首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
疏齿千里光(Senecio subdentatus)是分布在新疆北部古尔班通古特沙漠中的一种具异形瘦果的菊科一年生短命植物。将野外观测与室内实验相结合, 对该物种异形瘦果的形态、扩散和萌发特性, 以及异形瘦果产量与植株大小的关系进行了研究, 并对其生态学意义进行了探讨。结果表明: 疏齿千里光果序中的外围果和中央果均为柱形, 但前者为淡黄色, 后者为褐色, 且二者在大小、冠毛长度及果皮微形态等方面均存在明显差异。两种瘦果均以单个果实为扩散单元, 且在静止空气中的降落速度和在1 m·s-1与2 m·s-1风速下的扩散距离无显著差异, 说明虽然果实大小和冠毛长度对瘦果扩散具有不同的影响, 但对其整体扩散能力无明显影响。在各温变周期(5/2、15/2、20/10、25/15和30/15 ℃)处理中, 淡黄色外围果的萌发率均高于褐色中央果的, 且不同温度间两种瘦果的萌发率均存在显著差异, 但光照条件对其无显著影响。果序中的中央瘦果数明显多于外围果的, 且植株中外围果所占比例与植株大小间呈显著负相关关系, 而中央果所占比例与植株大小间呈显著正相关关系。这些特点说明, 该物种的小植株倾向于产生较多较易萌发的外围果, 大植株倾向于产生较多不易萌发的中央果。在古尔班通古特沙漠不可预测的极端环境中, 疏齿千里光可通过异形瘦果间的萌发差异及调节其不同大小植株中异形瘦果的比例, 来减少同胞后代之间的竞争, 增加其对不同微环境条件的生态适应性。  相似文献   

2.
The interrelationships among achene weight, allocation to embryo and pericarp, and germination time were determined for 500 stratified achenes of tetraploid Aster pilosus Willd. var. pilosus. Only 52.6% of the achenes germinated. Germinated achenes were significantly heavier than ungerminated achenes. Germination time was independent of achene weight and embryo weight, but varied inversely with pericarp weight. Variable achene weight is evolutionarily advantageous. Heavy achenes are at an advantage in that their proportionately larger embryos and thinner pericarps facilitate germination, promoting competitive establishment of seedlings. Lighter achenes are also at an advantage through increased dispersibility, and their relatively thick pericarp provides a persistent seed bank. Evolutionary pressures presumably maintain the variability in achene weight of var. pilosus. These results are discussed in the context of the early midsuccessional ecology of var. pilosus.  相似文献   

3.
We summarize research on variation in achene morphology of Heterosperma pinnatum. Each flowering head has a broad range of achene morphologies. There is no between-year seed bank. There are no ecologically relevant differences in achene size, seedling size, or seedling growth rates of the different morphs. Achenes located centrally in the heads lose dormancy earlier during the period between autumn achene production and the onset (May-July) of the rainy season. This results in relatively more early emergence of central achenes. Awned central achenes also have greater adhesive dispersibility. Emergence, survival, and fecundity were measured for achenes sown into natural populations in central Mexico. When harsh conditions result in few seeds surviving to reproduce, the advantage tends to go to the more “conservative” peripheral achenes. Greenhouse experiments show a strong genetic component to the determination of achene proportions within and among populations and a variety of genetic correlations. Populations with a high proportion of awned achenes tend to be found in vegetation types where they are likely to be ephemeral. A high proportion of central achenes tend to be found in sites with little pre-rainy season precipitation. These patterns are interpreted in terms of selection for dispersal and the within-year timing of germination.  相似文献   

4.
Yang X  Zhang W  Dong M  Boubriak I  Huang Z 《PloS one》2011,6(9):e24346
Despite proposed ecological importance of mucilage in seed dispersal, germination and seedling establishment, little is known about the role of mucilage in seed pre-germination processes. Here we investigated the role of mucilage in assisting achene cells to repair DNA damage during dew deposition in the desert. Artemisia sphaerocephala achenes were first treated γ-irradiation to induce DNA damage, and then they were repaired in situ in the desert dew. Dew deposition duration can be as long as 421 min in early mornings. Intact achenes absorbed more water than demucilaged achenes during dew deposition and also carried water for longer time following sunrise. After 4-d dew treatment, DNA damage of irradiated intact and demucilaged achenes was reduced to 24.38% and 46.84%, respectively. The irradiated intact achenes exhibited much higher DNA repair ratio than irradiated demucilaged achenes. Irradiated intact achenes showed an improved germination and decreased nonviable achenes after dew treatment, and significant differences in viability between the two types of achenes were detected after 1020 min of dew treatment. Achene mucilage presumably plays an ecologically important role in the life cycle of A. sphaerocephala by aiding DNA repair of achene cells in genomic-stressful habitats.  相似文献   

5.
F. X. Pic  T. Koubek 《Acta Oecologica》2003,24(5-6):289-294
Heterocarpic plants are characterized by the production of distinct types of fruits that usually differ in their ecological behavior. In the Asteraceae, differences are mainly found between peripheral non-dispersal and central dispersal achenes (single-seeded fruits). Inbreeding depression is considered as an evolutionary force as it may reduce several fitness traits, and in the case of heterocarpic plants, it could influence fitness traits (e.g., seed set, germination rate, growth rate) of each fruit morph, which may have important ecological and evolutionary consequences. In particular, differential effects on fitness traits and dispersal of selfed and outcrossed progeny can strongly determine the viability of extant populations and the potential to colonize new habitats. We conducted a hand-pollination experiment in greenhouse conditions to test whether inbreeding affects the fitness of achene morphs in the heterocarpic herb Leontodon autumnalis (Asteraceae). Results show that achene morphs significantly differ in their ecological behavior, peripheral achenes germinating more and faster than central achenes. The significant interaction between pollination treatment and achene morph for germination probability might indicate a link between dormancy and mating system in L. autumnalis: germination was higher for outcrossed achenes in central achenes whereas the opposite pattern was exhibited by peripheral achenes. Selfing dramatically reduced seed set, probably as a consequence of strong self-incompatibility mechanisms rather than inbreeding effects. Inbreeding depression significantly affected late life-cycle traits, such as growth rate and biomass at flowering. Overall, results suggest that inbreeding depression seems to be an important selective force maintaining outcrossing in L. autumnalis.  相似文献   

6.
BACKGROUND AND AIMS: Ambrosia artemisiifolia is a ruderal weed introduced from North America to Europe. It produces large amount of achenes which are highly heterogeneous in size. Due to the preponderant role of propagules in invasive plant processes, the achene mass variability related to germination, dispersal strategy and life history traits of offspring were investigated within this species. METHODS: The variability in achene mass was quantified among six populations sampled in different habitats. The effects of achene mass variation on germination were studied. The percentages of floating and non-floating achenes were evaluated in the studied populations. The consequences of floatability on the growth and traits of the offspring were studied. KEY RESULTS: Mean achene mass ranged from 1.72 to 3.60 mg, depending on the populations, and was highly variable. Variation among achenes within plants accounted for 63.9 % of the variance, whereas variances among plants within each population (22.2 %) and among populations (13.9 %) were lower. Achene masses were also positively correlated to the total germination percentage for four populations out of six. Two kinds of achenes were distinguished: floating and non-floating. The majority of floating achenes (90 %) sank 24 h after water immersion. Whatever the population, floating achenes were lighter, more dormant and germinated faster than non-floating achenes. Plants which issued from floating achenes had better growth than those from non-floating achenes. CONCLUSIONS: The capacity of A. artemisiifolia to be invasive in Europe appears to be high, possibly due to its huge plasticity in seed mass which may help it to cope with a wide range of conditions and to establish in disturbed habitats. Furthermore, the recent invasion of southern France by A. artemisiifolia could be partially explained by water dispersal of achenes through rivers and has pinpointed its colonization potential along French rivers.  相似文献   

7.
白沙蒿种子萌发特性的研究 I. 粘液瘦果的结构和功能   总被引:19,自引:0,他引:19       下载免费PDF全文
白沙蒿(Artemisia sphaerocephala Krasch.)是中国西北部沙漠的流动及固定沙丘上广泛分布的优势种灌木。瘦果小而轻,借助显微镜和扫描电镜对瘦果的形态结构进行了观察,其种子的种皮与果皮愈合,果皮外层为很厚的粘液层,其粘液层在遇湿后迅速吸水膨胀,其重量增至原来的589倍。在自然生境中,粘液物质将沙粒粘附于瘦果的周围,使瘦果的重量发生变化。瘦果能长时间在水上漂浮,粘液物质有助于种子的萌发和苗的发育。白沙蒿产生三种不同颜色的瘦果,其种子具有不同的萌发速率但最终达到相同的萌发率。研究表明瘦果的粘液物质对白沙蒿种子的传播与萌发具有重要的生态意义。  相似文献   

8.
The differential germination responses of ray and disc achenes of Hemizonia increscens (Asteraceae) were compared in field and laboratory investigations in order to gain insight into the ecological and evolutionary significance of heterocarpy. In the field, 200 ray and 200 disc achenes were placed in native, sterilized soil in a series of cleared, randomized, replicated plots. In a nearby plot a similar number of achenes were placed in plastic petri dishes in which high moisture conditions were maintained. Disc achene germination occurred under relatively minimal moisture conditions (<1 cm rainfall for 19 days) and relatively mild temperature regimes (21–7 C). Disc achene germination began three days after planting in the field plot and four days after they were put into the field petri dishes. In contrast, the onset of ray achene germination occurred 21 days after planting in the field plot and 19 days after planting in the field petri dishes. Averages of 2.05 and 2.71 disc achenes/day germinated in the field plot and field petri dishes, respectively. These contrasted with averages of 0.57 and 0.50 ray achenes/day germinated in the field plot and in the field petri dishes, respectively. A total of 67.5% and 69% disc achenes germinated in the field plot and the field petri dishes, but only 18% and 16.5% ray achenes germinated in the field plot and field petri dishes, respectively. Three separate treatments, using 100 ray and 100 disc achenes in each, were performed in laboratory growth chambers: 1) nicking the fruit coat, 2) excising the embryo, and 3) leaving the fruit coat intact. Onset of germination for all disc achene treatments occurred after three days. No significant differences were found among the three disc achene treatments in timing, rate, or germination percentage. All three disc treatments in the laboratory closely paralleled those for disc achenes in the field plots in time and germination percentage, but rates of germination were not as high. Germination of the nicked and excised ray achenes treatments began after four days, while germination of the untreated ray achenes began after 27 days. Untreated ray achenes in the laboratory paralleled the ray achenes in both field experiments in rate and germination percentage, but were delayed in time of germination. The nicked and excised ray achene treatments, however, were similar to the disc achene treatments in time of germination, and were not significantly different from disc achenes in rate of germination. These data suggest 1) that ray and disc achenes are markedly different in germination under identical conditions in field and laboratory experiments, and 2) this difference in germination response may be due to the thicker pericarp of the ray achenes.  相似文献   

9.
Peter B. McEvoy 《Oecologia》1984,61(2):160-168
Summary Marginal and central florets of the capitula of tansy ragwort Senecio jacobaea yield different kinds of fruit. The central (disk) achenes are lighter (x±SE=199±5g), more numerous (x±SE=58±0.6 achenes per head), and are equipped with a pappus aiding wind transport and rows of trichomes aiding animal transport. The marginal (ray) achenes are heavier (x±SE=286±7g), less numerous (virtually invariant at 13 achenes per head), and lack dispersal structures. Whereas disk achenes are relased shortly after they mature, ray achenes are retained by the parent for a period of months following maturity.Germination at constant temperature (20°C) and with alternating light (12 h light: 12 h dark) demonstrated that disk and ray achenes exhibit different germination syndromes. Germination percentage increases linearly with achene fresh weight in both types; for a given weight, disk achenes have a higher germination percentage than ray achenes. Germination time decreases with increasing achene weight in disk achenes, but increases with achene weight in ray achenes.The germination percentages and germination times for disk and ray achenes diverge progressively with increasing achene weight. The divergence in behavior is a result of diverging patterns of dry matter allocation in the two achene types. Increase in the size of disk achenes favors the embryo fraction, thereby speeding germination while reducing protection. Increase in the size of the ray achenes favors the pericarp fraction, thereby increasing protection while delaying germination.Reduced germination percentage and germination speed of the ray achenes were shown by experimental manipulation to be caused by physical inhibition by their thicker pericarps.Dimorphism in ragwort likely speards germination out in space and time, thereby increasing the number of safe sites an individual parent can exploit in disseminating offspring. The syndrome in other heteromorphic composites resembles that of ragwort, generally combining reduced dispersal-delayed germination in the outer achenes and distance dispersal-quick germination in the central achenes. The outer achenes are generally less numerous and larger. Dispersal traits (large numbers, early release and light wieght) are the direct opposite of dormancy traits (small numbers, delayed release and heavier weight). Thus conflicts between the properties determining dormancy and dispersal appear to require separate dormancy and dispersal phenotypes.  相似文献   

10.
In SW Spain the winter annuals Anacyclus radiatus and Chrysanthemum coronarium (Asteraceae) are found as weeds in diverse crops. Both plant species are heterocarpic, i.e. the peripheral and central achenes of the capitulum are morphologically distinctive. In heterocarpic and heterospermic species the different fruit or seed morphs usually have differential ecological behaviour. In this work we have studied the morphometry, germination and dispersal timing of t he different achene morphs in A. radiatus and C. coronarium. Laboratory germination tests were carried out to evaluate the influence of incubation temperature (light/dark, 27/27, 24/18, 20/10, 15/5, 10/4 degrees C), chilling period (0, 1, 7, 21 and 60 days at 2 degrees C), GA3, nitrate and the dark on the germination percentage and rate (t50). The peripheral achenes of A. radiatus have a significantly broader wing than the central achenes. In this species, germination was inhibited in the dark but viable achenes of both types germinated completely under light exposure irrespective of test conditions. Nevertheless, the peripheral achenes germinated significantly faster compared to the central achenes (t5o 1.04 vs. 1.55 days at 24/18 degrees C). In C. coronarium peripheral achenes have three-winged ribs and are significantly longer, wider and thicker than the central achenes, which have only one- or two-winged ribs. In this species the peripheral achenes showed a much lower germination compared to the central achenes under all conditions tested (0.3-3.5% vs. 41.5-58.0%). Embryos isolated from the pericarp of peripheral achenes germinated quickly in a great extent, and when placed in close contact with a pericarp fragment they did not show any inhibition of germination, suggesting physical dormancy. To determine differences in dispersal timing between achene morphs, we monitored dispersal in a stand of both plant species. In A. radiatus the peripheral achenes were shed first, at the onset of the rainy season in late summer, whereas the central achenes dispersed from late summer to early winter. In contrast, in C. coronarium the central achenes were shed first, from early summer to early autumn, whereas the peripheral achenes dispersed mainly in early autumn. Thus, in both weed species the more dispersible and readier-to-germinate achene morph is dispersed first. The differences in the germination and dispersal behaviour between achene morphs represent an opportunistic, mixed strategy which is favourable under environmental uncertainty, and should be accounted for in order to understand the population dynamics of both weed species.  相似文献   

11.
P. W. Weiss 《Oecologia》1980,45(2):244-251
Summary A comparison was made of the dimorphic subterranean and aerial achenes of the annual Emex spinosa (L.) Campd. Subterranean achenes were less dormant, had a higher percentage of viability, germinated at a faster rate, were less temperature-dependent in germination and produced larger seedlings than aerial achenes. Subterranean achenes germinated, equally well in light or dark but aerial achenes had a strong light requirement. There was a linear relationship between numbers of weight of aerial achenes and plant size in the field. More resources were allocated to reproduction in plants restricted in size because of environmental conditions. Subterranean achene production was less affected than aerial by density, nitrogen levels, varying field conditions and interference between plants grown, from subterranean and aerial achenes. In mixtures of such plants, those from subterranean achenes had larger leaf area and stems and more aerial achenes. These differences were not apparent in monocultures by the time of harvest. Seed dimorphism is more likely in short-lived fugitive species and the different roles associated with dimorphism (persistence in situ versus dispersal in E. spinosa) are seen as an ecological advantage in such species.  相似文献   

12.
13.
Ecology of achene dimorphism in Leontodon saxatilis   总被引:5,自引:0,他引:5  
Brändel M 《Annals of botany》2007,100(6):1189-1197
BACKGROUND [corrected] AND AIMS: Leontodon saxatilis produces two morphologically distinct achenes (morphs) in a single capitulum: one row of dark brown achenes without a pappus lies at the edge ('peripheral achenes'; 0.74 +/- 0.18 mg) while the inner ones are light brown with a pappus ('central achenes'; 0.38 +/- 0.07 mg). The hypothesis that achene heteromorphism in L. saxatilis widens its ecological amplitude was tested. KEY RESULTS: Achenes of both morphs germinated over the same range of temperatures (6-33 degrees C) but the central achenes showed significantly higher germination percentages, and the two also differed significantly in their annual dormancy cycle, with the peripheral achenes showing greater dormancy for part of the year. Seedlings from the two morphs did not differ significantly in total biomass after 2 and 4 weeks of growth, neither did they differ significantly in root and shoot weight and root:shoot ratio. Plants from both morphs growing at different regimes of soil moisture, nutrients and competition did not differ significantly in their number of achenes per capitulum. While the number of central achenes varied, that of peripheral achenes remained constant at approx. 13. Drier soil led to an increase in the number of central achenes in plants from both morphs. CONCLUSIONS: The peripheral achenes can replace the mother plant in the following growing season, whereas the central achenes are well adapted for wind dispersal and thus for colonization of new sites. However, the extent of variation in germination characteristics was similar to that found in seed populations of homomorphic plants, which suggests that germination percentage and other growth characteristics do not contribute to widening the ecological amplitude. The habitat of most heteromorphic species, the morphs of which differ greatly in germination and/or growth characteristic, are deserts or highly disturbed areas where such differences are highly advantageous, but in the moderate habitat of L. saxatilis the differences may prove a disadvantage.  相似文献   

14.

Background and Aims

Seed persistence in the soil under field conditions is an important issue for the maintenance of local plant populations and the restoration of plant communities, increasingly so in the light of rapidly changing land use and climate change. Whereas processes important for dispersal in space are well known, knowledge of processes governing dispersal in time is still limited. Data for morphological seed traits such as size have given contradictory results for prediction of soil seed persistence or cover only a few species. There have been few experimental studies on the role of germination traits in determining soil seed persistence, while none has studied their predictive value consistently across species. Delayed germination, as well as light requirements for germination, have been suggested to contribute to the formation of persistent seed banks. Moreover, diurnally fluctuating temperatures can influence the timing of germination and are therefore linked to seed bank persistence.

Methods

The role of germination speed measured by T50 (days to germination of 50 % of all germinated seeds), light requirement and reaction to diurnally fluctuating temperatures in determining seed persistence in the soil was evaluated using an experimental comparative data set of 25 annual cereal weed species.

Key Results

It is shown that light requirements and slow germination are important features to maintain seeds ungerminated just after entering the soil, and hence influence survival of seeds in the soil. However, the detection of low diurnally fluctuating temperatures enhances soil seed bank persistence by limiting germination. Our data further suggest that the effect of diurnally fluctuating temperatures, as measured on seeds after dispersal and dry storage, is increasingly important to prevent fatal germination after longer burial periods.

Conclusions

These results underline the functional role of delayed germination and light for survival of seeds in the soil and hence their importance for shaping the first part of the seed decay curve. Our analyses highlight the detection of diurnally fluctuating temperatures as a third mechanism to achieve higher soil seed persistence after burial which interacts strongly with season. We therefore advocate focusing future research on mechanisms that favour soil seed persistence after longer burial times and moving from studies of morphological features to exploration of germination traits such as reaction to diurnally fluctuating temperatures.  相似文献   

15.
Agriophyllum squarrosum Moq. is a dominant annual on sand dunes in the arid regions of central Asia. A high percentage of seeds is retained on dead plants which become covered by moving sand, but little is known about the ecological significance of burial of canopy-stored seeds. We investigated the size and dynamics of the buried canopy-stored seed bank and effects of burial on seed germination. In March (during the windy season), May (beginning of the germination season), and July (middle of the growing season), the number of seeds per square meter in sample plots in the dunes was 623, 223 and 22, respectively, with 54.6, 30.6 and 12.9% of the total seeds retained on buried plant canopies. In a controlled experiment, more seedlings emerged from released (dispersed) than from canopy-stored seeds when burial depth was the same. No viable ungerminated released seeds were found, but 45–80% of the ungerminated canopy-stored seeds were viable. In general, with an increase in applied water germination of released seeds buried at a depth of 1 or 2 cm and of canopy-stored seeds buried at 1 cm increased, but regardless of watering regime few or no released seeds at 4 cm or canopy-stored seeds at 2 or 4 cm germinated. Significantly more seedlings emerged from plants buried in a horizontal than in a vertical position. Seedlings originating from buried canopy-stored seeds on an active dune accounted for only 5.4% of the total seedlings emerging, and most of them emerged later than those from released seeds. Thus, seed release is more effectively postponed in buried than in exposed canopies, and burial of canopy-stored seeds is a mechanism that helps regulate seed germination and seedling emergence of A. squarrosum on active dunes.  相似文献   

16.
Aim Mirabilis himalaica (Nyctaginaceae) is an endangered medicinal plant mainly distributed in the plateau region of northern Tibet, China. The outer surface of M. himalaica achenes is covered by a pectinaceous mucilaginous layer upon hydration. However, the role of the achene mucilage is poorly understood. In this study, we investigated the effects of mucilage on achene germination and sprout growth under abiotic stress to explain how M. himalaica survive the alpine environment.Methods We investigated the effect of mucilage on achenes germination by contrast the capacity of water absorption, dehydration and respiration of intact achene and the achene with mucilage removal. We performed abiotic stresses experiments including drought stress, salt stress, cold stress and high temperature stress, and quantified the effects of mucilage removal on achene germination rate, root and shoot lengths of seedlings.Important findings Mucilage is extremely hydrophilic, and the mass of intact achenes can be 9-fold greater than that of demucilaged achenes. The removal of the mucilaginous layer did not significantly change final germination percentages under ideal conditions, but intact achenes (i.e. with mucilage) took longer to germinate. The mucilage significantly decreased seed respiration rates by acting as a physical barrier that prevented oxygen diffusion. Germination rates, shoot and root growth of intact achenes were higher than those of demucilaged ones during exposures to cold, heat, osmotic and salt stresses. Achene mucilage presumably plays an ecologically important role in the life cycle of M. himalaica by aiding the critical achene germination and early seedling growth in the stressful habitats of the plateau region of northern Tibet.  相似文献   

17.
Aerial seed bank has been found in the arid dune ecosystem. However, the relationship of aerial seed bank to sand mobility intensity is unknown. The adaptation of aerial seed bank to sand mobility was analyzed in four Artemisia species dominating at different habitats in northeastern Inner Mongolia, China. The four species, Artemisia gmelinii, A. frigida, A. halodendron and A. wudanica, are an interdune lowland, stabilized dune, semi-stabilized dune and active dune species, respectively. Seed (achene and capitulum) persistence on the parent plants, the supplement for the soil seed bank, the maintenance of seed viability, and the effect of burial depth on seedling emergence of these four species were studied. Dispersal delay differed interspecifically responding to sand mobility intensity: maximal dispersal was in the following May after maturation for A. wudanica, in the following April after maturation for A. halodendron, and in November of the year of seed maturation for A. frigida and A. gmelinii. The maximal supplement to the soil seed bank for A. wudanica and A. halodendron occurred in the following May and March, respectively. The viability of achenes in aerial seed bank of A. wudanica and A. halodendron maintained at 79.5 and 79.6% until the following May after maturation. This study indicated that aerial seed bank in the sand dune ecosystem functions to postpone seed dispersal until the end of windy season and the start of growing season, and therefore is a mechanism for psammophyte to adapt to sand mobility.  相似文献   

18.
紫茎泽兰种子种群动态及萌发特性   总被引:11,自引:0,他引:11  
在紫茎泽兰的入侵地四川省德昌县, 选择撂荒地、农田和马尾松林3个不同的生境, 从种子雨、种子库角度研究了紫茎泽兰种子种群动态规律,及其种子在不同光照和土壤基质条件下的萌发特性. 结果表明,3个生境下紫茎泽兰种子种群仅存在于当年3~6月,于4月底达到年高峰值. 其年降种子雨量在撂荒地中高达2.4×105粒·m-2,并均分布于2 cm土层以上, 且在撂荒地生境下紫茎泽兰种子的千粒重和活力均显著高于另外两个生境. 到7月上旬, 3个生境下土壤中均未发现有活力的种子. 在实验的光照条件下, 全光照对紫茎泽兰的种子萌发有抑制作用,而在28%光照条件下萌发率最高;砂壤土较适宜紫茎泽兰种子的萌发,生红土中其萌发速度及萌发率均最低.  相似文献   

19.
The achenes of the plant Tithonia rotundifolia show an embryodormancy, requiring a 3-month period of after-ripening to stimulategermination. Mechanical scarification did not enhance imbibitionof the achenes, indicating that the thick bi-layered achenewall does not impede water uptake. The light conditions necessaryfor optimal germination changed with achene age and the achenesbecame less sensitive to temperature. About 30–40% ofrecently harvested achenes germinated in the dark at 25 °C.Following a period of dry storage some of the achenes developeda light requirement and germination increased at 20, 25 and30 °C. Gibberellic acid stimulated the germination of achenestested after 12 weeks dry storage, and could substitute to someextent for the light and temperature requirements of the storedachenes. Tithonia rotundifolia, seed germination, gibberellic acid  相似文献   

20.
Based on SEM examination of 47 specimens and 33 species from Russia and Europe, this is a survey of achene surface ultrasculpture in 6 subsections of annual species of Polygonum. Early and late achenes detected in most species possess sound distinctions in achene shape, size, color and exocarp structure. Late achenes with early and fast seed germination preserve exocarp structure typical for premature achenes of both types: thin colorless walls and vast cavities, thin cuticle and insignificant wax deposits. Early achenes destined for long-term preservation in soil are thickwalled and covered with thick and smooth cuticles and wax layers. The structure of achene surfaces changes substantially during maturing, especially in early achenes: coarse or foveo-rugulate background becomes minutely rough, foveosmooth or minutely reticulate. Verrucae are not obligatory ornaments. Depending on their location and arrangement of exocarp cells the surface is evenly verrucate (subsect. Paatula Tzvel.), linear-verrucate (subsect. Salsuginea Tzvel.) or striate-verrucate (subsect. Humifusa Tzvel., most species in subsect. Polygonum ). Smooth and glossy achenes are more common in permanently wet environments (subsect. Maritima Tzvel., Arenaria Tzvel., P. arenastrum and P. calcatum from subsect. Polygonum ). In places with fluctuating availability of water the achenes have heavier sculpturing and thicker cutin and wax coverings. A broad range of surface sculptures in some species and their similarity across taxonomically distant taxa decrease the value of the characters for taxa identification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号