首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present study, microsporogenesis, microgametogenesis and pollen wall ontogeny in Campsis radicans (L.) Seem. were studied from sporogenous cell stage to mature pollen using transmission electron microscopy. To observe the ultrastructural changes that occur in sporogenous cells, microspores and pollen through progressive developmental stages, anthers at different stages of development were fixed and embedded in Araldite. Microspore and pollen development in C. radicans follows the basic scheme in angiosperms. Microsporocytes secrete callose wall before meiotic division. Meiocytes undergo meiosis and simultaneous cytokinesis which result in the formation of tetrads mostly with a tetrahedral arrangement. After the development of free and vacuolated microspores, respectively, first mitotic division occurs and two-celled pollen grain is produced. Pollen grains are shed from the anther at two-celled stage. Pollen wall formation in C. radicans starts at tetrad stage by the formation of exine template called primexine. By the accumulation of electron dense material, produced by microspore, in the special places of the primexine, first of all protectum then columellae of exine elements are formed on the reticulate-patterned plasma membrane. After free microspore stage, exine development is completed by the addition of sporopollenin from tapetum. Formation of intine layer of pollen wall starts at the late vacuolated stage of pollen development and continue through the bicellular pollen stage.  相似文献   

2.
Brachypodium distachyon has emerged as a model plant for the improvement of grain crops such as wheat, barley and oats and for understanding basic biological processes to facilitate the development of grasses as superior energy crops. Brachypodium is also the first species of the grass subfamily Pooideae with a sequenced genome. For obtaining a better understanding of the mechanisms controlling male gametophyte development in B. distachyon, here we report the cellular changes during the stages of anther development, with special reference to the development of the anther wall. Brachypodium anthers are tetrasporangiate and follow the typical monocotyledonous-type anther wall formation pattern. Anther differentiation starts with the appearance of archesporial cells, which divide to generate primary parietal and primary sporogenous cells. The primary parietal cells form two secondary parietal layers. Later, the outer secondary parietal layer directly develops into the endothecium and the inner secondary parietal layer forms an outer middle layer and inner tapetum by periclinal division. The anther wall comprises an epidermis, endothecium, middle layer and the secretory-type tapetum. Major documented events of anther development include the degradation of a secretory-type tapetum and middle layer during the course of development and the rapid formation of U-shaped endothecial thickenings in the mature pollen grain stage. The tapetum undergoes degeneration at the tetrad stage and disintegrates completely at the bicellular stage of pollen development. The distribution of insoluble polysaccharides in the anther layers and connective tissue through progressive developmental stages suggests their role in the development of male gametophytes. Until sporogenous cell stage, the amount of insoluble polysaccharides in the anther wall was negligible. However, abundant levels of insoluble polysaccharides were observed during microspore mother cell and tetrad stages and gradually declined during the free microspore and vacuolated microspore stages to undetectable level at the mature stage. Thus, the cellular features in the development of anthers in B. distachyon share similarities with anther and pollen development of other members of Poaceae.  相似文献   

3.
In this study, distribution of polysaccharides, lipids, and proteins in the developing anthers of Campsis radicans (L.) Seem. was examined from sporogenous cell stage to mature pollen, using cytochemical methods. To detect the distribution and dynamic changes of insoluble polysaccharides, lipid bodies, and proteins in the anthers through progressive developmental stages, semi-thin sections of anthers at different developmental stages were stained with periodic-acid-Schiff (PAS) reagent, Sudan black B, and Coomassie brilliant blue, respectively, and examined under light microscope. Ultrastructural observations with TEM were also carried out to determine the storage form of starch in the connective tissue, and storage form of lipids in the tapetal cells. In sporogenous cell stage, anther wall contains numerous insoluble polysaccharides. However, from the sporogenous cell stage to the vacuolated microspore stage, the amount of insoluble polysaccharides in the anther wall decreases gradually. At bicellular pollen stage, tapetum degenerates completely and polysaccharides are not seen in the anther wall. Lipid bodies are observed in the cytoplasm of both middle layer and tapetal cells at tetrad stage, whereas they disappear in the vacuolated microspore stage. Compared with polysaccharides, proteins are limited in the anther wall at early stages of development. During pollen development, polysaccharides, proteins, and lipid bodies are scarce in the cytoplasm of sporogenous cells, but their amount increases at premeiotic stage. From tetrad stage to bicellular pollen stage, microspore cytoplasm contains variable amount of insoluble polysaccharide grains, lipid and protein bodies. At bicellular pollen stage, plentiful amount of starch granules are stored in the cytoplasm of the pollen grains. Proteins and lipid bodies are also present in the cytoplasm.  相似文献   

4.
5.

Background and Aims

The sexual separation in dioecious species has interested biologists for decades; however, the cellular mechanism leading to unisexuality has been poorly understood. In this study, the cellular changes that lead to male sterility in the functionally dioecious cactus, Opuntia stenopetala, are described.

Methods

The spatial and temporal patterns of programmed cell death (PCD) were determined in the anthers of male and female flowers using scanning electron microscopy analysis and histological observations, focusing attention on the transition from bisexual to unisexual development. In addition, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling assays were used as an indicator of DNA fragmentation to corroborate PCD.

Key results

PCD was detected in anthers of both female and male flowers, but their patterns differed in time and space. Functionally male individuals developed viable pollen, and normal development involved PCD on each layer of the anther wall, which occurred progressively from the inner (tapetum) to the outer layer (epidermis). Conversely, functional female individuals aborted anthers by premature and displaced PCD. In anthers of female flowers, the first signs of PCD, such as a nucleus with irregular shape, fragmented and condensed chromatin, high vacuolization and condensed cytoplasm, occurred at the microspore mother cell stage. Later these features were observed simultaneously in all anther wall layers, connective tissue and filament. Neither pollen formation nor anther dehiscence was detected in female flowers of O. stenopetala due to total anther disruption.

Conclusions

Temporal and spatial changes in the patterns of PCD are responsible for male sterility of female flowers in O. stenopetala. Male fertility requires the co-ordination of different events, which, when altered, can lead to male sterility and to functionally unisexual individuals. PCD could be a widespread mechanism in the determination of functionally dioecious species.  相似文献   

6.
Morphological and cytological studies are complementary approaches to understand the molecular mechanisms that regulate floral developmental pathways. To better understand abnormal mutant phenotypes in floral development, we conducted detailed observations and investigations of the morphology, cytology, and cell ultrastructure of wild-type Chinese cabbage (Brassica campestris L. ssp. chinensis Makino and syn. B. rapa ssp. chinensis) flowers when they developed from primordia to anthesis. First, we measured bud and organ length with a stereo microscope and observed the developmental status and characteristics of the floral organs using a scanning electron microscope; then we made thin slices of anthers to observe the developmental stage and characteristics of pollen using an optical microscope; and finally, we made super-thin slices of anthers to observe the ultrastructure of pollen during its development with the aid of a transmission electron microscope. In this study, the floral developmental continuum was divided into 17 stages based on significant changes in the shape of floral primordia, and the pollen developmental continuum was divided into 14 stages based on the developmental characteristics. The results could provide the morphological basis for further research on the molecular mechanisms that regulate development of the floral organs and/or pollen of Chinese cabbage and their allied species.  相似文献   

7.

Background and Aims

Dioecism characterizes many crop species of economic value, including kiwifruit (Actinidia deliciosa). Kiwifruit male sterility occurs at the microspore stage. The cell walls of the microspores and the pollen of the male-sterile and male-fertile flowers, respectively, differ in glucose and galactose levels. In numerous plants, pollen formation involves normal functioning and degeneration timing of the tapetum, with calcium and carbohydrates provided by the tapetum essential for male fertility. The aim of this study was to determine whether the anther wall controls male fertility in kiwifruit, providing calcium and carbohydrates to the microspores.

Methods

The events occurring in the anther wall and microspores of male-fertile and male-sterile anthers were investigated by analyses of light microscopy, epifluorescence, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling (TUNEL assay) and transmission electron microscopy coupled with electron spectroscopy. The possibility that male sterility was related to anther tissue malfunctioning with regard to calcium/glucose/galactose provision to the microspores was also investigated by in vitro anther culture.

Key Results

Both tapetum and the middle layer showed secretory activity and both degenerated by programmed cell death (PCD), but PCD was later in male-sterile than in male-fertile anthers. Calcium accumulated in cell walls of the middle layer and tapetum and in the exine of microspores and pollen, reaching higher levels in anther wall tissues and dead microspores of male-sterile anthers. A specific supply of glucose and calcium induced normal pollen formation in in vitro-cultured anthers of the male-sterile genotype.

Conclusions

The results show that male sterility in kiwifruit is induced by anther wall tissues through prolonged secretory activity caused by a delay in PCD, in the middle layer in particular. In vitro culture results support the sporophytic control of male fertility in kiwifruit and open the way to applications to overcome dioecism and optimize kiwifruit production.  相似文献   

8.
Potassium antimonate was used to locate Ca2+ in fertile and sterile anthers of a photoperiod-sensitive genic male-sterile rice (Oryza sativa L. japonica). During the development of fertile anthers, abundant calcium precipitates accumulated in the anther walls and on the surface of pollen grains and Ubish bodies at the late developmental stage of the microspore, but not in the cytoplasm of pollen grains. Following the accumulation of starch grains in pollen, calcium precipitates on pollen walls diminished and increased in parenchymatous cells of the connective tissue. In sterile anthers, calcium precipitates were abundant in the middle layer and endothecium, but not in the tapetum, as was found in fertile anthers. A special cell wall was observed between the tapetum and middle layer of sterile anthers that appeared to relate to distinctive calcium accumulation patterns and poor pollen wall formation in the loculi. The formation of different patterns of antimonate-induced calcium precipitates in the anthers of photoperiod-sensitive genic male-sterile rice indicates that anomalies in the distribution of calcium accumulation correlate with the failure of pollen development and pollen abortion. Received: 30 May 1997 / Accepted: 5 July 1997  相似文献   

9.
Lucia Roncaglia 《Grana》2013,52(2):81-88
Anther development, microsporogenesis, and microgametogenesis were studied using both light and TEM microscopy in the six accessible subdioecious/cryptically dioecious species of Consolea (Cactaceae). Anther wall development, microsporogenesis, and microgametogenesis are uniform in staminate flowers of all six species, and are typical for Cactaceae. Breakdown of microsporogenesis in male‐sterile anthers occurs early, at the onset of meiosis, and results in anthers bearing no pollen grains. The abortive process follows a common pattern in all investigated species. The tapetum is the first layer to deviate from normal male‐fertile anther development. Tapetal cells in male‐sterile anthers elongate at an early stage and have abundant rER with atypical configurations. Ultimately, the tapetum becomes hypertrophied and non‐functional. Male‐sterility in pistillate flowers appears to be directly related to these anomalies. In addition, other anther layers and tissues are affected, and normal patterns of programmed cell death (PCD) are disrupted. The relationship between these patterns and the pattern of PCD in normal male‐fertile anthers is discussed. We hypothesize a single origin for the cryptically dioecious/subdioecious breeding system of Consolea based on the uniformity of the anther's abortive processes in pistillate flowers.  相似文献   

10.
The developmental defects causing cytoplasmic male sterility in Petunia parodii are described in isonuclear fertile, sterile, and fertility-restored plants using both light- and scanning electron microscopy. The aberrant development of the sporogenous tissue and tapetal layer caused by the cytoplasmic male sterile cytoplasm in both Petunia hybrida and P. parodii nuclear backgrounds is similar in onset and progression. The degeneration of the sporogenous tissue and tapetal layer of sterile anthers is first apparent late in meiosis and results in highly abnormal sterile sporogenous tissue by tetrad stage of fertile anthers. The stomium and endothecium do not show major developmental differences between fertile and sterile anthers, but the inner connective tissue of sterile anthers contained calcium crystals not found at high abundance in fertile anthers. Ovoid bodies containing magnesium and phosphorus were seen only in the vascular bundles of fertile anthers. Material prepared for the scanning electron microscope by freeze drying showed better retention of fragile morphological features, while critical-point drying permitted examination of nonvolatile structures, such as cell walls.  相似文献   

11.
This study aimed to elucidate the anther wall development, pollen wall development, and exine structure of Trochodendron aralioides Siebold and Zuccarini, a tree with primitive vessels but long considered to lack vessel elements in its wood. The anther wall is the basic type: epidermis, endothecium layer, three middle layers, and tapetum. The anther tapetum is glandular and cells are uniseriate. Microspore mother cells undergo meiosis with simultaneous cytokinesis to produce tetrahedral tetrads enclosed within a callose wall. Before development of the protectum, primexine is inserted against the callose, and the plasma membrane is invaginated. Then, the probacula are elongated under the protectum and arise basally from the plasma membrane. The foot layer formation is concomitant with callose wall dissolution. The foot layer is thick, and the endexine is thin. The foot layer and the endexine are both continuous. The intine is initially formed in the vacuolated microspore stage. Hollow Ubisch bodies are observed on the inner surface of the tapetum in free microspore stage. Pollen grains are tricolporate and 2-celled at the time of shedding. The numerous anthers of a single flower are at different development stages in both protandrous and protogynous individuals.  相似文献   

12.
Melastomataceae have porate anthers. However, unlike Solanaceae and many monocots, in which the poricidal dehiscence depends on the presence of a mechanical layer (often the endothecium), most members of Melastomataceae have no evident specialized layer related to the poricidal opening. The goal of this study was to characterize the tissues that form the apical pore of the anther in 10 Miconia species, which may help to understand the nearly unknown mechanism of anther dehiscence in this genus, considered to be one of the largest and most diverse New World genera. Before anthesis, the apical pores of all of the species are closed by a uniseriate epidermis, the cells of which lack a cuticle. In contrast, the epidermis of the remainder of the anther is covered by a thick, ornamented cuticle. Among Myrtales, the Melastomataceae form a clade with Alzateaceae, Crypteroniaceae and Penaeaceae, almost all of which have anthers with endothecium lacking wall thickenings. In these families, the endothecium may or may not be present in the mature anther, with degenerating cells in the latter case. Anther dehiscence does not depend on the endothecium as the mechanical layer, and this process is still not well understood. However, in the Miconia species studied here, the cuticle may prevent tissue dehydration, and the pore opening seems to be due to the passive process of dehydration taking place only in the pore region due to the absence of the cuticle.  相似文献   

13.
WHITE  JULIE 《Annals of botany》1990,65(3):231-239
The development of the microspore mother cell walls in Actinidiadeliciosa (kiwifruit) has been studied using light and electronmicroscopy. The microspore mother cell wall is similar, histochemically,and structurally in anthers from both functionally staminateand functionally pistillate flowers. Deposition, which beginsduring early prophase I, produces an electron-dense multilaminatedwall layer (layer a) and by the end of meiosis I a thick electron-lucentlayer (layer b) to the inside of this multilayered wall. Thereasons for histochemical differences and similarities betweenthese layers are discussed. The original primary wall persistsuntil the late uninucleate microspore stage. Layer (b), whichis probably mainly callose, dissolves at the late tetrad/earlymicrospore stage while layer (a), which probably also containsother polysaccharides, persists and dissolves concurrently withthe primary wall. Actinidia deliciosa, kiwifruit, microspore mother cell wall, callose, histochemistry, light microscopy, electron microscopy, male sterility  相似文献   

14.
In this study, polysaccharide and RNA contents of anthers were investigated on different phases of sporogenesis by using light microscopy techniques from histological and cytological point of view in Leucojum aestivum. Paraffin and semi-thin sections of anthers were stained with toluidine blue and PAS. Anthers were tetrasporangiate. The wall of the anther consists of an epidermis, endothecium, middle layer and glandular tapetum. During one nucleated microspore and mature pollen phase microspores and tapetum cells began to degenerate and they were become very rich of RNA in L. aestivum. And also RNA content was increased in endothecium and middle layer cells except the epidermis cells of anther wall. An increase in RNA content indicates cell activation. Polysaccharides were not seen in young anther wall but they were seen in older ones. They were generally condensed in the cell walls and especially in the cell walls of vascular bundles of connective tissue. This could be thought that insoluble polysaccharides were used in metabolic events in early developmental stages. Appearance of polysaccharides in late phases was indicated that polysaccharides were used in the formation of cuticule and differentiation of endothelium cell walls.  相似文献   

15.
P. E. Wittich  P. Graven 《Protoplasma》1995,187(1-4):72-78
Summary In this study we document the development of the phytomelan layer in the outer epidermis of the outer integument ofGasteria verrucosa. Phytomelan has been described as a black, melanin-like substance which is chemically very inert. Using histochemical techniques we show that phytomelan development in the cell wall can be divided into three stages. The first stage is deposition of a callosic layer against the tangential wall, with simultaneous thickening of the adjacent parts of the radial walls. The second stage is the conversion of this callosic wall, which we call a tertiary wall, into a noncallosic inner and outer layer. The inner layer stains predominantly for cellulose and a little for pectin. The outer layer is of unknown composition, since it did not react with the stains that were used. In the third stage the outer tertiary layer becomes black, the phytomelan. The callosic wall deposited in the first developmental stage seems to function as a carbohydrate source and as a mould for the tertiary cell wall. The conversion of the callose in the second stage might be the result of penetration of substances which react with callose. All the components for phytomelan seem to be present in the outer layer before the conversion. Phenolics might be involved in this second conversion.Abbreviations DAP days after pollination - PAS periodic acid Schiff's reagent - PEG polyethylene glycol  相似文献   

16.
17.
18.
Sexual reproduction in plants requires development of haploid gametophytes from somatic tissues. Pollen is the male gametophyte and develops within the stamen; defects in the somatic tissues of the stamen and in the male gametophyte itself can result in male sterility. The maize fuzzy tassel (fzt) mutant has a mutation in dicer-like1 (dcl1), which encodes a key enzyme required for microRNA (miRNA) biogenesis. Many miRNAs are reduced in fzt, and fzt mutants exhibit a broad range of developmental defects, including male sterility. To gain further insight into the roles of miRNAs in maize stamen development, we conducted a detailed analysis of the male sterility defects in fzt mutants. Early development was normal in fzt mutant anthers, however fzt anthers arrested in late stages of anther maturation and did not dehisce. A minority of locules in fzt anthers also exhibited anther wall defects. At maturity, very little pollen in fzt anthers was viable or able to germinate. Normal pollen is tricellular at maturity; pollen from fzt anthers included a mixture of unicellular, bicellular, and tricellular pollen. Pollen from normal anthers is loaded with starch before dehiscence, however pollen from fzt anthers failed to accumulate starch. Our results indicate an absolute requirement for miRNAs in the final stages of anther and pollen maturation in maize. Anther wall defects also suggest that miRNAs have key roles earlier in anther development. We discuss candidate miRNAs and pathways that might underlie fzt anther defects, and also note that male sterility in fzt resembles water deficit-induced male sterility, highlighting a possible link between development and stress responses in plants.  相似文献   

19.
The floral anatomy of Cephalostemon, Monotrema, Rapatea, Spathanthus, and Stegolepis was studied for taxonomic purposes. All species studied share colleters between the floral parts; sepals, petals, anthers, and style covered by an ornamented cuticle; short epidermal cells with sinuous walls on the abaxial surface of the petals; tetrasporangiate anthers with phenolic idioblasts in the epidermis; endothecium with spiral thickenings; incompletely septate ovary; and anatropous, bitegmic ovules. The floral anatomy is useful not only for characterizing the family, but also for delimiting the subfamilies and genera. Sepals with silica bodies in the epidermal cells; mature anther wall composed of epidermis, endothecium, and middle layer; absence of phenolic idioblasts in the sepals, filaments, and ovary; and stylar epidermal cells with thickened external periclinal wall support Rapateoideae. Cephalostemon and Rapatea show a great number of similarities, corroborating their close relationship indicated in the phylogenetic analyses of the family. Monotrema shares few characters with the genera of Rapateoideae, corroborating its placement in Monotremoideae. Stegolepis shows several distinctive characters, probably related to the greater diversity found in this genus.  相似文献   

20.
The germination of sporangia inCoelomomyces psorophorae vartasmaniensis (C. p. tas.) is uncoordinated and thus there is a mixture of developmental stages in any given population. Continuous urografin gradients separated out the critical stages of germinating sporangia giving four bands, each band representing a consecutive stage of germination. These stages were investigated for changes in the sporangial wall using Transmission Electron Microscopy (TEM). The sporangia have a typical two-layered wall, an electron dense outer layer which can be divided into three distinct sub-layers D1, D2, and D3 and an inner electron transparent secondary wall. Stage 3 sporangia have an intact D1 layer on their outer wall. In the subsequent stages (4 & 4b) there is a progressive breakdown of this layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号