard DNA barcodes and other DNA sequence-based markers.  相似文献   

12.
13.
Species of Podophyllum, Dysosma, Sinopodophyllum, and Diphylleia, genera from Podophylloideae of Berberidaceae, have long been used in traditional herbal medicine in East Asia and/or North America. Accurate identification of the species of these four genera is crucial to their medicinal uses. In this study, we tested the utility of nine barcodes (matK, rbcL, atpH-atpI, rpl32-trnLUAG, rps18-clpp, trnL-trnF, trnL-ndhJ, trnS-trnfM, and internal transcribed spacer (ITS)) to discriminate different species of Podophylloideae. Thirty-six individuals representing 12 species of Podophylloideae were collected from different locations in China, Japan, and North America. We assessed the feasibility of amplification and sequencing of all markers, examined the levels of the barcoding gap based on DNA sequence divergence between ranges of intra- and interspecific variation using pairwise distances, and further evaluated successful identifications using each barcode by similarity-based and tree-based methods. Results showed that nine barcodes, except rps18-clpp, have a high level of primer universality and sequencing success. As a single barcode, ITS has the most variable sites, greater intra- and interspecific divergences, and the highest species discrimination rate (83%), followed by matKwhich has moderate variation and also high species discrimination rates. However, these species can also be discriminated by ITS alone, except Dysosma versipellis (Hance) M. Cheng ex T. S. Ying and D. pleiantha (Hance) Woodson. The combination of ITS + matK did not improve species resolution over ITS alone. Thus, we propose that ITS may be used as a sole region for identification of most species in Podophylloideae. The failure of ITS to distinguish D. versipellis and D. pleiantha is likely attributed to incomplete lineage sorting due to recent divergence of the two species.  相似文献   

14.
Acacia species are very important tree species in tropical and subtropical countries of the World for their economic and medicinal benefits. Precise identification of Acacia is very important to distinguish the invasive species from rare species however, it is difficult to differentiate Acacia species based on morphological charcters. In addition, precise identification is also important for wood charcterization in the forest industry as these species are declining due to illegal logging and deforestation. To overcome thsese limitations of morphological identification, DNA barcoding is being used as an efficient and quick approach for precise identification of tree species. In this study, we selected two chloroplast and plastid base DNA markers (rbcL and matK) for the identification of five selected tree species of Acacia (A. albida, A. ampliceps, A. catechu, A. coriacea and A. tortilis). The genomic DNA of the selected Acacia species was extracted, amplified through PCR using specific primers and subsequently sequenced through Sanger sequencing. In matK DNA marker the average AT nucleotide contents were higher (59.46%) and GC contents were lower (40.44%) as compared to the AT (55.40%) and GC content (44.54%) in rbcL marker. The means genetic distance K2P between the Acacia species was higher in matK (0.704%) as compared to rbcL (0.230%). All Acacia species could be identified based on unique SNPs profile. Based on SNP data profiles, DNA sequence based scannable QR codes were developed for accurate identification of Acacia species. The phylogenetic analysis based on both markers (rbcL and matK) showed that both A. coriacea and A. tortilis were closely related with each other and clustered in the same group while other two species A. albida and A. catechu were grouped together. The specie A. ampliceps remained ungrouped distantly, compared with other four species. These finding highlights the potential of DNA barcoding for efficient and reproducible identification of Acacia species.  相似文献   

15.
DNA条形码技术是利用标准DNA片段进行准确快速鉴定物种的一种方法,理想的DNA条形码片段应具有高通用性。虽然核糖体DNA内部转录间隔区II(ITS2)被建议作为种子植物有效的DNA条形码,但目前裸子植物还没有通用性高的引物可用。为获得高通用性的ITS2引物,本研究基于裸子植物55个属的5.8S基因的保守序列区设计了3个正向引物,与已有的ITS反向引物组合,组成了7对ITS2引物进行通用性的评价。选取了裸子植物8目、12科和40属的56个种用于本文的研究。引物组合5.8SR/ITS4、5.8SRa/ITS4和5.8SF2/S3R因为在科水平评价中通用性低或者产生的PCR产物有双带,因而排除在全部物种水平上进一步评价。其余4对引物(GYM-5.8SF1/ITS4、GYM-5.8SFl/S3R、GYM-5.8SF2/ITS4和S2F/S3R)在56个物种的PCR检测中,均有100%的扩增率。基于PCR产物的亮度、序列质量和正反向引物覆盖率的综合评价,建议引物GYM_5.8SF2/ITS4作为裸子植物条形码片段ITS2最好的通用引物。  相似文献   

16.
DNA barcodes have proved to be efficient for plants species discrimination and identification using short and standardized genomic regions. The genus Sinosenecio(Asteraceae) is used for traditional medicinal purposes in China. Most species of the genus occur in restricted geographical regions and exhibit a wide range of morphological variations within species, making them difficult to differentiate in the field. Previously, taxonomic revisions have been made based on morphological and cytological evidence. In the present study, barcoding analysis was performed on 107 individuals representing 38 species in this genus to evaluate the performance of four candidate barcoding loci (matK, rbcL, trnH-psbA and internal transcribed spacer [ITS]) and detect geographical patterns. Three different methods based on genetic distance, sequence similarity, and the phylogenetic tree were used. Comparably high species discrimination power was detected in species-level taxonomic process by the ITS dataset alone or combined with other loci, which was suggested to be the most suitable barcode for Sinosenecio. Our results are congruent with previous taxonomic studies concerning the monophyly of the S. oldhamianus group. The present study provides an empirical paradigm for the identification of medicinal plant species and their geographical patterns, ascertaining the congruence between taxonomical studies and barcoding analysis inSinosenecio.  相似文献   

17.
A 658-bp fragment of mitochondrial DNA from the 5' region of the mitochondrial cytochrome c oxidase 1 (COI) gene has been adopted as the standard DNA barcode region for animal life. In this study, we test its effectiveness in the discrimination of over 300 species of aphids from more than 130 genera. Most (96%) species were well differentiated, and sequence variation within species was low, averaging just 0.2%. Despite the complex life cycles and parthenogenetic reproduction of aphids, DNA barcodes are an effective tool for identification.  相似文献   

18.
An effective DNA marker in authentication of the family Araliaceae was screened out of the five DNA regions (matK, rbcL, ITS2, psbA-trnH and ycf5). In the present study, 1113 sequences of 276 species from 23 genera (Araliaceae) were collected from DNA sequencing and GenBank, in which 16 specimens were from 5 provinces in China and Japan. All of the sequences were assessed in the success rates of PCR amplifications, intra- and inter-specific divergence, DNA barcoding gaps and efficiency of identification. Compared with other markers, ITS2 showed superiority in species discrimination with an accurate identification of 85.23% and 97.29% at the species and genus levels, respectively, in plant samples from the 589 sequences derived from Araliaceae. Consequently, as one of the most popular phylogenetic markers, our study indicated that ITS2 was a powerful barcode for Araliaceae identification.  相似文献   

19.
DNA条形码技术的迅速发展极大地推动了植物的鉴定工作,随着鉴定工作的不断进行和新序列的不断发现,利用ITS2序列进行鉴定已成为目前较为广泛使用的鉴定技术。本文根据ITS2序列的特点和性质,介绍ITS2序列鉴定的一般过程,并分析其特点和存在问题,以期为植物鉴定方面的研究提供参考。  相似文献   

20.
Plant taxonomy based on molecular phylogenetic study and/or chemosystematics study has become increasingly important in exploring and utilizing medicinal resources due to the advent of big data era. In this study, we proposed a classifying approach combining DNA and chemical metabolites for the prediction of new medicinal resources. Specifically, we obtained 104 ITS2 barcodes and 847 chemical metabolites from 104 species in Ranunculaceae. Then, phylogenetic tree based on the ITS2 barcode and clustering tree based on structural similarity of metabolites were separately constructed. In addition, we tested the classifying accuracy of the two methods by Baker`s correlation coefficient and the result showed that phylogenetic tree based on the ITS2 barcode was more accurate, giving a higher score of 0.627, whereas clustering tree based on chemical metabolites obtained a lower score of 0.301. Therefore, the natural products of plants might be described using these clades found by ITS2-based methods, and thus new metabolites of plants might be predicted due to the close relationships in a given clade. Using this combined method, 53 plants with structurally similar metabolites were included in 9 plant groups and currently unknown species-metabolite relations were predicted. Finally, 26.92% species in Ranunculaceae were found to contain the predicted metabolites after verification using two alternative KNApSAcKCore and ChEBI databases. As a whole, the combined approach can successfully classify plants and predict specialized natural products based on plant taxa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号