首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The permeability of the meningeal blood vessels and cellular layers to horseradish peroxidase was studied 5, 10 and 15 minutes following intravasal or intraarachnoidal introduction of the marker. When applied intravasally, the horseradish peroxidase-containing solution easily passed through the walls of all meningeal vessels (dural, pial and the ones traversing the arachnoid space). The cells of the inner dural layer and dural neurotheliun delay the penetration of horseradish peroxidase into the cerebrospinal fluid-filled arachnoid space by 10 min--rats and 15 min--cats. The perivascular leptomeningeal cells and their processes restrict the passage of the marker into the arachnoid space in a similar way. These barrier functions of the leptomeningeal cells and the cells that comprise the interface zone between dura mater and the arachnoid are confirmed by experiments where the marker was injected into the arachnoid space.  相似文献   

2.
Summary The meninges of albino Wistar rat embryos, aged between the 11th embryonic day (ED) and birth, were sectioned using a specially constructed device. This technique permits optimal microanatomical preservation of all tissues covering the convexity of the brain: skin, muscle, cartilage or bone, and the meninges. At ED11, the zone situated between the epidermis and the brain is occupied by a mesenchymal network. At ED12, part of this delicate network develops as a dense outer cellular layer, while the remainder retains its reticular appearance, thus forming an inner layer (the future meningeal tissue). At ED13, the dura mater starts to differentiate. At ED14, the bony anlage of the skull can be identified, and along with the proceeding maturation of dura mater some fibrillar structures resembling skeletal muscle fibers appear in the developing arachnoid space. At ED15–17, a primitive interface zone — dura mater/ arachnoid — is formed, comprised by an outer electronlucent and an inner electron-dense layer marking the outer aspect of the arachnoidal space. At ED18–19, the innermost cellular row of the inner durai layer transforms into neurothelium, which is separated from the darker arachnoidal cells by an electron-dense band. The arachnoidal trabecular zone with the leptomeningeal cells is formed at ED19. By the end of the prenatal period (ED20–21), its innermost part organizes into an inner arachnoidal layer and an outer and inner pial layer. The results from this study indicate (i) that dura mater and leptomeninges develop from an embryonic network of connective tissue-forming cells, and (ii) that the formation of cerebrospinal fluid (CSF)-containing spaces accompanies the differentiation of the meningeal cellular layers.  相似文献   

3.
The distribution of the membrane-bound magnesium ions-dependent adenosine triphosphatase (Mg-ATPase) activity has been studied ultracytochemically in rat meninges by the method of Wachstein and Meisel (1957). A device specially constructed to avoid preparation artefacts has been used to obtain sections from the parietal region of the head. The meninges display an intense though irregularly distributed ATPase activity marked by depositions of electron-dense reaction product (RP) which is almost absent in the outer and middle dural layers. In the borderline zone between dura mater and the arachnoid the RP deposits are found at the outer surface of the inner dural cells and at the contact sites between these cells and the dural neurothelium. The intercellular cleft(s) between the neurothelium and the outer arachnoidal layer, occupied by an "electron-dense band", remains free of RP. The strongest accumulations of reactions granules are observed on the surface of the leptomeningeal cells of the arachnoidal space. In the contact region between the inner arachnoidal and the outer pial layers the distribution of the RP is similar to the one observed in the interface zone dura mater/arachnoid, while the pial cells themselves are definitely reaction-positive. In all meningeal vessels RP is found at the lumenal and abluminal aspects of the endothelium as well as at the cell membranes of the perivascular cells. These results emphasize the importance of the dural neurothelium for the functions of the blood-cerebrospinal fluid (CSF)-barrier between the dural blood vessels and the CSF.  相似文献   

4.
Summary The circulation of the cerebrospinal fluid along the central canal and its access to the parenchyma of the spinal cord of the rat have been analyzed by injection of horseradish peroxidase (HRP) into the lateral ventricle. Peroxidase was found throughout the central canal 13 min after injection, suggesting a rapid circulation of cerebrospinal fluid along the central canal of the rat spinal cord. It was cleared from the central canal within 2 h, in contrast with the situation in the brain tissue, where it remained in the periventricular areas for 4 h. In the central canal, HRP bound to Reissner's fiber and the luminal surface of the ependymal cells; it penetrated through the intercellular space of the ependymal lining, reached the subependymal neuropil, the basement membrane of local capillaries, and appeared in the lumen of endothelial pinocytotic vesicles. Furthermore, it accumulated in the labyrinths of the basement membrane contacting the basolateral aspect of the ependymal cells. In ependymocytes, HRP was found in single pinocytotic vesicles. The blood vessels supplying the spinal cord were classified into two types. Type-A vessels penetrated the spinal cord laterally and dorsally and displayed the tracer along their external wall as far as the gray matter. Type-B vessels intruded into the spinal cord from the medial ventral sulcus and occupied the anterior commissure of the gray matter, approaching the central canal. They represented the only vessels marked by HRP along their course through the gray matter. HRP spread from the wall of type-B vessels, labeling the labyrinths, the intercellular space of the ependymal lining, and the lumen of the central canal. This suggests a communication between the central canal and the outer cerebrospinal fluid space, at the level of the medial ventral sulcus, via the intercellular spaces, the perivascular basement membrane and its labyrinthine extensions.  相似文献   

5.
At the sites where a vein penetrates through the dura mater, two aspects deserve particular attention: (i) The delineation of the perivascular cleft, a space belonging to the interstitial cerebrospinal fluid (CSF) compartment, toward the interior hemal milieu of the dura mater. (ii) The relationship between the perivascular arachnoid layer and the subdural neurothelium at the point of vascular penetration. These problems were investigated in the rat and in two species of New-World monkeys (Cebus apella, Callitrix jacchus). Concerning the first aspect, tight appositions of meningeal cells to the vessel wall, the basal lamina of which is widened and enriched with microfibrils, prevent communication between the interstitial CSF in the perivascular cleft and the hemal milieu in the dura mater. With reference to the second aspect, the perivascular arachnoid cells are transformed into neurothelial cells at the point where they become exposed to the hemal milieu of the dura mater and subsequently continuous with the subdural neurothelium. Leptomeningeal protrusions encompassing outer CSF space can penetrate into the dura mater. These protrusions may expand and branch repeatedly, forming along the wall of the dural sinus Pacchionian granulations. At these sites, however, the structural integrity of the sinus wall and the Pacchionian granulation is not lost. Numerous vesiculations not only in the sinus and vascular walls, but also in the cellular arrays of the Pacchionian granulations or paravascular leptomeningeal protrusions indicate mechanisms of transcellular fluid transport. Moreover, the texture of the leptomeningeal protrusions favors an additional function of these structures as a "volume" buffer.  相似文献   

6.
P A Sandoz 《Acta anatomica》1985,124(3-4):217-226
After perfusion fixation using phosphate-buffered glutaraldehyde, the rat area postrema always contained some portions with lacunar extracellular spaces in the neuropil. This was interpreted as a sign of local oedema due to perfusion-induced extravasation, made possible by the absence of an endothelial blood-brain barrier in the area postrema. All perivascular spaces were delimited from the nervous tissue by a continuous layer of astroglial processes. The cell appositions in these perivascular glial sheaths were not only seen in the regions of the area postrema displaying conventional morphology, but also persisted systematically in those regions containing lacunar extracellular space after fixation. At these sites, the glial sheaths had presumably endured a net outflow of extravasated oedema fluid in vivo. In the neighbouring neuropil at these locations, certain cell appositions with conventional intercellular clefts also persisted. These phenomena might both be interpreted as non-random, functionally important cell contacts with the inconspicuous 'intercellular clefts' containing unstained material. In the case of perivascular glia this might imply a partial restriction of diffusion between blood and brain tissue, allowing certain control or defence functions.  相似文献   

7.
The passage of blood-borne horseradish peroxidase (HRP) into the amygdaloid area of the mouse brain was examined with light and electron microscopy. Staining reaction for HRP appeared in medial portions of the amygdaloid area, especially adjacent to the optic tract. Ultrastructural examination of some vessels in that area revealed that the staining reaction for HRP appeared in the perivascular space, the basal lamina, the cytoplasm or vesicular structures of the perivascular cells, vesicular profiles of the endothelial cell cytoplasm including abluminal pits and the adjacent extracellular space. These findings suggest that intravascular macromolecules can invade medial portions of the amygdaloid area of the mouse brain. Accepted: 10 August 1999  相似文献   

8.
Summary Using intravenously injected horseradish peroxidase (HRP) as tracer, we demonstrate, that — in contrast to other neurohemal regions — the organum vasculosum laminae terminalis (OVLT) is composed of two functionally different divisions. Both parts of the OVLT are endowed with fenestrated capillaries which, however, obviously differ in their permeability for HRP. In one of these portions the neurohemal region remains unlabeled under the experimental conditions used, while the other portion, in analogy to the majority of neurohemal regions, is labeled by the tracer. The functionally different divisions of the OVLT are separated from one another by tanycytic processes and meningeal cells establishing a barrier between the two hemal compartments. The meningeal elements penetrate the organ in the form of an uninterrupted layer; they are continuous with the pia mater and produce large amounts of basal lamina-like material. Furthermore, they provide the delineation of the OVLT against the outer cerebrospinal fluid-containing compartment, a structural feature that is characteristic of both divisions of the OVLT and corresponds to the arrangement of meninges in all other portions of the brain where a blood vessel penetrates its surface.Supported by the Deutsche Forschungsgemeinschaft (Grant Nr. Kr 569/5-2) and the Stiftung Volkswagenwerk  相似文献   

9.
In model experiments with the use of horseradish peroxidase (HRP), two pathways of transport of substances to the adenohypophysis were studied, as well as the distribution of the tracer in the latter organ. The first pathway allows the tracer to penetrate from the intercellular milieu of the median eminence below the meningeal sheath covering the adenohypophysis to the surface of the pituitary gland. The second pathway transports the tracer via the capillaries of the hypophysial portal circulation to the interior of the glandular parenchyma. These results show (i) that the meningeal sheath establishes a barrier between the hemal milieu of the pituitary and the hemal milieu of the general circulation, and (ii) that the tracer reaching the adenohypophysis via both routes is found in the intercellular clefts of the glandular parenchyma only to a limited extent. By means of conventional electron microscopy, intercellular contacts between hormone-producing adenohypophysial cells are observed resembling focal tight junctions. Between the membranes of entwined processes of stellate cells, only small maculae adhaerentes are found. Freeze-etch studies on unfixed adenohypophyses reveal zonulae occludentes between the durafacing layers of the meningeal sheath and focal maculae occludentes between parenchymal cells. Additional tissue-culture experiments with adenohypophysial cells directly exposed to HRP reveal a gradual cessation of the labeling process in the intercellular clefts in accord with the observations from the in-vivo experiments, as well as intercellular focal tight junctions between individual hormone-producing cells.  相似文献   

10.
Summary In stressed rats the tanycytes of the ventrolateral wall of the third ventricle exhibit by light microscopic immunohistochemistry a positive staining for neurohormones which is distinctly limited to the distal perivascular end of the tanycyte process. Since by electron microscopic immuncytochemistry the tanycyte cytoplasm does not show any reaction product, the light microscopic reaction most likely results from a labeling of the intercellular space in the direct vicinity of the subendothelial cleft. Whether this subendothelial space is permeable to neurohormones was tested by injection of HRP1. In the region of the arcuate nucleus 30 min after intravenous application, the marker is affixed to the membranes of the perivascular tanycyte processes in the subendothelial cleft of capillaries possessing non-fenestrated endothelia. Occasionally, HRP penetrates for a short distance between the tanycytes. Then the labeling of the intercellular cleft ends abruptly. Here, several parallel ridges of tight junctions between the perivascular distal tanycyte processes are found by the freezeetching technique. Since HRP cannot reach the subendothelial clefts of this region by passing through capillary walls due to the presence of a blood-brain barrier, it is suggested that the marker penetrates from the median eminence this far via the subendothelial extracellular space. It is prevented from spreading further by the tight junctions of the perivascular tanycyte endings. The same way may be taken by the neurohormones. Hence, a border area exists adjacent to the dorsolateral aspect of the neurohemal region of the median eminence where the tanycytes isolate the neuropil from the cerebrospinal fluid not only by their apical tight junctions, but also by basal tight junctions from the subendothelial cleft. This communicates with the perivascular space of the portal vessels.Supported by the Deutsche Forschungsgemeinschaft (Grant Nr. Kr. 569/2) and Stiftung VolkswagenwerkDedicated to Professor Dr. R. Ortmann on the occasion of his 65th birthday.The skilful technical assistance of Miss K. Bielenberg, Mrs. A. Hinz and Mrs. H. Prien is thankfully acknowledged  相似文献   

11.
Synopsis Ultrastructural features of the epidermis and rectum were studied inSebastes schlegeli andS. melanops during the late stages of embryonic development, to confirm uptake of maternal substances. Ruthenium red (RR) and horseradish peroxidase (HRP) were used at fixation and in live embryos, respectively. Epidermal tissue of embryos after developmental stage 24 comprised two squamous cell layers. The outer, thinner cells and their intercellular spaces were easily infiltrated with RR, but the inner cells had no RR deposition. The HRP was not incorporated into the epidermis except in a few outer cells, which had well-developed microvillous projections of cytoplasm. Sacciform cells, chloride cells, and mucous cells distributed in the inner layer but protruding to the epidermal surface had no intracellular RR and HRP depositions. The rectal cells of embryos at about developmental stage 28 had many globular inclusions containing electron-dense substances. The rectal cells were found to take up and digest HRP actively. It is suggested that the embryonic epidermis is structurally loose and takes up low weight molecules, while rectal cells, after the opening of the mouth, actively ingest exogenous, high weight molecules.  相似文献   

12.
The distribution of lipocaline-type prostaglandin D synthase (L-PGDS) in rat brain was investigated by immunoelectron microscopy using a protein A-gold technique. In perivascular cells adjacent to the basement membrane of arterioles in the pia-arachnoid and of blood vessels in the subpial cortex, gold labeling was confined to the lumen of the dilated rough endoplasmic reticulum, and not found in the few lysosomes present in the cytoplasm. The results suggest that the perivascular cells secrete L-PGDS and seem not to degrade lipophilic molecules carried by L-PGDS. Moreover, gold particles representing the antigenic sites of L-PGDS were found in the Golgi apparatus, rough endoplasmic reticulum, vesicles, and nuclear envelope of arachnoid trabecular cells, arachnoid barrier cells, and arachnoid pia mater cells. The labeling was less detectable in the same organelles of choroid plexus epithelial cells, compared with leptomeningeal cells. In meningeal macrophages and parenchymal microglia, L-PGDS was detected in lysosomes, multivesicular bodies, and endocytic vesicles. The production of L-PGDS in perivascular cells is important to the various functions of this enzyme in brain parenchyma.  相似文献   

13.
This review surveys evidence for the flow of brain interstitial fluid (ISF) via preferential pathways through the brain, and its relation to cerebrospinal fluid (CSF). Studies over >100 years have raised several controversial points, not all of them resolved. Recent studies have usefully combined a histological and a mathematical approach. Taken together the evidence indicates an ISF bulk flow rate of 0.1-0.3 microl min(-1) g(-1) in rat brain along preferential pathways especially perivascular spaces and axon tracts. The main source of this fluid is likely to be the brain capillary endothelium, which has the necessary ion transporters, channels and water permeability to generate fluid at a low rate, c1/100th of the rate per square centimeter of CSF secretion across choroid plexus epithelium. There is also evidence that a proportion of CSF may recycle from the subarachnoid space into arterial perivascular spaces on the ventral surface of the brain, and join the circulating ISF, draining back via venous perivascular spaces and axon tracts into CSF compartments, and out both through arachnoid granulations and along cranial nerves to the lymphatics of the neck. The bulk flow of ISF has implications for non-synaptic cell:cell communication (volume transmission); for drug delivery, distribution, and clearance; for brain ionic homeostasis and its disturbance in brain edema; for the immune function of the brain; for the clearance of beta-amyloid deposits; and for the migration of cells (malignant cells, stem cells).  相似文献   

14.
The surface of the pineal organ of the rat is covered by a leptomeningeal tissue, the continuation of the corresponding meningeal layers of the diencephalon. The pineal leptomeninx consists of stratified arachnoid and of pia mater cells which follow the vessels into the pineal nervous tissue. The pineal arachnoid contains electron-lucent and electron dense cells differing from each other in their cytoplasmic components. Corpora arenacea of various size and density occur among these arachnoid cells and can grow into the pineal organ alongside pia mater tissue. Acervuli often form groups in circumscribed meningeal "calcification foci". Concrements are absent or rare in the 1- and 2-month-old animal, while they are usually present in the 4- and 6-month-old rats. The electronmicroscopic localization of Ca-ions was studied in 2- and 4-month-old rats by potassium pyroantimonate cytochemistry. In the 4-month-old animals, arachnoid cells containing a varying amount of Ca-pyroantimonate deposits were found first of all around corpora arenacea, but there were also cells free of deposits in the close vicinity of the acervuli. Deposits were preferentially localized to the cytoplasm of electron dense arachnoid cells and to the cell membrane of electron-lucent cells. Most of the precipitates occurred in locally enlarged intercellular spaces. Here, microacervuli were found in 4-month-old animals suggesting that a calcium-rich environment was responsible for the appearance of the concrements. Intermediate stages between the small acervuli and large concentric corpora arenacea may indicate an appositional growth of the acervuli in the calcification foci.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The thoracic aorta and basilar artery, in which the incidence of atherosclerosis is known to be different, were examined to elucidate the correlation between the structure of the intercellular cleft junction between adjacent endothelial cells and its permeability to HRP. Tannic acid or HRP in the vessel lumen passed through the intercellular clefts of the thoracic aorta into the subendothelial space, whereas in the basilar artery they were unable to penetrate beyond the tight junction of the intercellular clefts. Freeze-fracture replicas revealed that the tight junctions of the thoracic aorta consisted of one to two junctional strands in most areas of the cleaved planes, with discontinuities in some places, whereas those of the basilar artery consisted of a continuous belt-like meshwork of six anastomosing junctional strands on average. These observations confirm that the structure of endothelial junctions in arteries has a close correlation with the permeability of the intercellular clefts to HRP.  相似文献   

16.
The ultrastructural features of the area postrema (AP) were investigated in the suckling lamb, weaned lamb and adult sheep. No morphological differences were observed between lambs and sheep. Unciliated ependymal cells, linked by zonulae adherentes-type junctions and gap junctions, cover the AP ventricular surface. Clusters of pyriform neurons, glial cells, and axons are present in the parenchyma. The blood vessels are surrounded by wide perivascular spaces, which present an inner and outer basal lamina. The capillaries are of the fenestrated type. Perivascular glial cells rest on the outer basal lamina of the perivascular space and form a continuous ensheathment with their cell bodies or with flattened interdigitating processes. Along adjacent perivascular glial processes gap junctions are present. From our ultrastructural observations it appears that the overall cellular morphology of AP of the sheep does not differ substantially from that of monogastric mammals.  相似文献   

17.
At the turn of the 19(th) century, trypanosomes were identified as the causative agent of sleeping sickness and their presence within the cerebrospinal fluid of late stage sleeping sickness patients was described. However, no definitive proof of how the parasites reach the brain has been presented so far. Analyzing electron micrographs prepared from rodent brains more than 20 days after infection, we present here conclusive evidence that the parasites first enter the brain via the choroid plexus from where they penetrate the epithelial cell layer to reach the ventricular system. Adversely, no trypanosomes were observed within the parenchyma outside blood vessels. We also show that brain infection depends on the formation of long slender trypanosomes and that the cerebrospinal fluid as well as the stroma of the choroid plexus is a hostile environment for the survival of trypanosomes, which enter the pial space including the Virchow-Robin space via the subarachnoid space to escape degradation. Our data suggest that trypanosomes do not intend to colonize the brain but reside near or within the glia limitans, from where they can re-populate blood vessels and disrupt the sleep wake cycles.  相似文献   

18.
The meninges (dura, pia and arachnoid) are critical membranes encasing and protecting the brain within the skull. The leptomeninges, which comprise the arachnoid and pia, have many functions beyond brain protection including roles in neurogenesis, fibrotic scar formation and brain inflammation. Similarly, the choroid plexus plays important roles in normal brain function but is also involved in brain inflammation. We have begun studying the role of human leptomeninges and choroid plexus in brain inflammation and leptomeninges in fibrotic scar formation, using human brain derived explant cultures. To study the composition of the cells generated in these explants we undertook immunocytochemical characterisation. Cells, mainly pericytes and meningeal macrophages, emerge from leptomeningeal explants (LME’s) and respond to inflammatory mediators by producing inflammatory molecules. LME-derived cells also respond to mechanical injury and cytokines, providing an in vitro human brain model of fibrotic scar formation. Choroid plexus explants (CPE’s) generate epithelial cells, pericytes and microglia/macrophages. CPE-derived cells also respond to inflammatory mediators. LME and CPE explants survive and generate cells for many months in vitro and provide a remarkable opportunity to study basic mechanisms of human brain inflammation and fibrosis and to test human-active anti-inflammatory and anti-scarring treatments.  相似文献   

19.
Summary The surface of the pineal organ of the rat is covered by a leptomeningeal tissue, the continuation of the corresponding meningeal layers of the diencephalon. The pineal leptomeninx consists of stratified arachnoid and of pia mater cells which follow the vessels into the pineal nervous tissue. The pineal arachnoid contains electron-lucent and electron dense cells differing from each other in their cytoplasmic components. Corpora arenacea of various size and density occur among these arachnoid cells and can grow into the pineal organ alongside pia mater tissue. Acervuli often form groups in circumscribed meningeal calcification foci. Concrements are absent or rare in the 1- and 2-month-old animal, while they are usually present in the 4- and 6-month-old rats.The electronmicroscopic localization of Ca-ions was studied in 2- and 4-month-old rats by potassium pyroantimonate cytochemistry. In the 4-month-old animals, arachnoid cells containing a varying amount of Ca-pyroantimonate deposits were found first of all around corpora arenacea, but there were also cells free of deposits in the close vicinity of the acervuli. Deposits were preferentially localized to the cytoplasm of electron dense arachnoid cells and to the cell membrane of electron-lucent cells. Most of the precipitates occurred in locally enlarged intercellular spaces. Here, microacervuli were found in 4-month-old animals suggesting that a calcium-rich environment was responsible for the appearance of the concrements. Intermediate stages between the small acervuli and large concentric corpora arenacea may indicate an appositional growth of the acervuli in the calcification foci. Occasionally, acervuli were also located inside meningeal cells.There was no sign of the formation of acervuli in the pinealocytes or elsewhere in the pineal nervous tissue proper, in the age interval (1- to 6-month-old animals) studied. These findings confirm the view that corpora arenacea can be produced in the rat by the pineal leptomeninx. The laboratory rat seems to be usefull in studying pineal calcification of the meningeal type.Supported by the Hungarian OTKA grant Nr. 1619 to B.V.  相似文献   

20.
Summary This report gives the results of the first electron-microscopic examination of the cell layers covering the outer brain surface and the inner surface of the cartilaginous skull in the skate, Raja erinacea. The perivascular glial blood-brain barrier — a characteristic of elasmobranchs — extends to the outer surface of the brain. This outer barrier layer is surrounded, in turn, by a subarachnoid compartment (depth: 30–40 m), containing loose connective tissue and blood vessels; by an arachnoid-like epithelium (10–15 cell layers), impermeable to horseradish peroxidase; and, by perimeningeal fluid, a fluid with a slow turnover rate and a protein composition different from plasma. The inside of the skull, facing the perimeningeal fluid, is covered by a multilayered (10–15 layers) cuboidal epithelium, also impermeable to horseradish peroxidase. Closely apposed cells in the luminal layer of this epithelium have apical microvilli and numerous vesicular profiles, containing material of moderate electron density. These observations may explain, in terms of structure, the regulated protein content of perimeningeal fluid and the restricted exchange of solutes between brain and perimeningeal fluid in elasmobranchs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号