首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The crystal structure of Escherichia coli adenylate kinase (AKe) revealed three main components: a CORE domain, composed of a five-stranded parallel beta-sheet surrounded by alpha-helices, and two peripheral domains involved in covering the ATP in the active site (LID) and binding of the AMP (NMPbind). We initiated a long-term NMR study aiming to characterize the solution structure, binding mechanism and internal dynamics of the various domains. Using single (15N) and double-labeled (13C and 15N) samples and double- and triple-resonance NMR experiments we assigned 97% of the 1H, 13C and 15N backbone resonances, and proton and 13Cbeta resonances for more than 40% of the side chains in the free protein. Analysis of a 15N-labeled enzyme in complex with the bi-substrate analogue [P1,P5-bis(5'-adenosine)-pentaphosphate] (Ap5A) resulted in the assignment of 90% of the backbone 1H and 15N resonances and 42% of the side chain resonances. Based on short-range NOEs and 1H and 13C secondary chemical shifts, we identified the elements of secondary structure and the topology of the beta-strands in the unliganded form. The alpha-helices and the beta-strands of the parallel beta-sheet in solution have the same limits (+/- 1 residue) as those observed in the crystal. The first helix (alpha1) appears to have a frayed N-terminal side. Significant differences relative to the crystal were noticed in the LID domain, which in solution exhibits four antiparallel beta-strands. The secondary structure of the nucleoside-bound form, as deduced from intramolecular NOEs and the 1Halpha chemical shifts, is similar to that of the free enzyme. The largest chemical shift differences allowed us to map the regions of protein-ligand contacts. 1H/2H exchange experiments performed on free and Ap5A-bound enzymes showed a general decrease of the structural flexibility in the complex which is accompanied by a local increased flexibility on the N-side of the parallel beta-sheet.  相似文献   

2.
The secondary structure of porin, maltoporin and OmpA protein reconstituted in lipid membranes is determined by Raman spectroscopy. The three proteins have similar structures consisting of 50 to 60% beta-strand, about 20% beta-turn, and less than 15% alpha-helix. Employing a method for structural prediction that accounts for amphipathic beta-strands, folding models are developed for porin and for the segment of OmpA protein incorporated into the membrane. In the model, the OmpA fragment consists of eight amphipathic membrane-spanning beta-strands that form a beta-barrel. Similarly, porin is folded into ten amphipathic membrane-spanning beta-strands that are located at the surface of the trimer towards the lipids and eight predominantly hydrophilic strands in the interior.  相似文献   

3.
Vinchurkar MS  Chen KH  Yu SS  Kuo SJ  Chiu HC  Chien SH  Chan SI 《Biochemistry》2004,43(42):13283-13292
The particulate methane monooxygenase (pMMO) of Methylococcus capsulatus (Bath) is an integral membrane protein that catalyzes the conversion of methane to methanol. To gain some insight into the structure-reactivity pattern of this protein, we have applied attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy to investigate the secondary structure of the pMMO. The results showed that ca. 60% of the amino acid residues were structured as alpha-helices. About 80% of the peptide residues were estimated to be protected from the amide (1)H/(2)H exchange during a 21 h exposure to (2)H(2)O. In addition, a significant portion of the protein was shown to be sequestered within the bilayer membrane, protected from trypsin proteolysis. The ATR-FTIR difference spectrum between the intact and the proteolyzed pMMO-enriched membranes revealed absorption peaks only in the spectral regions characteristic for unordered and beta-structures. These observations were corroborated by amino acid sequence analysis of the pMMO subunits using the program TransMembrane topology with a Hidden Markov Model: 15 putative transmembrane alpha-helices were predicted. Finally, an attempt was also made to model the three-dimensional folding of the protein subunits from the sequence using the Protein Fold Recognition Server based on the 3D Position Specific Scoring Matrix Method. The C-terminal solvent-exposed sequence (N255-M414) of the pMMO 45 kDa subunit was shown to match the beta-sheet structure of the multidomain cupredoxins. We conclude on the basis of this ATR-FTIR study that pMMO is an alpha-helical bundle with ca. 15 transmembrane alpha-helices embedded in the bilayer membrane, together with a water-exposed domain comprised mostly of beta-sheet structures similar to the cupredoxins.  相似文献   

4.
Aquaporins are integral membrane proteins found in diverse animal and plant tissues that mediate the permeability of plasma membranes to water molecules. Projection maps of two-dimensional crystals of aquaporin-1 (AQP1) reconstituted in lipid membranes suggested the presence of six to eight transmembrane helices in the protein. However, data from other sequence and spectroscopic analyses indicate that this protein may adopt a porin-like beta-barrel fold. In this paper, we use Fourier transform infrared spectroscopy to characterize the secondary structure of highly purified native and proteolyzed AQP1 reconstituted in membrane crystalline arrays and compare it to bacteriorhodopsin. For this analysis the fractional secondary structure contents have been determined by using several different algorithms. In addition, a neural network-based evaluation of the Fourier transform infrared spectra in terms of numbers of secondary structure segments and their interconnections [sij] has been performed. The following conclusions were reached: 1) AQP1 is a highly helical protein (42-48% alpha-helix) with little or no beta-sheet content. 2) The alpha-helices have a transmembrane orientation, but are more tilted (21 degrees or 27 degrees, depending on the considered refractive index) than the bacteriorhodopsin helices. 3) The helices in AQP1 undergo limited hydrogen/deuterium exchange and thus are not readily accessible to solvent. Our data support the AQP1 structural model derived from sequence prediction and epitope insertion experiments: AQP1 is a protein with at least six closely associated alpha-helices that span the lipid membrane.  相似文献   

5.
Type II restriction endonucleases (REases) are deoxyribonucleases that cleave DNA sequences with remarkable specificity. Type II REases are highly divergent in sequence as well as in topology, i.e. the connectivity of secondary structure elements. A widely held assumption is that a structural core of five beta-strands flanked by two alpha-helices is common to these enzymes. We introduce a systematic procedure to enumerate secondary structure elements in an unambiguous and reproducible way, and use it to analyze the currently available X-ray structures of Type II REases. Based on this analysis, we propose an alternative definition of the core, which we term the alphabetaalpha-core. The alphabetaalpha-core includes the most frequently observed secondary structure elements and is not a sandwich, as it consists of a five-strand beta-sheet and two alpha-helices on the same face of the beta-sheet. We use the alphabetaalpha-core connectivity as a basis for grouping the Type II REases into distinct structural classes. In these new structural classes, the connectivity correlates with the angles between the secondary structure elements and with the cleavage patterns of the REases. We show that there exists a substructure of the alphabetaalpha-core, namely a common conserved core, ccc, defined here as one alpha-helix and four beta-strands common to all Type II REase of known structure.  相似文献   

6.
Two-dimensional infrared correlation spectroscopy has been used to investigate the structure of beta-purothionin, a small basic protein found in the endosperm of wheat seeds, in the absence and presence of dimyristoylphosphatidylglycerol (DMPG) membranes. To generate the two-dimensional synchronous and asynchronous maps, hydrogen-deuterium exchange of the protein amide protons has been used as an external perturbation. This method has allowed us to separate the different secondary structure elements and side chain contributions in the regions of amide I, II, and II' bands to determine that the relative order of deuteration of the beta-purothionin protons is as follows: turns, asparagines, and lysines > unordered structure and tyrosine > beta-sheet > alpha-helices and arginines. The results also indicate that the protein undergoes significant changes both in secondary structure and in deuteration in the presence of DMPG bilayers. The helical content of beta-purothionin is higher in the presence of the lipid, and the relative order of deuteration is as follows: lysines and arginines > asparagines and beta-sheet > unordered structure and alpha-helices. The inversion in the deuteration order of the arginine residues is assigned to a change of the degree of association of the protein in the membrane. In addition, the results reveal that the part of the protein containing the tyrosine residue interacts with the lipid membrane. Our results combined with those previously published suggest that the toxicity of beta-purothionin is more associated with the formation of functional channels in cell membranes rather than with a lytic phenomenon.  相似文献   

7.
In contrast to typical membrane proteins that span the lipid bilayer via transmembrane alpha-helices, bacterial outer membrane proteins adopt a beta-barrel architecture composed of antiparallel transmembrane beta-strands. The topology of outer membrane proteins is difficult to predict accurately using computer algorithms, and topology mapping protocols commonly used for alpha-helical membrane proteins do not work for beta-barrel proteins. We present here the topology of the PapC usher, an outer membrane protein required for assembly and secretion of P pili by the chaperone/usher pathway in uropathogenic Escherichia coli. An initial attempt to map PapC topology by insertion of protease cleavage sites was largely unsuccessful due to lack of cleavage at most sites and the requirement to disrupt the outer membrane to identify periplasmic sites. We therefore adapted a site-directed fluorescence labeling technique to permit topology mapping of outer membrane proteins using small molecule probes in intact bacteria. Using this method, we demonstrated that PapC has the potential to encode up to 32 transmembrane beta-strands. Based on experimental evidence, we propose that the usher consists of an N-terminal beta-barrel domain comprised of 26 beta-strands and that a distinct C-terminal domain is not inserted into the membrane but is located instead within the lumen of the N-terminal beta-barrel similar to the plug domains encoded by the outer membrane iron-siderophore uptake proteins.  相似文献   

8.
9.
The beta-propeller architecture observed in protein tertiary structure and classified into the five different types according to number of 'blades' (or beta-sheets) and a sixth type classified according to the secondary structure composition of the blades (the beta beta alpha beta-molecular unit) is characterized by variations (or plasticity) in the structure. These correspond to the number of beta-strands associated with the blade, the number of amino acid residues associated with equivalent beta-strands in the different blades and the presence of alpha-helices and twisted beta-strands. We have generated a beta-sheet associated beta-strand pattern that may be important for protein structure prediction and modeling. Analysis of the beta-propellers extracted primarily from the SCOP database revealed there are 179 beta-propellers. The examination of the secondary structure corresponding to the beta-propeller using PDBsum that was useful to define the beta-sheet associated beta-strand pattern, combined with visualization on graphics display revealed structural plasticity associated with the beta-propeller architecture. Particularly, the type 6- and 7-bladed beta-propellers known to be associated with sequence and functional diversity are more common and associated with relatively more structural variations compared to the other beta-propeller types.  相似文献   

10.
11.
OmpG is an intermediate size, monomeric, outer membrane protein from Escherichia coli, with n beta = 14 beta-strands. It has a large pore that is amenable to modification by protein engineering. The stoichiometry ( N b = 20) and selectivity ( K r = 0.7-1.2) of lipid-protein interaction with OmpG incorporated in dimyristoyl phosphatidylcholine bilayer membranes was determined with various 14-position spin-labeled lipids by using EPR spectroscopy. The limited selectivity for different lipid species is consistent with the disposition of charged residues in the protein. The conformation and orientation (beta-strand tilt and beta-barrel order parameters) of OmpG in disaturated phosphatidylcholines of odd and even chain lengths from C(12:0) to C(17:0) was determined from polarized infrared spectroscopy of the amide I and amide II bands. A discontinuity in the protein orientation (deduced from the beta-barrel order parameters) is observed at the point of hydrophobic matching of the protein with lipid chain length. Compared with smaller (OmpA; n beta = 8) and larger (FhuA; n beta = 22) monomeric E. coli outer membrane proteins, the stoichiometry of motionally restricted lipids increases linearly with the number of beta-strands, the tilt (beta approximately 44 degrees ) of the beta-strands is comparable for the three proteins, and the order parameter of the beta-barrel increases regularly with n beta. These systematic features of the integration of monomeric beta-barrel proteins in lipid membranes could be useful for characterizing outer membrane proteins of unknown structure.  相似文献   

12.
Potato virus A (PVA) particles were bombarded with thermally activated tritium atoms, and the intramolecular distribution of the label in the amino acids of the coat protein was determined to assess their in situ steric accessibility. This method revealed that the N-terminal 15 amino acids of the PVA coat protein and a region comprising amino acids 27 to 50 are the most accessible at the particle surface to labeling with tritium atoms. A model of the spatial arrangement of the PVA coat protein polypeptide chain within the virus particle was derived from the experimental data obtained by tritium bombardment combined with predictions of secondary-structure elements and the principles of packing alpha-helices and beta-structures in proteins. The model predicts three regions of tertiary structure: (i) the surface-exposed N-terminal region, comprising an unstructured N terminus of 8 amino acids and two beta-strands, (ii) a C-terminal region including two alpha-helices, as well as three beta-strands that form a two-layer structure called an abCd unit, and (iii) a central region comprising a bundle of four alpha-helices in a fold similar to that found in tobacco mosaic virus coat protein. This is the first model of the three-dimensional structure of a potyvirus coat protein.  相似文献   

13.
A calcium binding protein from Entamoeba histolytica, (EhCaBP, M(r) approximately 15 kDa) is the causative agent for amoebiosis and has a very low sequence homology (approximately 30%) with other known CaBPs. Almost complete sequence specific resonance assignments for (1)H, (13)C and (15)N spins in EhCaBP were obtained using double and triple resonance NMR experiments. Qualitative interpretation of the nuclear Overhauser enhancements, chemical shift indices and of hydrogen exchange rates threw valuable light upon the secondary structure of this protein. CaBP is found to have two globular domains each of which consists of two pairs of helix-loop-helix motifs. Though this protein has a very small sequence homology with calmodulins, the topological arrangement of the alpha-helices and beta-strands in EhCaBP resemble them.  相似文献   

14.
HI0381 of Haemophilus influenzae was investigated by circular dichroism (CD) and nuclear magnetic resonance (NMR) spectroscopy. HI0381 is a 153-residue peptidoglycan-associated outer membrane lipoprotein, and a part of the larger Tol/Pal network. Here, we report its backbone (1)H, (15)N, and (13)C resonance assignments, and secondary structure predictions. About 97% of all of the (1)HN, (15)N, (13)CO, (13)C alpha, and (13)C beta resonances covering 131 non-proline residues of the 134 residue, mature protein, were clarified by sequential and specific assignments. CSI and TALOS analyses revealed that HI0381 contains five alpha-helices and five beta-strands. To characterize the structure of HI0381, the effects of pH and salt concentration were investigated by CD. In addition, the structural changes occurring when HI0381 was in a membranous environment were investigated by comparing its HSQC spectra and CD data in buffer and in DPC micelles; the results showed that helix alpha 4 and strand beta 4 became aligned with the membrane. We conclude that the conformation of HI0381 is affected by the membrane environment, implying that its folded state is directly related to its function.  相似文献   

15.
The amino acid sequence identity and potential structural similarity between the subunits of bacterial luciferase and the recently determined structure of the luxF molecule are examined. The unique beta/alpha barrel fold found in luxF appears to be conserved in part in the luciferase subunits. From secondary structural predictions of both luciferase subunits, and from structural comparisons between the protein product of the luxF gene, NFP, and glycolate oxidase, we propose that it is feasible for both luciferase subunits to adopt a (beta alpha)8 barrel fold with at least 2 excursions from the (beta alpha)8 topology. Amino acids conserved between NFP and the luciferase subunits cluster together in 3 distinct "pockets" of NFP, which are located at hydrophobic interfaces between the beta-strands and alpha-helices. Several tight turns joining the C-termini of beta-strands and the N-termini of alpha-helices are found as key components of these conserved regions. Helix start and end points are easily demarcated in the luciferase subunit protein sequences; the N-cap residues are the most strongly conserved structural features. A partial model of the luciferase beta subunit from Photobacterium leiognathi has been built based on our crystallographically determined structure of luxF at 1.6 A resolution.  相似文献   

16.
The cDNA of human ribosomal protein S13 was cloned into the expression vector pET-15b. Large-scale production of the recombinant protein was carried out in Escherichia coli cells. Protein accumulated in the form of inclusion bodies was isolated, purified, and refolded by dialysis. The recombinant protein was immunologically reactive, interacting with antiserum against native rpS13. The secondary structure content of the refolded protein was analyzed by means of CD spectroscopy. It was found that 43+/-5% of amino acids sequence of the protein form alpha-helices and 11+/-3% are placed in beta-strands that coincides with theoretical predictions. The beta-strands seem to be located in the extension regions of the rpS13 and do not have homologuous regions in the structure of rpS15 from Thermus thermophilus, which is a prokaryotic homolog of rpS13. The protein structure is stable at a pH range from 4.0 to 8.0 and at low concentrations of urea (up to 3 M).  相似文献   

17.
The structures of proteins are mapped onto the patterns of resonances in NMR spectra of aligned samples. This is most clearly illustrated with Pisa wheels of helical membrane proteins, where the distinctive `wheel-like' patterns of resonances reflect the tilt and rotation of the helices in the bilayers. These patterns contain both structural and assignment information. This Communication describes a simple way of using this information to resolve angular ambiguities inherent in orientational constraints derived from NMR data. This contributes to the use of solid-state NMR of aligned samples for protein structure determination.  相似文献   

18.
The fatty acid transport protein FadL from Escherichia coli is predicted to be rich in beta-structure and span the outer membrane multiple times to form a long-chain fatty acid specific channel. Proteolysis of FadL within whole cells, total membranes, and isolated outer membranes identified two trypsin-sensitive sites, both predicted to be in externally exposed loops of FadL. Amino acid sequence analysis of the proteolytic fragments determined that the first followed R93 and yielded a peptide beginning with 94S-L-K-A-D-N-I-A-P-T-A104 while the second followed R384 and yielded a peptide beginning with 385S-I-S-I-P-D-Q-D-R-F-W395. Proteolysis using trypsin eliminated the bacteriophage T2 binding activity associated with FadL, suggesting the T2 binding domain within FadL requires elements within one of these extracellular loops. A peptide corresponding to the amino-terminal region of FadL (FadL28-160) was purified and shown to inactivate bacteriophage T2 in a concentration-dependent manner, supporting the hypothesis that the amino-proximal extracellular loop of the protein confers T2 binding activity. Using an artificial neural network (NN) topology prediction method in combination with Gibbs motif sampling, a predicted topology of FadL within the outer membrane was developed. According to this model, FadL spans the outer membrane 20 times as antiparallel beta-strands. The 20 antiparallel beta-strands are presumed to form a beta-barrel specific for long-chain fatty acids. On the basis of our previous studies evaluating the function of FadL using site-specific mutagenesis of the fadL gene, proteolysis of FadL within outer membranes, and studies using the FadL28-160 peptide, the predicted extracellular regions between beta-strands 1 and 2 and beta-strands 3 and 4 are expected to contribute to a domain of the protein required for long-chain fatty acid and bacteriophage T2 binding. The first trypsin-sensitive site (R93) lies between predicted beta-strands 3 and 4 while the second (R384) is between beta-strands 17 and 18. The trypsin-resistant region of FadL is predicted to contain 13 antiparallel beta-strands and contribute to the long-chain fatty acid specific channel.  相似文献   

19.
R E Klevit  E B Waygood 《Biochemistry》1986,25(23):7774-7781
Sequence-specific resonance assignments of the 1H NMR spectrum of the 85-residue histidine-containing phosphocarrier protein (HPr) are complete [Klevit, R. E., Drobny, G. P., & Waygood, E. B. (1986) Biochemistry (first paper of three in this issue)]. Additional side-chain assignments have been made with long-range coherence transfer experiments [Klevit, R. E., & Drobny, G. P. (1986) Biochemistry (second paper of three in this issue)]. In this paper, the NMR assignments were used to determine the secondary structure and the tertiary folding of HPr in solution. The secondary structural elements of the protein were determined by visual inspection of the pattern of nearest-neighbor nuclear Overhauser effects (NOEs) and the presence of persistent amide resonances. Escherichia coli HPr consists of four beta-strands, three alpha-helices, four reverse turns, and several regions of extended backbone structure. Long-range NOEs, especially among side-chain protons, were used to determine the tertiary structure of the protein by use of the secondary structural components. The four beta-strands form a single antiparallel beta-pleated sheet. The hydrophobic faces of the alpha-helices interact to form a hydrophobic core and sit above the hydrophobic face of the beta-sheet, forming an open-face beta-sheet sandwich structure. The active site histidine, His-15, is on a short kinked segment of backbone that is accessible to the solvent. The positively charged phosphorylation site (His-15 and Arg-17) interacts with the negatively charged carboxyl terminus of the protein (Glu-85).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Three solution NMR experiments on a uniformly 15N labeled membrane protein in micelles provide sufficient information to describe the structure, topology, and dynamics of its helices, as well as additional information that characterizes the principal features of residues in terminal and inter-helical loop regions. The backbone amide resonances are assigned with an HMQC-NOESY experiment and the backbone dynamics are characterized by a 1H-15N heteronuclear NOE experiment, which clearly distinguishes between the structured helical residues and the more mobile residues in the terminal and interhelical loop regions of the protein. The structure and topology of the helices are described by Dipolar waves and PISA wheels derived from experimental measurements of residual dipolar couplings (RDCs) and residual chemical shift anisotropies (RCSAs). The results show that the membrane-bound form of Pf1 coat protein has a 20-residue trans-membrane hydrophobic helix with an orientation that differs by about 90° from that of an 8-residue amphipathic helix. This combination of three-experiments that yields Dipolar waves and PISA wheels has the potential to contribute to high-throughput structural characterizations of membrane proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号