首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
In a greenhouse experiment, seedling survival of two oak species (Quercus rugosa and Q. laurina) was greatly affected by the excision of cotyledons 1 mo after germination, with a greater impact on Q. laurina. The effect of seed size was also significant for both species, with a positive correlation between seed mass and survival and growth. The effect of cotyledon excision on seedling growth persisted throughout the first growing season in Q. rugosa and was not analyzed for Q. laurina due to the low number of seedlings that survived cotyledon excision. Seed size significantly affected seedling height, diameter, leaf area, and biomass at 6 mo. Seed size and cotyledon retention affected the ability of Q. rugosa to recover from herbivory, as both factors had a significant effect on relative growth rates after aerial biomass removal. The results show that seedlings originating from large seeds can better endure loss of cotyledons and aerial biomass and thus are better equipped to confront stress early in their lives.  相似文献   

2.
For a tree seedling to successfully establish in dense shrubbery, it must maintain function under heterogeneous resource availability. We evaluated leaf-level acclimation in photosynthetic capacity, seedling-level transpiration, and seedling morphology and growth to gain an understanding of the effects of above- and below-ground competition on Quercus robur seedlings. Experimental seedlings were established in a typical southern Swedish shrub community where they received 1 of 4 competition levels (above-ground, below-ground, above- and below-ground, or no competition), and leaf-level responses were examined between two growth flushes. Two years after establishment, first-flush leaves from seedlings receiving above-ground competition showed a maximum rate of photosynthesis (Amax) 40% lower than those of control seedlings. With the development of a second flush above the shrub canopy, Amax of these seedlings increased to levels equivalent to those of seedlings free of light competition. Shrubby competition reduced oak seedling transpiration such that seedlings exposed to above- and below-ground competition showed rates 43% lower than seedlings that were not exposed to competition. The impaired physiological function of oak seedlings growing amid competition ultimately led to a 60-74% reduction in leaf area, 29-36% reduction in basal diameter, and a 38-78% reduction in total biomass accumulation, but root to shoot ratio was not affected. Our findings also indicate that above-ground competition reduced Amax, transpiration and biomass accumulation more so than below-ground competition. Nevertheless, oak seedlings exhibited the ability to develop subsequent growth flushes with leaves that had an Amax acclimated to utilize increased light availability. Our findings highlight the importance of flush-level acclimation under conditions of heterogeneous resource availability, and the capacity of oak seedlings to initiate a positive response to moderate competition in a shrub community.  相似文献   

3.
Co-varying traits in acorns such as seed size and germination schedule are important to influence the behavioural decisions of hoarding rodents. Using acorn pairs from cork oak (Quercus variabilis) (large size and short germination schedules) serrate oak (Q. serrata) (small size and short germination schedule) and qinggang (Cyclobalanopsis glauca) (small size and long germination schedule) with contrasting seed size and germination schedule, we conducted a series of experiments to investigate hoarding preferences in response to seed size and germination schedule by Edward's long-tailed rats (Leopoldamys edwardsi) and South China field mice (Apodemus draco) in semi-natural enclosures. We found that the seed size hypothesis was consistently supported: both rodent species ate more small acorns but hoarded more large ones regardless of germination schedules. However, the germination schedule hypothesis was also supported when similar sized acorns were simultaneously provided, e.g. Q. serrata versus C. glauca or germinating versus non-germinating Q. variabilis. Our results, contrary to the studies from North America, indicate that seed size is more important than germination schedules in determining whether the tested animals eat or hoard a given seed.  相似文献   

4.
Summary We conducted a greenhouse study of the effects of initial seed mass on seedling characteristics in a Panamanian population of Virola surinamensis, a canopy tree in which mean seed mass of different individuals ranges from 1.34 to 4.04g. The system is of particular interest because birds preferentially eat fruits of small-seeded plants, leaving seedlings of large-seeded individuals under conditions of potentially severe sibling competition (Howe and Vande Kerckhove 1980).Effects of differences of mean seed mass between trees are explored using an analysis of variance, while effects of seed-mass variation within crops are demonstrated with a regression analysis. A two-way analysis of variance decisively shows effects of parental source and light condition on seedling height, leaf length, and dry shoot mass (all P<0.0001). A posteriori tests show that differences in seedling characteristics reflect differences in initial seed mass, with especially strong differences apparent in shoot mass. Regression of seedling characteristics on initial seed mass shows that variation of seed size within a crop is sufficient to influence shoot mass at 15 weeks (P<0.0001).Effects of size differences of seeds that land adjacent to each other, either under the parent or in monkey droppings, are documented with growth of pairs of seedlings in pots. Differences in shoot height and mass at 15 weeks are evident when seeds of average size differ by only 0.2 g, and dramatic differences are evident when paired seeds differ by an average of 1.5 g. Seedlings grow more when isolated than when planted with conspecifics.These experimental results offer indirect support for the hypothesis that small-seeded Virola parents secure an advantage in reproduction through differential dispersal, while large-seeded plants produce more competitive seedlings under their own crowns — an advantage most likely to be of importance when frugivores are scarce.  相似文献   

5.
Li Y  Yang H  Xia J  Zhang W  Wan S  Li L 《PloS one》2011,6(12):e28601

Background

The responses of plant seeds and seedlings to changing atmospheric nitrogen (N) deposition and precipitation regimes determine plant population dynamics and community composition under global change.

Methodology/Principal Findings

In a temperate steppe in northern China, seeds of P. tanacetifolia were collected from a field-based experiment with N addition and increased precipitation to measure changes in their traits (production, mass, germination). Seedlings germinated from those seeds were grown in a greenhouse to examine the effects of improved N and water availability in maternal and offspring environments on seedling growth. Maternal N-addition stimulated seed production, but it suppressed seed mass, germination rate and seedling biomass of P. tanacetifolia. Maternal N-addition also enhanced responses of seedlings to N and water addition in the offspring environment. Maternal increased-precipitation stimulated seed production, but it had no effect on seed mass and germination rate. Maternal increased-precipitation enhanced seedling growth when grown under similar conditions, whereas seedling responses to offspring N- and water-addition were suppressed by maternal increased-precipitation. Both offspring N-addition and increased-precipitation stimulated growth of seedlings germinated from seeds collected from the maternal control environment without either N or water addition. Our observations indicate that both maternal and offspring environments can influence seedling growth of P. tanacetifolia with consequent impacts on the future population dynamics of this species in the study area.

Conclusion/Significance

The findings highlight the importance of the maternal effects on seed and seedling production as well as responses of offspring to changing environmental drivers in mechanistic understanding and projecting of plant population dynamics under global change.  相似文献   

6.

Background and Aims

The coexistence of forest tree species has often been linked to differences among species in terms of their response to light availability during the regeneration stage. From this perspective, species coexistence results from growth–growth or mortality–growth trade-offs along spatial light gradients. Experimental evidence of growth–growth trade-offs in natural conditions is sparse due to various confounding factors that potentially hinder the relationship. This study examined growth hierarchies along light gradients between two tree species with contrasting shade tolerance by controlling potential confounding factors such as seedling size, seedling status, seedling density and species composition.

Methods

Natural regenerated shade-tolerant Fagus sylvatica and shade-intermediate Quercus petraea seedlings were used, and growth rankings over a 4-year period were compared in 8- to 10-year-old tree seedlings.

Key results

No rank reversal occurs between the two species along the light gradient, or along the density, mixture or seedling size gradients. The shade-tolerant species was always the more competitive of the two. Pronounced effects of initial size on seedling growth were observed, whereas the effects of light and competition by neighbours were of secondary importance. The paramount effect of size, which results from the asymmetric nature of interseedling competition, gives a strong advantage to tall seedlings over the long term.

Conclusions

This study extends previous efforts to identify potential drivers of rank reversals in young tree mixtures. It does not support the classical assumption that spatial heterogeneity in canopy opening explains the coexistence of the two species studied. It suggests that spatial variation in local size hierarchies among seedlings that may be caused by seedling emergence time or seedling initial performance is the main driver of the dynamics of these mixed stands.  相似文献   

7.
Intraspecific variation in seed size may result from life-history constraints or environmental conditions experienced. This variation in seed size is likely to affect the early stage of invasion as seed size may contribute to the success or failure of population establishment. However, only a few studies have examined seed size variability and its causes and consequences for invaders so far. Using the invasive herb Lupinus polyphyllus, we estimated seed mass variation within and among 39 populations from two different geographic regions in a part of the invaded range. We empirically and experimentally evaluated the effect of seed number and environmental conditions (e.g. geographic region, habitat type, intraspecific competition) on seed mass, emergence and seedling performance. Seed mass varied threefold, being largest among individual plants within populations and smallest among populations. Variation in seed mass was neither related to seed number nor the environmental conditions examined, but led to differences in offspring performance, with emergence and seedling size increasing with seed mass. Larger L. polyphyllus seeds were better establishers than smaller seeds regardless of environmental conditions, indicating that the success of L. polyphyllus invasions is likely to depend positively on seed mass. Our results suggest that some plant species such as the invasive L. polyphyllus may not show an adaptive response in seed mass to resources or environmental conditions, which may partly explain their ability to colonise a range of different habitats.  相似文献   

8.
Most theoretical treatments of the evolutionary ecology of offspring size assume a simple and direct effect of investment per offspring on offspring fitness. In this paper I experimentally determine the relationship between seed mass and several main fitness components of the oak Quercus ilex, to estimate phenotypic selection acting on seed mass during the early life cycle and to discover any potential selective conflicts occurring between different stages from dispersal to establishment. I found a positive effect of acorn size on most fitness components related to seedling establishment. Large size increased germination rate and seedling survival, accelerated germination timing, and enhanced seedling growth. Nevertheless, there was also a direct negative effect of acorn size on survival to predation, because large acorns were highly preferred by the main postdispersal seed predators at the study site, wild boars and wood mice. Because of the low probability of escape from predation, the fitness of large acorns estimated on this component was significantly lower than the fitness of smaller acorns. Therefore, seed size affected fitness in two different ways, yielding opposing and conflicting selective forces. These findings suggest that the general assumption that offspring fitness is a fixed positive function of seed size needs to be reconsidered for some systems. The existence of conflicting selection might explain the occurrence of an optimal seed size in some plant species without invoking a seed number-size trade-off.  相似文献   

9.
子午岭三种生境下辽东栎幼苗定居限制   总被引:1,自引:0,他引:1  
郭华  王孝安  朱志红 《生态学报》2010,30(23):6521-6529
辽东栎(Quercus wutaishanica)是子午岭地区的乡土乔木树种,也是该地区气候顶极群落的建群种,其幼苗的补充更新影响着森林群落的结构及物种组成。在3种典型生境(辽东栎林、人工油松林、灌草丛)中,设置3因素(种子、干扰、遮荫)两水平的野外播种实验(随机区组设计),记录辽东栎幼苗出苗量,并监测幼苗同生群在3种生境中3a间的生长状况,以确定种子及微生境在辽东栎幼苗补充过程中的限制作用。播种实验样方大小30cm×30cm,共计216个样方。结果显示,在辽东栎林及油松林内,增加种子和干扰强度(去除枯落物),能引起出苗量和幼苗补充量的显著增加,且2种处理方式间存在交互作用,表明在郁闭林冠下,辽东栎幼苗的补充受到了种子和微生境的双重限制,枯落物是导致微生境限制的主要因素之一。在灌草丛生境,各种处理方式均不能增加幼苗的补充量,表明辽东栎无法在开阔生境(强光照、干旱)中完成实生幼苗的补充更新。3种生境中的幼苗同生群生存分析表明,辽东栎幼苗在森林群落中存活率显著高于灌草丛群落。根据幼苗生长指标判断,在3种生境中,人工油松林是辽东栎幼苗定居的最佳场所。与实验预期相反,灌木对辽东栎幼苗的补充无显著影响。  相似文献   

10.
Mycorrhizas on nursery and field seedlings of Quercus garryana   总被引:1,自引:0,他引:1  
Oak woodland regeneration and restoration requires that seedlings develop mycorrhizas, yet the need for this mutualistic association is often overlooked. In this study, we asked whether Quercus garryana seedlings in nursery beds acquire mycorrhizas without artificial inoculation or access to a mycorrhizal network of other ectomycorrhizal hosts. We also assessed the relationship between mycorrhizal infection and seedling growth in a nursery. Further, we compared the mycorrhizal assemblage of oak nursery seedlings to that of conifer seedlings in the nursery and to that of oak seedlings in nearby oak woodlands. Seedlings were excavated and the roots washed and examined microscopically. Mycorrhizas were identified by DNA sequences of the internal transcribed spacer region and by morphotype. On oak nursery seedlings, predominant mycorrhizas were species of Laccaria and Tuber with single occurrences of Entoloma and Peziza. In adjacent beds, seedlings of Pseudotsuga menziesii were mycorrhizal with Hysterangium and a different species of Laccaria; seedlings of Pinus monticola were mycorrhizal with Geneabea, Tarzetta, and Thelephora. Height of Q. garryana seedlings correlated with root biomass and mycorrhizal abundance. Total mycorrhizal abundance and abundance of Laccaria mycorrhizas significantly predicted seedling height in the nursery. Native oak seedlings from nearby Q. garryana woodlands were mycorrhizal with 13 fungal symbionts, none of which occurred on the nursery seedlings. These results demonstrate the value of mycorrhizas to the growth of oak seedlings. Although seedlings in nursery beds developed mycorrhizas without intentional inoculation, their mycorrhizas differed from and were less species rich than those on native seedlings.  相似文献   

11.
Conspecific negative density dependence (CNDD) is one of the main mechanisms influencing diversity maintenance in tropical forests. Tropical highland forests, in contrast to most lowland forests, are commonly dominated by a few tree species, and testing the importance of density dependence effects on seedling establishment of dominant trees may provide insights on the mechanisms regulating population dynamics and forest composition of tropical highlands. We tested the effect of CNDD regulation on seedling survival and recruitment of Quercus costaricensis, a monodominant oak in the Talamanca highland forests of Costa Rica. We used Ripley's K and generalized linear mixed models to test the effects of conspecific density, distance to the nearest adult, density of Chusquea bamboo shoots, and herbivory on the annual survival probability of 3579 seedlings between 2014 and 2017. We did not find a significant effect of CNDD on seedling survival. However, bamboo density and herbivory both significantly decreased oak seedling survival. All seedlings had signs of herbivory and predator satiation may explain the lack of density dependent regulation in seedlings of this species. We argue that the lack of intraspecific density regulation at the seedling stage may contribute to explain the dominance of Q. costaricensis in the highland forests of Costa Rica. Local seedling dynamics of this endemic oak are instead regulated by herbivory and the density of Chusquea. Abstract in Spanish is available with online material.  相似文献   

12.
The size and age distributions of Acer saccharum Marsh, seedlings were studied in a mature hardwood forest in southeastern Ontario between 26 June and 26 September 1986. Ninety-one percent of the seedlings surveyed were produced in 1984 which was a mast year for this population of sugar maple. Mean height within quadrats was negatively correlated with the density of two-year-old seedlings in the first half of the sampling period, suggesting that competition may be an important factor affecting seedling size. A significant positive correlation in the second half of the sampling period, however, suggested a temporal shift in the pattern of seedling growth in which the shorter, more suppressed seedlings under the higher densities had increased their relative height in response to earlier competition. The sum of the heights of pairs of nearest neighboring seedlings sampled over the survey period was negatively correlated with the distance between them. The sum of the biomasses of pairs of nearest neighboring seedlings collected in October 1986, however, was positively correlated with the distance between them. Variation in the height of two-year-old seedlings was unaffected by light intensity but was to some extent accounted for by soil variables, and total percent cover of other species. The density of the two-year-old seedlings, however, accounted for the largest percentage of the variation in their mean height. The data suggest that competition between the seedlings derived from mast seeding in 1984 may represent an important component of the process of natural selection affecting this population.  相似文献   

13.
Three hypotheses have been proposed to explain the functional relationship between seed mass and seedling performance: the reserve effect (larger seeds retain a larger proportion of reserves after germinating), the metabolic effect (seedlings from larger seeds have slower relative growth rates), and the seedling-size effect (larger seeds produce larger seedlings). We tested these hypotheses by growing four Mediterranean Quercus species under different light conditions (3, 27, and 100% of available radiation). We found evidence for two of the three hypotheses, but none of the four species complied with all three hypotheses at the same time. The reserve effect was not found in any species, the metabolic effect was found in three species (Q. ilex, Q. pyrenaica, and Q. suber), and the seedling-size effect in all species. Light availability significantly affected the relationships between seed size and seedling traits. For Q. ilex and Q. canariensis, a seedling-size effect was found under all three light conditions, but only under the lowest light (3%) for Q. suber and Q. pyrenaica. In all species, the correlation between seed mass and seedling mass increased with a decrease in light, suggesting that seedlings growing in low light depend more upon their seed reserves. A causal model integrates the three hypotheses, suggesting that larger seeds generally produced larger seedlings.  相似文献   

14.
The phenotypic effect of increased cell size in polyploid angiosperms has been repeatedly described; the ecological consequences of the gigas effect are, however, relatively poorly understood. Here, we investigated the effect of cytotype, seed weight, and inter‐population variation on seedling germination and growth in diploid and autotetraploid Vicia cracca L. in a common garden experiment. Seeds used in this study originated in the contact zone of the cytotypes in Central Europe. Tetraploids had heavier seeds than diploids and greater germination rates irrespective of seed size. Both seed weight and germination rate displayed high inter‐population variation. Further, tetraploids seem to germinate earlier and deposit fewer reserves into the seed bank than diploids. Mean above‐ground biomass and seedling height were similar in the two cytotypes of V. cracca. Nonetheless, the tallest tetraploid seedlings were taller than the tallest diploid seedlings, which may be advantageous under strong competition in dense vegetation. This study thus demonstrates that tetraploids of V. cracca may have superior competitive ability to diploids in certain habitats. It also suggests the necessity of studying multiple populations per cytotype when comparing diploids and polyploids, as the effect of population may be of similar or even higher magnitude than the effect of cytotype. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 57–73.  相似文献   

15.
Fleshy-fruited plants rely on animal frugivores to disperse their seeds, and seed removal by frugivores may leave an imprint on seedling recruitment. However, to what extent plant–frugivore interactions are related to seedling recruitment has rarely been quantified at the community level, especially in species-rich tropical forests. In this study, we tested the effect of different plant traits on fruit removal by frugivores and tested the relative importance of fruit removal, plant traits and abiotic factors for seedling recruitment. We quantified plant–frugivore interactions of 22 fleshy-fruited plant species consumed by 56 diurnal frugivore species, and counted the number of seedlings that emerged along an elevational gradient in the Colombian Andes. We measured a set of plant traits (i.e., crop size; fruit size; seed load and mass; fruit nutritional contents), estimated the density of adult plants and recorded relevant abiotic factors (light, temperature and humidity). We found that fruit removal by frugivores was positively associated with crop size, but negatively associated with fruit length and unrelated to seed load and fruit nutritional content. Seedling densities were positively related to the density of adult plants, seed mass and fruit removal by animals. We found no relationship between abiotic factors and seedling recruitment. Our results indicate that fruit abundance and morphology are important determinants of fruit removal and that fruit removal is positively associated with seedling recruitment accounting for effects of species abundance and plant traits. We conclude that plant traits shape fruit removal and seedling recruitment at the community level, while these two crucial processes of forest regeneration are directly linked by seed dispersal of animals.  相似文献   

16.

Background and Aims

A reduction in offspring fitness resulting from mating between neighbours is interpreted as biparental inbreeding depression. However, little is known about the relationship between the parents'' genetic relatedness and biparental inbreeding depression in their progeny in natural populations. This study assesses the effect of kinship between parents on the fitness of their progeny and the extent of spatial genetic structure in a natural population of Rhododendron brachycarpum.

Methods

Kinship coefficients between 11 858 pairs of plants among a natural population of 154 R. brachycarpum plants were estimated a priori using six microsatellite markers. Plants were genotyped, and pairs were selected from among 60 plants to vary the kinship from full-sib to unrelated. After a hand-pollination experiment among the 60 plants, offspring fitness was measured at the stages of seed maturation (i.e. ripening) under natural conditions, and seed germination and seedling survival under greenhouse conditions. In addition, spatial autocorrelation was used to assess the population''s genetic structure.

Key Results

Offspring fitness decreased significantly with increasing kinship between parents. However, the magnitude and timing of this effect differed among the life-cycle stages. Measures of inbreeding depression were 0·891 at seed maturation, 0·122 (but not significant) at seed germination and 0·506 at seedling survival. The local population spatial structure was significant, and the physical distance between parents mediated the level of inbreeding between them.

Conclusions

The level of inbreeding between individuals determines offspring fitness in R. brachycarpum, especially during seed maturation. Genetic relatedness between parents caused inbreeding depression in their progeny. Therefore, biparental inbreeding contributes little to reproduction and instead acts as a selection force that promotes outcrossing, as offspring of more distant (less related) parents survive better.  相似文献   

17.
The performance of seeds and seedlings in relation to the age of the mother plant was studied in Carex secalina. Seeds of this sedge can differ substantially in size. We planted 100 C. secalina individuals from three populations in a common garden and followed them for four years. We found that mean seed mass varied with plant age, but the pattern of variation was population-specific, with only one population showing significant reduction in seed mass with age. Similarly, germination frequency changed with age differently in different populations. The relationship between the age of the mother plant and the height of emerged seedlings did not differ between populations. In spite of the fact that plant size and mean seed mass exhibited similar patterns of variation within populations, there was no correlation between these two variables at the level of individuals. This means that the size of C. secalina tufts does not determine how big the seeds will be. Moreover, there was no relationship between mean seed mass and the height of seedlings. Presumably, factors intrinsic to each plant determine the production of either small or large seeds in a population-specific way.  相似文献   

18.
Summary The spatial overlap of woody plant root systems and that of annual or perennial grasses promotes competition for soil-derived resources. In this study we examined competition for soil nitrogen between blue oak seedlings and either the annual grassBromus mollis or the perennial grassStipa pulchra under controlled outdoor conditions. Short-term nitrogen competition was quantified by injecting15N at 30 cm depth in a plane horizontal to oak seedling roots and that of their neighbors, and calculating15N uptake rates, pool sizes and15N allocation patterns 24 h after labelling. Simultaneously, integrative nitrogen competition was quantified by examining total nitrogen capture, total nitrogen pools and total nitrogen allocation.Stipa neighbors reduced inorganic soil nitrogen content to a greater extent than didBromus plants. Blue oak seedlings responded to lower soil nitrogen content by allocating lower amounts of nitrogen per unit of biomass producing higher root length densities and reducing the nitrogen content of root tissue. In addition, blue oak seedlings growing with the perennial grass exhibited greater rates of15N uptake, on a root mass basis, compensating for higher soil nitrogen competition inStipa neighborhoods. Our findings suggest that while oak seedlings have lower rates of nitrogen capture than herbaceous neighbors, oak seedlings exhibit significant changes in nitrogen allocation and nitrogen uptake rates which may offset the competitive effect annual or perennial grasses have on soil nitrogen content.  相似文献   

19.
Michaels HJ  Shi XJ  Mitchell RJ 《Oecologia》2008,154(4):651-661
We investigated the relationships among population size, offspring performance, and inbreeding depression (δ) in Lupinus perennis by examining the effect of population size category (large vs. small) on seed production and offspring performance for three pollination treatments (open pollination, hand crossing and hand selfing). In each of our four pairs of populations, one member of the pair was substantially larger than the other. We then grew seeds from this factorial design (2 sizes × 4 pairs × 3 pollination treatments) in the greenhouse to investigate whether population size affects offspring performance in a common environment, and how small size affects purging of the inbreeding load. Multiplicative performance across four early life-stage components (seed production, seedling emergence, seedling survival and seedling growth) of smaller populations was not significantly lower, although biomass of seedlings declined in smaller populations. Self-pollination reduced seed production, seedling emergence and seedling growth, reflecting substantial inbreeding depression (δ = 0.404 ± 0.043). Population size categories did not consistently differ in levels of inbreeding depression, suggesting that purging of genetic load in smaller populations has been limited, and that all populations still harbor inbreeding load. We also found a significant decrease in log performance with increases in the population inbreeding coefficient. These results indicate that even in seemingly large populations, lupines are susceptible to considerable fitness declines through both inbreeding load within populations, and drift load via genetic erosion and fixation of deleterious alleles between populations.  相似文献   

20.
熊韫琦  赵彩云  赵相健 《生态学报》2021,41(24):9621-9629
豚草是一种全球性的恶性入侵杂草,给我国生物多样性及经济发展造成了巨大威胁。为研究豚草种子出苗和幼苗生长的影响因素,采用盆栽实验分析了种子大小(L、M、S)与埋深(2、4 cm和6 cm)或播种密度(2、4粒/盆和8粒/盆)对豚草(Ambrosia artemisiifolia)种子的出苗和幼苗生长的影响。研究结果表明,埋深对豚草种子出苗的影响高于播种密度及种子大小的影响,较浅的埋深有利于豚草种子出苗;出苗率在不同播种密度下均具有较高水平,达到67.9%-100%,这种高出苗率是豚草在不同生境成功定植的原因之一。豚草的幼苗生长受埋深或播种密度的影响大于种子大小的影响,且小种子更易受埋深或播种密度的影响。种子大小显著影响豚草幼苗的株高和基径(P<0.05),总体上较大种子的株高和基径高于小种子,此外更小的种子会将生物量更多的分配给根以促进幼苗的生长。幼苗的株高和基径在较浅的埋深下更高,而豚草幼苗的单株生物量、单株地上和地下生物量随埋深的增加而增加。播种密度的增加会加剧豚草幼苗之间对水分、营养、光照等资源的竞争,导致其单株地上、地下及总生物量显著降低(P<0.05)。研究发现豚草在浅埋深、低密度生境中更容易入侵成功,因此可以通过对土壤进行深翻,采取替代控制,种植竞争能力强的本地植物等手段有效管理和防治豚草。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号