首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
研究了盐氮处理条件下盐地碱蓬种子成熟过程中的离子积累以及种子萌发特性,以理解盐地碱蓬在种子发育及萌发过程中对高盐低氮生境的适应性。结果表明,种子成熟过程中,不同浓度盐氮处理下(0.5和5 mmol/L NO3--N;1和500 mmol/L NaCl),与果皮和果枝相比, 胚中Na+、K+、Cl- 和NO3-离子含量几乎没有变化。所有盐氮处理下Na+ 和Cl-都是果皮和果枝中高于胚中,尤其是在高盐处理下。高盐处理下,K+ 和NO3-含量呈现相反的趋势。高氮时无论高盐还是低盐,果皮中NO3-离子含量高于胚中,而果枝中NO3-离子含量低于胚中。而低氮时果皮及果枝中NO3-离子含量均显著低于胚中。与高氮环境下收获的种子相比,低氮环境下收获的种子萌发率,萌发指数,活力指数都要明显高。上述结果说明,盐地碱蓬种子成熟过程中存在完善的离子调控机制,保护胚免受Na+ 和Cl-等有害离子的伤害并且促进K+ 和NO3-等营养离子的积累。低NO3--N下收获的种子对外界的NO3-含量比较敏感,施以较高浓度的NO3-能够促进种子萌发,提高萌发指数和活力指数,可能与盐地碱蓬长期适应高盐低氮生境有关。  相似文献   

2.
The effect of salinity on germination, seedling emergence, seedling growth and ion accumulation of a euhalophyte Suaeda salsa L. in an intertidal zone and on saline inland were investigated. Brown seeds of S. salsa were heavier and better developed than black seeds in both the intertidal zone and on saline inland. The brown seeds/black seeds ratio for S. salsa in the intertidal zone was much higher than that for S. salsa on saline inland. More germinated seeds grew as seedlings under high salinity for S. salsa from the intertidal zone than S. salsa on saline inland; high salinity decreased the shoot length more severely for S. salsa from saline inland than for S. salsa from the intertidal zone; the seedling growth at a range of NaCl, measured either as shoot length or shoot dry weight, for S. salsa from the intertidal zone was lower than that of S. salsa from saline inland. In conclusion, for S. salsa from the intertidal zone there appears to be selection for slower growth and producing more brown seeds. The establishment of populations of S. salsa in different saline environments depends on the responses of seed germination, seedling emergence and seedling growth to salinity. These characteristics may determine the natural distributions of S. salsa populations in different saline environments.  相似文献   

3.

Background and Aims

Chenopodium album is well-known as a serious weed and is a salt-tolerant species inhabiting semi-arid and light-saline environments in Xinjiang, China. It produces large amounts of heteromorphic (black and brown) seeds. The primary aims of the present study were to compare the germination characteristics of heteromorphic seeds, the diversity of plant growth and seed proliferation pattern of the resulting plants, and the correlation between NaCl stress and variation of seed heteromorphism.

Methods

The phenotypic characters of heteromorphic seeds, e.g. seed morphology, seed mass and total seed protein were determined. The effects of dry storage at room temperature on dormancy behaviour, the germination response of seeds to salinity stress, and the effect of salinity on growth and seed proliferation with plants derived from different seed types were investigated.

Key Results

Black and brown seeds differed in seed morphology, mass, total seed protein, dormancy behaviour and salinity tolerance. Brown seeds were large, non-dormant and more salt tolerant, and could germinate rapidly to a high percentage in a wider range of environments; black seeds were salt-sensitive, and a large proportion of seeds were dormant. These characteristics varied between two populations. There was little difference in growth characteristics and seed output of plants produced from the two seed morphs except when plants were subjected to high salinity stress. Plants that suffered higher salinity stress produced more brown (salt-tolerant) seeds.

Conclusions

The two seed morphs of C. album exhibited distinct diversity in germination characteristics. There was a significant difference in plant development and seed proliferation pattern from the two types of seeds only when the parent plants were treated with high salinity. In addition, seed heteromorphism of C. album varied between the two populations, and such variation may be attributed, at least in part, to the salinity.  相似文献   

4.
Salinity and nitrogen are two important environmental factors that affect the distribution of halophytes in their natural saline habitats. Seeds of the euhalophyte Suaeda salsa L. were harvested from plants that had been treated with 1 or 500 mm NaCl combined with 0.5 or 5 mm NO3?‐N (nitrate) for 115 days in a glasshouse. Germination was evaluated under different concentrations of NaCl and nitrate. Plants exposed to high salinity (500 mm ) and low nitrate (0.5 mm ) tended to produce heavy seeds. Either high salinity (500 mm ) or high nitrate (5 mm ) increased the brown/black seed ratio. The concentrations of Na+, K+, and Cl? were higher in brown than in black seeds, and NO3? concentrations were higher in black than in brown seeds, regardless of NaCl and nitrate treatments during plant culture. Regardless of NaCl and nitrate concentrations during germination, seeds from plants grown with 0.5 mm nitrate generally germinated more rapidly than seeds from plants grown with 5 mm nitrate, and the difference was greater for black than for brown seeds. Exogenous nitrate during germination enhanced the germination of brown seeds less than that of black seeds. Producing more brown seeds and heavy black or brown seeds appears to be an adaptation of S. suaeda to saline environments. Producing more black seeds, which tend to remain dormant, should reduce competition for nitrogen and appears to be an adaptation to nitrogen‐limited environments. In conclusion, nitrate provided exogenously or by mother plants to black seeds may act as a signal molecule that enhances the germination of black S. suaeda seeds.  相似文献   

5.
刘艳  周家超  张晓东  李欣  范海  王宝山  宋杰 《生态学报》2013,33(17):5162-5168
研究了盐地碱蓬二型性种子中离子含量与刚萌发幼苗耐盐性之间的关系,以及盐分对砂培盐地碱蓬二型性种子的幼苗生长、离子含量及光合特性的影响.棕色种子中离子含量显著高于黑色种子.与对照相比,100和400 mmol/L NaCl对棕色种子幼苗伸长没有抑制作用,却显著抑制黑色种子幼苗的伸长.NaCl处理下棕色种子的幼苗地上部分干重和主茎一级分枝数比黑色种子幼苗高,但二型性种子的幼苗叶片中离子含量、叶绿素含量及光合放氧速率却没有明显差异.上述结果说明盐地碱蓬棕色种子较高的离子含量可能是棕色种子刚萌发幼苗耐盐性较强的重要原因.棕色种子幼苗较高的生物量可能与其较多的分枝数有关.二型种子的这些特征可能决定了其在群落建成中所起到的不同作用.  相似文献   

6.

Background and Aims

Halophytic species often show seed dimorphism, where seed morphs produced by a single individual may differ in germination characteristics. Particular morphs are adapted to different windows of opportunity for germination in the seasonally fluctuating and heterogeneous salt-marsh environment. The possibility that plants derived from the two morphs may also differ physiologically has not been investigated previously.

Methods

Experiments were designed to investigate the germination characteristics of black and brown seed morphs of Suaeda splendens, an annual, C4 shrub of non-tidal, saline steppes. The resulting seedlings were transferred to hydroponic culture to investigate their growth and photosynthetic (PSII photochemistry and gas exchange) responses to salinity.

Key Results

Black seeds germinated at low salinity but were particularly sensitive to increasing salt concentrations, and strongly inhibited by light. Brown seeds were unaffected by light, able to germinate at higher salinities and generally germinated more rapidly. Ungerminated black seeds maintained viability for longer than brown ones, particularly at high salinity. Seedlings derived from both seed morphs grew well at high salinity (400 mol m−3 NaCl). However, seedlings derived from brown seeds performed poorly at low salinity, as reflected in relative growth rate, numbers of branches produced, Fv/Fm and net rate of CO2 assimilation.

Conclusions

The seeds most likely to germinate at high salinity in the Mediterranean summer (brown ones) retain a requirement for higher salinity as seedlings that might be of adaptive value. On the other hand, black seeds, which are likely to delay germination until lower salinity prevails, produce seedlings that are less sensitive to salinity. It is not clear why performance at low salinity, later in the life cycle, might have been sacrificed by the brown seeds, to achieve higher fitness at the germination stage under high salinity. Analyses of adaptive syndromes associated with seed dimorphism may need to take account of differences over the entire life cycle, rather than just at the germination stage.Key words: Chlorophyll fluorescence, germination, growth rate, halophyte, photosynthesis, photosystem II, salt tolerance, seed dimorphism, seed viability, Suaeda splendens  相似文献   

7.
Controlled conditions were used to investigate the relationship between ion distribution in developing seeds of two Suaeda salsa populations and seed germination and seedling emergence. Seeds were harvested from S. salsa plants that had been treated with 1 or 400 mM NaCl for 122 (saline inland population) or 135 days (intertidal zone population) in a glasshouse. Germination and seedling emergence were evaluated under salinity. In both populations, more ions were accumulated in the pericarps of plants cultured in 400 mM NaCl than in 1 mM NaCl. Pericarps accumulated much higher ion concentrations in the intertidal zone population than in the saline inland population, while the opposite trend occurred for ion accumulation in the embryos. Seeds of plants from the intertidal zone population germinated more rapidly than those from plants of the saline inland population, regardless of the NaCl concentration during seed germination. However, seedling emergence under high salinity was lower with seeds from the intertidal zone population than with seeds from the saline inland population. In conclusion, S. salsa in the intertidal zone employs superior control of ion compartmentalization in the pericarps to tolerate salinity but requires a minimal level of ions in embryos to ensure seedling establishment in highly saline environments. This indicates that euhalophytes require salts during the mature seed stage to maintain seed viability and to ensure seedling emergence and population establishment.  相似文献   

8.
Soil salinity is an increasing problem, including in regions of the world where chickpea is cultivated. Salt sensitivity of chickpea was evaluated at both the vegetative and reproductive phase. Root-zone salinity treatments of 0, 20, 40 and 60 mM NaCl in aerated nutrient solution were applied to seedlings or to older plants at the time of flower bud initiation. Even the reputedly tolerant cultivar JG11 was sensitive to salinity. Plants exposed to 60 mM NaCl since seedlings, died by 52 d without producing any pods; at 40 mM NaCl plants died by 75 d with few pods formed; and at 20 mM NaCl plants had 78-82% dry mass of controls, with slightly higher flower numbers but 33% less pods. Shoot Cl exceeded shoot Na by 2-5 times in both the vegetative and reproductive phase, and these ions also entered the flowers. Conversion of flowers into pods was sensitive to NaCl. Pollen from salinized plants was viable, but addition of 40 mM NaCl to an in vitro medium severely reduced pollen germination and tube growth. Plants recovered when NaCl was removed at flower bud initiation, adding new vegetative growth and forming flowers, pods and seeds. Our results demonstrate that chickpea is sensitive to salinity at both the vegetative and reproductive phase, with pod formation being particularly sensitive. Thus, future evaluations of salt tolerance in chickpea need to be conducted at both the vegetative and reproductive stages.  相似文献   

9.
Background As important components in saline agriculture, halophytes can help to provide food for a growing world population. In addition to being potential crops in their own right, halophytes are also potential sources of salt-resistance genes that might help plant breeders and molecular biologists increase the salt tolerance of conventional crop plants. One especially promising halophyte is Suaeda salsa, a euhalophytic herb that occurs both on inland saline soils and in the intertidal zone. The species produces dimorphic seeds: black seeds are sensitive to salinity and remain dormant in light under high salt concentrations, while brown seeds can germinate under high salinity (e.g. 600 mm NaCl) regardless of light. Consequently, the species is useful for studying the mechanisms by which dimorphic seeds are adapted to saline environments. S. salsa has succulent leaves and is highly salt tolerant (e.g. its optimal NaCl concentration for growth is 200 mm). A series of S. salsa genes related to salt tolerance have been cloned and their functions tested: these include SsNHX1, SsHKT1, SsAPX, SsCAT1, SsP5CS and SsBADH. The species is economically important because its fresh branches have high value as a vegetable, and its seed oil is edible and rich in unsaturated fatty acids. Because it can remove salts and heavy metals from saline soils, S. salsa can also be used in the restoration of salinized or contaminated saline land.Scope Because of its economic and ecological value in saline agriculture, S. salsa is one of the most important halophytes in China. In this review, the value of S. salsa as a source of food, medicine and forage is discussed. Its uses in the restoration of salinized or contaminated land and as a source of salt-resistance genes are also considered.  相似文献   

10.
Controlled conditions were used to investigate how salinity maintains the salt tolerance of seeds and seedlings of the euhalophyte Suaeda salsa. Seeds were harvested from S. salsa plants that had been treated with 1 or 500 mM NaCl for 113 days in a glasshouse. The results showed that high salinity (500 mM NaCl) increased chlorophyll concentration and oxygen production in embryos of maturing seeds. At 500 mM NaCl, the phosphatidylglycerol and sulfoquinovosyldiacylglycerol levels and the digalactosyldiacylglycerol/monogalactosyldiacylglycerol ratio were higher in young seedlings derived from seeds whose source plants were cultured in 500 mM rather than in 1 mM NaCl. When seeds were incubated with 600 mM NaCl, the conductivity and malondialdehyde concentration in the embryos was greater if the source plants had been cultured in 1 mM rather than in 500 mM NaCl. The opposite pattern was evident for seedling survival and shoot weight. In conclusion, salinity during seed maturation may increase the salt tolerance of seeds and seedlings by increasing the oxygen production in the embryos of the maturing seeds and by changing the lipid composition of membranes in the seedlings.  相似文献   

11.
胡星云  孙志高  张党玉  孙文广  祝贺  任鹏 《生态学报》2017,37(24):8499-8510
2014年4-11月,选择黄河入海口北部滨岸高潮滩的碱蓬湿地为研究对象,基于野外原位氮负荷增强模拟试验(N0,无额外氮输入;N1,低氮输入;N2,中氮输入;N3,高氮输入),获取相应的不同氮基质种子(S0,S1,S2和S3),以研究其发芽率以及幼苗生长状况对不同盐分胁迫和氮浓度交互作用的响应。结果表明,不同氮负荷影响下碱蓬成熟种子中的氮含量整体表现为S2S0S1S3,中氮输入更利于种子中氮养分的累积。盐分和氮交互作用下4种氮基质种子的发芽率总体表现为S2S1S0S3(P0.05),S2在不同盐分胁迫下的发芽率最高,幼苗的生长状况也最好。随着盐分的增加,4种氮基质种子的发芽率及幼苗生长状况均受到一定程度的抑制,但较低的盐分有助于其幼苗长度的增长,且随着氮输入量的增加这种抑制作用可得到一定程度缓解。盐分胁迫、氮浓度和种子类型作为单独因素出现时对碱蓬的发芽率、幼苗长度、鲜重和干重均产生显著影响,除幼苗长度受氮浓度和盐分胁迫交互作用的影响达到显著水平外(P0.05),其他因子交互作用对诸生态指标的影响并不明显。研究发现,不同氮输入处理不仅改变了原生环境碱蓬种子的氮含量,而且也使这些具备不同氮基质的种子对不同盐分胁迫与氮浓度环境具有不同的生态适应对策,中氮输入下的碱蓬种子(S2)无论在萌发率还是在幼苗生长状况上均优于其他氮基质的种子。未来,随着黄河口新生湿地氮养分供给的不断增加,当湿地氮养分达到中氮水平时,将更有利于碱蓬种子的萌发以及幼苗的生长,当氮养分达到更高水平时,碱蓬种子的萌发以及幼苗生长可能会受到一定程度的抑制。  相似文献   

12.

Background and Aims

The source of nitrogen plays an important role in salt tolerance of plants. In this study, the effects of NaCl on net uptake, accumulation and transport of ions were investigated in Nerium oleander with ammonium or nitrate as the nitrogen source in order to analyse differences in uptake and cycling of ions within plants.

Methods

Plants were grown in a greenhouse in hydroponics under different salt treatments (control vs. 100 mm NaCl) with ammonium or nitrate as the nitrogen source, and changes in ion concentration in plants, xylem sap exuded from roots and stems, and phloem sap were determined.

Key Results

Plant weight, leaf area and photosynthetic rate showed a higher salt tolerance of nitrate-fed plants compared with that of ammonium-fed plants. The total amount of Na+ transported in the xylem in roots, accumulated in the shoot and retranslocated in the phloem of ammonium-fed plants under salt treatment was 1·8, 1·9 and 2·7 times more, respectively, than that of nitrate-treated plants. However, the amount of Na+ accumulated in roots in nitrate-fed plants was about 1·5 times higher than that in ammonium-fed plants. Similarly, Cl transport via the xylem to the shoot and its retranslocation via the phloem (Cl cycling) were far greater with ammonium treatment than with nitrate treatment under conditions of salinity. The uptake and accumulation of K+ in shoots decreased more due to salinity in ammonium-fed plants compared with nitrate-fed plants. In contrast, K+ cycling in shoots increased due to salinity, with higher rates in the ammonium-treated plants.

Conclusions

The faster growth of nitrate-fed plants under conditions of salinity was associated with a lower transport and accumulation of Na+ and Cl in the shoot, whereas in ammonium-fed plants accumulation and cycling of Na+ and Cl in shoots probably caused harmful effects and reduced growth of plants.Key words: Mineral cycling, Nerium oleander, nitrogen source, salinity, xylem and phloem transport  相似文献   

13.
The effect of salinity on growth, ion accumulation and the roles of ions in osmotic adjustment of two populations of Suaeda salsa were investigated. Seeds were collected from an intertidal zone or a saline inland zone in the Yellow River Delta in Shandong province, China. Seedlings were exposed to 10, 100, 200, 400 or 600 mM NaCl for 18 days in a greenhouse. NO3 ? concentration in the soil where S. salsa grows in an intertidal zone was much lower than that for the second population, but leaf NO3 ? concentration was the same in the two populations under field conditions. When plants were cultured in a greenhouse under natural light conditions, S. salsa from the intertidal zone showed fewer main stem branches and lower relative shoot growth compared to S. salsa from saline inland. Leaf Cl? concentration of saline inland S. salsa was significantly higher than that of S. salsa from the intertidal zone, while the opposite was true for the concentration of NO3 ? in leaves of plants. For S. salsa from the intertidal zone NO3 ? contributed more than Cl? to the osmotic potential, whereas S. salsa from the saline inland exhibited a reverse relationship under saline conditions, indicating that NO3 ? plays an important osmotic role in S. salsa from the intertidal zone in high salinity. In conclusion, S. salsa from the intertidal zone may employ superior control of ion uptake and content than S. salsa from the saline inland zone. The two populations of Suaeda salsa presented different ability in chloride exclusion and nitrate accumulation. These characteristics may affect the distributions of S. salsa in natural highly saline environments.  相似文献   

14.
Jie Song 《Plant and Soil》2009,324(1-2):231-240
The effects of waterlogging and salinity on seedling emergence, seedling growth and ion accumulation in a euhalophyte Suaeda salsa in an intertidal zone and on saline inland soil were investigated. Seedlings of S. salsa from the intertidal zone emerged more rapidly than those of the inland population under both waterlogged and drained conditions. Waterlogging and salinity had no adverse effects on seedling emergence of S. salsa from the intertidal zone, but markedly inhibited this parameter in the inland population. Waterlogging did not affect the seedling survival, shoot dry mass, and shoot height in high salinity in S. salsa from the intertidal zone, while the opposite trend was shown in the inland population. The root dry mass was higher in S. salsa from the intertidal zone as compared to the inland population, in waterlogged treatments by 1.9, 1.3, and 1.5 times in 1, 200, and 600 mM NaCl, respectively, and in drained treatments by 1.8, 2.3, and 3.0 times in 1, 200, and 600 mM NaCl, respectively. Waterlogging increased Na+ and K+ concentrations in high salinity, but waterlogging had no effect on Cl- concentration in shoots of S. salsa from the intertidal zone. In all NaCl treatments, waterlogging had no effect on concentrations of these ions in shoots of S. salsa from the saline inland site. In a field investigation, the fresh mass of shoots and roots were lower, whereas the root/shoot ratio was 1.5 times higher in S. salsa from the intertidal zone, compared with the inland population. These findings indicate that S. salsa population from the intertidal zone is more waterlogging tolerant than the inland population. S. salsa from the intertidal zone produced relatively more root biomass and this might help anchor plants against tidal action in the intertidal zone. The physiological and morphological characteristics may determine the natural distributions of the two S. salsa populations in their different saline environments.  相似文献   

15.
The dominant seagrass in Florida Bay, Thalassia testudinum Banks ex König, is a stenohaline species with optimum growth around marine salinity (30-40 PSU). Previous studies have examined the responses of mature short shoots of T. testudinum to environmental stresses. Our goal was to assess responses of seedlings to changes in water chemistry in Florida Bay that might occur as part of the Comprehensive Everglades Restoration Plan (CERP). Specifically, we examined seedling survival, growth, photosynthesis, respiration and osmolality in response to hypo- and hyper-salinity conditions, as well as possible synergistic effects of depleted and elevated ammonium concentrations. The study was conducted in mesocosms on T. testudinum seedlings collected during August 2003 near Florida Bay. Hyper- and hypo-saline conditions were detrimental to the fitness of T. testudinum seedlings. Plants at 0 and 70 PSU exhibited 100% mortality and a significant decrease in survival was observed in the 10, 50 and 60 PSU treatments. Increased levels of ammonium further decreased growth in the lower salinity treatments. Seedlings in 30 and 40 PSU had the greatest growth. Quantum yield and relative electron transport rate, measured using PAM fluorometry, showed a decrease in photosynthetic performance on either side of the 30-40 PSU optimum. Tissue osmolality decreased significantly with decreased salinity but tissue remained consistently hyperosmotic to the media across all salinity treatments. Maintaining negative water potential and allocating more energy to osmoregulation may decrease the productivity of this species in salinity-stress conditions. Our results suggest that the salinity-tolerance limits of this seagrass at the seedling stage are not as broad as those reported for mature plants. Increased fresh water inflow, especially if co-occurring with an increase in water-column ammonium, could negatively affect successful recruitment of T. testudinum seedlings in northern regions of Florida Bay.  相似文献   

16.
Aim of the present study was to investigate the effects of two key environmental factors of estuarine ecosystems, salinity and hypoxia, on the physiological attributes in reed plants (Phragmites australis (Cav.) Trin. ex Steudel). Growth, leaf gas exchange, water (and ion) relations, and osmotic adjustment were determined in hydroponically grown plants exposed to hypoxia at varying NaCl-salinity concentrations (0, 50, 100, and 200 mM). Plants grew well under hypoxia treatment with standard nutrient solution without added salt and at NaCl concentrations up to 100 mM. Reed plants were able to produce and allocate phytomass to all their organs even at the highest salt level (200 mM NaCl). In plants subjected to hypoxia at various water potentials no clear relationships were found between growth and photosynthetic parameters except for gs, whereas growth displayed a highly significant correlation with plant–water relations. A and gs of reed plants treated with hypoxia at varying water potential of nutrient solutions were positively correlated and the former variable also had a strong positive relationship with E. Leaf Ψw and Ψπ followed a similar trend and declined significantly as water potential of watering solutions was lowered. Highly significant positive correlations were identified between leaf Ψw and photosynthetic parameters. At all NaCl concentrations, the increase in total inorganic ions resulted from increased Na+ and Cl while K+, Ca2+, and Mg2+ concentrations decreased with increasing osmolality of nutrient solutions. Common reed has an efficient mechanism of Na+ exclusion from the leaves and exhibited a high leaf K+/Na+ selectivity ratio over a wide range of salinities under hypoxia treatment. In Phragmites australis grown in 200 mM NaCl, K+ contributed 17% toΨπ, whereas Na+ and Cl accounted for only 11% and 6%, respectively. At the same NaCl concentration, the estimated contribution of proline to Ψπ was less than 0.2%. Changes in leaf turgor occurred with a combined effect of salinity and hypoxia, suggesting that reed plants could adjust their water status sufficiently.  相似文献   

17.
N. Suárez 《Flora》2011,206(3):267-275
Ipomoea pes-caprae is widespread in pantropical coastal areas along the beach. The aim of this study was to investigate the salinity tolerance level and physiological mechanisms that allow I. pes-caprae to endure abrupt increases in salinity under brief or prolonged exposure to salinity variations. Xylem sap osmolality (Xosm), leaf water relations, gas exchange, and number of produced and dead leaves were measured at short- (1-7 d) and long- (22-46 d) term after a sudden increase in soil salinity of 0, 85, 170, and 255 mM NaCl. In the short-term, Xosm was not affected by salinity, but in the long-term there was a significant increase in plants grown in presence of salt compared with control plants. After salt addition, the plants showed osmotic stress with temporal cell turgor loss. However, the water potential gradient for water uptake was re-established at 4, 7 and 22 d after salt addition, at 85, 170 and 255 mM NaCl, respectively. In the short-term I. pes-caprae was able to tolerate salinities of up to 255 mM NaCl without significant reduction in carbon assimilation or growth. With the duration of stress, leaf ion concentration continued to increase and reached toxic levels at high salinity with a progressive decrease in photosynthetic rate, reduced leaf formation and accelerated senescence. Then, if high levels of soil salts from tidal inundation occur for short periods, the survival of I. pes-caprae is possible, but prolonged exposure to salinity may induce metabolic damage and reduce drastically the plant growth.  相似文献   

18.
Suaeda salsa, a leaf succulent shrub in the family Chenopodiaceae, is one of the most important halophytes in China. Suaeda salsa produces dimorphic seeds (soft brown seeds and hard black seeds). Seeds of S. salsa were collected from the coastal salt flats near Huanghua City, China. Experiments were conducted to determine the salinity-alleviating effect of plant growth regulators, nitric oxide, nitrate, nitrite and light on the germination of dimorphic seeds of S. salsa. Brown seeds had a higher germination rate than black seeds in all experiments. Black seeds were more sensitive to salt in the absence of light in comparison to brown seeds. Brown seeds absorbed water more quickly in comparison to black seeds and were found to be more tolerant of salt stress. Our results showed that 1-aminocyclopropane-1-carboxylate (ACC, the immediate precursor of ethylene), nitrite, GA4 and BA improved seed germination in the presence of salt. However, nitrate, GA1, GA3 failed to alleviate salt stress. ABA inhibited seed germination and seedling growth. Possible mechanisms involved in the alleviation of salt stress in S. salsa seeds and the ecological adaptation of the seeds to the environment are discussed.  相似文献   

19.
Arne Jensen 《Plant Ecology》1985,61(1-3):231-240
Growth rate and salt accumulation were investigated in experiments on Halimione portulacoides with seven sodium chloride treatments, in water culture. The growth of Halimione was found to be stimulated by moderate, 85–170 mM NaCl, levels of salinity, but increasingly depressed by salinities from 410–690 mM NaCl, which is comparable to salinities in salt marshes during the growing season. Using the same technique, growth rate, chloride and nitrogen uptake experiments at four different sodium chloride and nitrate treatment levels were conducted, in order to study the effect of nitrogen and salt. At 8 mM NaCl in the growth medium growth was depressed at 16.2 mM nitrate treatment levels. At 137 mM, 410 mM and 684 mM of NaCl growth was stimulated by increasing levels of nitrogen. The results of these experiments are discussed in relation to the nitrogen and salt conditions prevailing in Halimione portulacoides salt-marsh communities.  相似文献   

20.
The effects of salinity on growth, stomatal conductance, photosynthetic capacity, and carbon isotope discrimination (Δ) of Gossypium hirsutum L. and Phaseolus vulgaris L. were evaluated. Plants were grown at different NaCl concentrations from 10 days old until mature reproductive structures were formed. Plant growth and leaf area development were strongly reduced by salinity, in both cotton and bean. Stomatal conductance also was reduced by salinity. The Δ always declined with increasing external salinity concentration, indicating that stomatal limitation of photosynthesis was increased. In cotton plant dry matter, Δ correlated with the ratio of intercellular to atmospheric CO2 partial pressures (pl/pa) calculated by gas exchange. This correlation was not clear in bean plants, although Δ showed a more pronounced salt induced decline in bean than in cotton. Possible effects of heterogeneity of stomatal aperture and consequent overestimation of pl as determined from gas exchange could explain these results. Significant differences of Δ between leaf and seed material were observed in cotton and bean. This suggests different patterns of carbon allocation between leaves and seeds. The photon yield of O2 evolution determined at rate-limiting photosynthetic photon flux density was insensitive to salinity in both species analyzed. The light- and CO2-saturated rate of CO2 uptake and O2 evolution showed a salt induced decline in both species. Possible explanations of this observation are discussed. O2 hypersensitivity was observed in salt stressed cotton plants. These results clearly demonstrate that the effect of salinity on assimilation rate was mostly due to the reduction of stomatal conductance, and that calculation of pl may be overestimated in salt stressed plants, because of heterogeneity of stomatal aperture over the leaf surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号