首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Shimmering is a collective defence behaviour in Giant honeybees (Apis dorsata) whereby individual bees flip their abdomen upwards, producing Mexican wave-like patterns on the nest surface. Bucket bridging has been used to explain the spread of information in a chain of members including three testable concepts: first, linearity assumes that individual "agent bees" that participate in the wave will be affected preferentially from the side of wave origin. The directed-trigger hypothesis addresses the coincidence of the individual property of trigger direction with the collective property of wave direction. Second, continuity describes the transfer of information without being stopped, delayed or re-routed. The active-neighbours hypothesis assumes coincidence between the direction of the majority of shimmering-active neighbours and the trigger direction of the agents. Third, the graduality hypothesis refers to the interaction between an agent and her active neighbours, assuming a proportional relationship in the strength of abdomen flipping of the agent and her previously active neighbours. Shimmering waves provoked by dummy wasps were recorded with high-resolution video cameras. Individual bees were identified by 3D-image analysis, and their strength of abdominal flipping was assessed by pixel-based luminance changes in sequential frames. For each agent, the directedness of wave propagation was based on wave direction, trigger direction, and the direction of the majority of shimmering-active neighbours. The data supported the bucket bridging hypothesis, but only for a small proportion of agents: linearity was confirmed for 2.5%, continuity for 11.3% and graduality for 0.4% of surface bees (but in 2.6% of those agents with high wave-strength levels). The complimentary part of 90% of surface bees did not conform to bucket bridging. This fuzziness is discussed in terms of self-organisation and evolutionary adaptedness in Giant honeybee colonies to respond to rapidly changing threats such as predatory wasps scanning in front of the nest.  相似文献   

2.
Shimmering is a defence behaviour in giant honeybees (Apis dorsata), whereby bees on the nest surface flip their abdomen upwards in a Mexican wave-like process. However, information spreads faster than can be ascribed to bucket bridging, which is the transfer of information from one individual to an adjacent one. We identified a saltatoric process that speeds up shimmering by the generation of daughter waves, which subsequently merge with the parental wave, producing a new wave front. Motion patterns of individual “focus” bees (n = 10,894) and their shimmering-active neighbours (n = 459,558) were measured with high-resolution video recording and stereoscopic imaging. Three types of shimmering-active surface bees were distinguished by their communication status, termed “agents”: “Bucket-bridging” agents comprised 74.98% of all agents, affected 88.17% of their neighbours, and transferred information at a velocity of v = 0.317±0.015 m/s. “Chain-tail” agents comprised 9.20% of the agents, were activated by 6.35% of their neighbours, but did not motivate others to participate in the wave. “Generator agents” comprised 15.82% of agents, showed abdominal flipping before the arrival of the main wave front, and initiated daughter waves. They affected 6.75% of their neighbourhood and speeded up the compound shimmering process compared to bucket bridging alone by 41.5% to v = 0.514±0.019 m/s. The main direction of shimmering was reinforced by 35.82% of agents, whereas the contribution of the complementing agents was fuzzy. We discuss that the saltatoric process could enable the bees to instantly recruit larger cohorts to participate in shimmering and to respond rapidly to changes in flight direction of preying wasps. A third, non-exclusive explanation is that at a distance of up to three metres from the nest the acceleration of shimmering could notably contribute to the startle response in mammals and birds.  相似文献   

3.
As the structural bases of insect societies are essential to colony survival, nests must be protected from predation. Nest defence behaviours are among the most important roles assigned to worker members. However, in hornet societies, temporal polyethism (age-dependent division of labour among workers) is assumed to be weak. Few studies have investigated this phenomenon, probably because hornet nests are aggressively defended and dangerous to approach. In the present study, we propose a method for rearing nests of Vespa velutina, a species newly introduced into Europe. This method enables the handling of hornets, and thus the design of experiments. By marking all newly emerged hornets, we recorded aggressiveness in workers of different ages from three captive colonies. We observed that nest defence behaviour in V. velutina depends on the age of the workers. Nest defence appears to be mediated by the queen, probably through pheromones that promote nest organization. We also identified a previously unreported but important behaviour in V. velutina that workers are aggressive towards male hornets. This behaviour might be a strategy to avoid inbreeding. Collectively, our results provide new research perspectives for the management of social hymenopteran predators.  相似文献   

4.
Social insects, belonging to the order Hymenoptera, maintain a fixed, optimal temperature in their nest. Thus, in social wasps and hornets, the optimal nest temperature is 29 degrees C, despite the fact that they are distributed in regions of varying climates both in the northern and southern hemispheres of the globe. Since hornets and bees are relatively small insects, determination of their own body temperature as well as that of their nest and the brood was made via thermometers or by the use of infrared (IR) rays. It has been suggested that thermoregulation in social insect colonies is effected primarily by the adult insects via muscle activation, that is, fluttering of their wings, which can raise both their own and the ambient temperature by many degrees centigrade. However, the larval brood can also contribute to the thermoregulation by acting as heat resources and thereby raising the ambient temperature by 1-2 degrees C. To this end, the adult hornets are endowed with a well-developed musculature and their larvae, too, have muscles that enable them to move about. Not so the hornet pupae which are enclosed in a silk envelope (the cocoon), with a rather thick silk cap spun by the pupating larvae, and have rather undeveloped muscles. In the latter instance, it stands to reason that the pupae benefit from the nest warming achieved primarily by the adult hornets, but how is the information regarding their thermal needs relayed from them to the adults? Previously we showed that the adult hornets are attracted to the pupae by pheromones released by the latter, but such chemical compounds can only convey information of a general nature and we are still left with the question as to how the adult hornet can gauge or ascertain the temperature of a single insulated pupa. The present study provides evidence that the hornet pupa can indeed transmit information regarding its body temperature via electrical means.  相似文献   

5.
Compound-specific stable isotope analysis (CSIA) of amino acids is a new method that enables estimates of trophic position for consumers in food webs. We examined the nitrogen isotopic composition (δ15N) of amino acids of Japanese social insects (three bee, three wasp, and four hornet species) to evaluate the potential of CSIA of amino acids in studies of terrestrial food webs. For wasps, we also examined samples at different growth stages (ranging from egg to adult) to assess the effect of metamorphosis on CSIA estimates of trophic position. The δ15N values of bulk tissues for Japanese social insects are only weakly correlated with the biologically expected trophic positions. In contrast, the trophic positions estimated from the δ15N values of amino acids (yielding values of between 2.0 and 2.3 for bees, between 2.8 and 3.3 for wasps, and between 3.5 and 4.1 for hornets) are consistent with the biologically expected trophic positions for these insects (i.e., 2.0 for bees, 3.0 for wasps, and 3.0–4.0 for hornets). Although large variability is observed among the δ15N values of individual amino acids (e.g., ranging from 3.0 to 14.9‰ for phenylalanine), no significant change is observed in the trophic position during wasp metamorphosis. Thus, the CSIA of amino acids is a powerful tool for investigating not only aquatic food webs but also terrestrial food webs with predatory insects.  相似文献   

6.
Guilds of Aculeate solitary wasps and bees that nest in preexisting cavities in wood are important components of terrestrial ecosystems because they engage in several ecological interactions (e.g. predation and pollination) with other species of plants and animals. Spatial and temporal variations in richness and abundance of solitary wasps and bees can be related to changes in environmental structure and in the diversity of other groups of organisms. The nesting period of these Aculeata is their most critical life cycle stage. Females of solitary wasp and bee species invest relatively more time constructing and provisioning their nests than do females of social species. Differently from species that nest in the soil or construct exposed nests, the main factors affecting the reproductive success of solitary species nesting in preexisting wood holes are still unknown. Our objective is to provide an overview of the role of proximate causes of nesting failure or success among solitary wasps and bees (Aculeata), for designing effective conservation and management strategies for these Hymenoptera.  相似文献   

7.
Abstract. Topical applications of the Juvenile Hormone (JH) analogue methoprene to 1-day-old adult workers of the highly eusocial wasp Polybia occidentalis (Olivier) (Hymenoptera: Vespidae) accelerate the rate of age polyethism. Longevity of laboratory-reared wasps is negatively correlated with dose of topically applied methoprene. Doses of 25 μg methoprene or greater are lethal. Untreated wasps show marked age polyethism in the field. Age of first performance of acts in seven behavioural categories (in-nest, transition to outside, non-task on nest envelope, nest maintenance, foraged material handling, defence, and foraging) is negatively correlated with methoprene dose. Topical applications of methoprene accelerate age polyethism of highly eusocial bee and wasp workers, but do not have this effect on primitively eusocial bees and wasps, suggesting that JH control of age polyethism evolved independently in advanced species of Apidae and Vespidae.  相似文献   

8.
Society is increasingly concerned with declining wild bee populations. Although most bees nest in the ground, considerable effort has centered on installing ‘bee hotels’—also known as nest boxes or trap nests—which artificially aggregate nest sites of above ground nesting bees. Campaigns to ‘save the bees’ often promote these devices despite the absence of data indicating they have a positive effect. From a survey of almost 600 bee hotels set up over a period of three years in Toronto, Canada, introduced bees nested at 32.9% of sites and represented 24.6% of more than 27,000 total bees and wasps recorded (47.1% of all bees recorded). Native bees were parasitized more than introduced bees and females of introduced bee species provisioned nests with significantly more female larva each year. Native wasps were significantly more abundant than both native and introduced bees and occupied almost 3/4 of all bee hotels each year; further, introduced wasps were the only group to significantly increase in relative abundance year over year. More research is needed to elucidate the potential pitfalls and benefits of using bee hotels in the conservation and population dynamics of wild native bees.  相似文献   

9.
Evolution of Swarm Communication in Eusocial Wasps (Hymenoptera: Vespidae)   总被引:1,自引:0,他引:1  
Eusocial paper wasps, yellowjackets, and hornets (Vespidae) exhibit two modes of colony foundation, primitively eusocial independent founders and advanced eusocial swarm founders. Unlike independent founders, swarmfounding wasps require a means of social communication to coordinate the movement of colony members between nest sites. We employed a phylogeny of paper wasps, yellowjackets, and hornets to test for patterns of correlated evolution between the mode of colony foundation and the presence of sternal exocrine glands. We also reviewed data on worker actions during swarming to determine whether swarm communication behavior was dependent upon gland possession and whether communicative behavior was shared among swarm-founding species. We did not find evidence for an association of sternal glands with swarm founding. Although sternal gland presence differed among swarm-founding species, worker behavior during swarming showed little variation. Workers of nearly all swarm-founding species rub their gasters on objects along swarm routes, independently of the occurrence of sternal glands. Widespread gastral rubbing indicates the use of swarm emigration trail pheromones from a diversity of glandular sources. Transitions from independent to swarm founding have been achieved via diverse pheromonal mechanisms in the Vespidae, while worker communicative behavior is either highly conserved or convergent.  相似文献   

10.
A mismatch of resource availability in certain periods can lead to spillover of insects between habitats, resulting in temporal differences in insect diversity. Urban gardens are important anthropogenic habitats but it is unknown whether, when and why spillover of beneficial insects occurs between gardens and agricultural habitats. We used trap nests for Hymenoptera to monthly monitor bee and wasp abundance and species richness in 12 gardens and 12 rapeseed fields. Half of the gardens and rapeseed fields were located in the urban–rural interface and bordered each other (a garden paired with a rapeseed field) and the other half were isolated in the rural landscape (isolated rapeseed fields) and in the urban city centre (isolated gardens). In general, gardens in the urban–rural interface comprised the highest richness of bees and wasps. The abundance of bees but not of wasps was highest in paired habitats and peaked at full rapeseed blooming, indicating that mass-flowering rapeseed offers foraging resources for bees nesting in adjacent gardens. Thus, bees nest and increase their populations in both areas, benefiting from the mass-flowering resource in the agricultural habitat as well as the nesting resources from gardens, suggesting spillover of bees but not of wasps between paired gardens and rapeseed fields. Our study highlights the value of gardens in the urban–rural interface for the biodiversity of functionally important insects. Implementing urban gardening and small-scale agriculture in cities and suburban habitats can promote local pollinator populations and benefit adjacent croplands.  相似文献   

11.
Insects may be unique in having a cuticle with a species-specific chemical profile. In social insects, colony survival depends not only on species-specific but also on colony-specific cuticular compounds with hydrocarbons playing an important role in the communication systems of ants, termites, wasps and bees. We investigated inter- and intraspecific differences in the composition of compounds found on the body surface of seven paleotropical stingless bee species (Apidae: Meliponini) at two different sites in Borneo (Sabah, Malaysia). Besides hydrocarbons, the body surface of all seven stingless bee species comprised terpenoid compounds, a substance class that has not been reported for chemical profiles of any social insect so far. Moreover, the chemical profile of some species differed fundamentally in the composition of terpenoids with one group (e.g. sesquiterpenes) being present in one species, but missing in another. Chemical profiles of different colonies from the same species showed the same hydrocarbon- and terpenoid compounds over different regions, as tested for Tetragonilla collina and Tetragonula melanocephala. However, chemical profiles differed quantitatively between the different colonies especially in T. melanocephala. It is likely that the terpenoids are derived from plant resins because stingless bees are known to collect and use large amounts of resins for nest construction and defence, suggesting an environmental origin of the terpenoids in the chemical profile of paleotropical stingless bees.  相似文献   

12.
We propose that social hornets and bees, who construct large arrays (known as combs) of cells for hatching and brooding their offspring, exploit ultrasonic acoustic resonances in those cells in order to implement the accurate honeycomb structure exhibited by those arrays. This idea is supported by a number of theoretical considerations, including a detailed analysis of the spectrum of lateral acoustic resonances in a cell with circular cross section, considered as an approximation to the actual perfect hexagon shape. It is also supported by the results of some previous measurements of the acoustic spectrum in a nest of Oriental hornets.  相似文献   

13.
Jeremy  Field 《Journal of Zoology》1992,228(2):341-350
The nesting behaviour of individually marked female pompilid wasps, Anoplius viaticus , was observed at a Breckland heath site with particular emphasis on intraspecific parasitism and nest defence. Prey was stolen from conspecifics while it was being carried to the nest site, and while it was left unattended during nest construction. Females also appeared to brood parasitize each other's completed nests. Parasitism appeared to be opportunistic. Brood parasitism may be a tactic by which time-limited females can increase their fecundity. By placing prey in vegetation tufts during nest construction, females may reduce the risk of prey theft. An individual female's successive unicellular nests were clustered and therefore easier to defend, in many ways resembling a multicellular nest. Females defended their clusters vigorously, visiting them every few minutes during foraging and expelling conspecifics from the vicinity. This type of nest defence may be costly, and has rarely been observed in solitary wasps.  相似文献   

14.
Associations with symbiotic microorganisms are a major source for evolutionary innovation in eukaryotes. Arthropods have long served as model systems to study such associations, especially since Paul Buchner’s (1965) seminal work that beautifully illustrated the enormous diversity of microorganisms associated with insects. Particularly high taxonomic and functional diversities of microbial symbionts have been found in the guts and gut‐associated organs of insects. These microorganisms play important roles in the digestion, nutrition and defence of the host. However, most studies of gut microorganisms have focused on single host taxa, limiting the ability to draw general conclusions on composition and functional roles of the insect gut microbiota. This is especially true for the diverse and important insect order Hymenoptera that comprises the bees, wasps and ants. Recently, Russell et al. (2009) analysed the bacterial community associated with diverse ant species and found evidence for changes in the microbial gut community coinciding with the evolution of herbivory. In this issue of Molecular Ecology, Martinson et al. (2011) provide the first broad‐scale bacterial survey for bees. Their findings substantiate earlier evidence for a surprisingly simple gut microbiota in honeybees (Apis mellifera) that is composed of only six to ten major phylotypes. Importantly, Martinson et al. demonstrate for the first time that the same bacterial phylotypes are major constituents of other Apis as well as Bombus species, but not of any other bees and wasps outside of the corbiculate bees, a clade of four tribes within the subfamily Apinae. These results indicate that corbiculate bees harbour a specific and possibly co‐evolved bacterial community in their digestive tract. Furthermore, the comparison with other bees and wasps suggests that changes in social lifestyle may have had a stronger effect on the evolution of the gut microbiota than the dietary shift from predatory ancestors to pollen‐feeding (i.e. herbivorous) species. These findings have far‐reaching implications for research on the microbial symbionts of insects as well as on the nutritional physiology of the ecologically and economically important group of corbiculate bees.  相似文献   

15.
We used presentations of models to determine the effectiveness of nest defence in the Acadian Flycatcher Empidonax virescens against a nest predator (Blue Jay Cyanocitta cristata ) and a brood parasite (Brown-headed Cowbird Molothrus ater ). Principal components analysis (PCA) of four component variables of nest defence (call rate, swoop rate, closest approach and number of adults) generated a measure of overall nest defence (aggression). We determined effectiveness of defence by looking for correlations between measures of defence and measures of nest success (nest predation and brood parasitism). We also determined whether nest defence increased with clutch size, nestling age and time in the breeding season. Defence against model Brown-headed Cowbirds did not correlate with levels of parasitism, clutch size, age of young or time of breeding. There was, however, a strong, but insignificant, trend for nests with high levels of all measures of defence to suffer less from brood parasitism. Aggression, vocalization rate, closest approach and number of adults defending against models of predatory Blue Jays correlated positively with nesting success during the egg stage but not the nestling stage of the nesting cycle. Aggression, vocalization rate, closest approach correlated with clutch size and age of the brood. These results suggest that nest defence can effectively deter nest predators, but may be less effective against brood parasites. Different behavioural components of nest defence may work at different stages of the nest cycle and against different nest predators. The components of nest defence that correlated with nest success also correlated with clutch value, a result consistent with hypotheses on the evolution of nest defence.  相似文献   

16.
Bees and wasps acquire a visual representation of their nest's environment and use it to locate their nest when they return from foraging trips. This representation contains among other features cues to the distance of near-by landmarks. We worked with two species of ground-nesting bees, Lasioglossum malachurum (Hymenoptera: Halictidae), Dasypoda hirtipes (Hymenoptera: Melittidae) and asked which cues to landmark distance they use during homing. Bees learned to associate a single cylindrical landmark with their nest's location. We subsequently tested returning bees with landmarks of different sizes and thus introduced large discrepancies between the angular size of the landmark as seen from the nest during training and its distance from the nest. The bees' search behaviour and their choice of dummy nest entrances show that both species of ground-nesting bees consistently search for their nest at the learned distance from landmarks. The influence of the apparent size of landmarks on the bees' search and choice behaviour is comparatively weak. We suggest that the bees exploit cues derived from the apparent speed of the landmark's image at their retina for distance evaluation.  相似文献   

17.
《L' Année biologique》1999,38(3-4):213-229
Due to the brood that it contains, the nest of social wasps constitutes a major source of protein for eventual predators. In the tropics, ants are generally considered as the most efficacious among them. In the face of such predation, wasps have developed over the course of evolution a great number of strategies. In addition to guarding and defensive behaviours displayed by workers, social wasps have nests whose structure is a response to the predation pressure exerted by ants. Thus, the presence of a petiole attaching the nest to a natural support itself sometimes selected because of its limited accessibility constitutes a frequent example of architectural defence. The effectiveness of the petiole is often improved through the repeated application of repellent substances on its surface. In the same way, wasps that found their new societies through swarming construct nests protected by an envelope. In the American tropics, army ants which hunt on the ground and can rapidly take over a tree, regularly pillage wasp nests. Because no defensive strategy is efficacious against such predators, the choice of nest site becomes decisive. Paradoxically, it is by nesting in close proximity to an arboreal ant nest that certain wasp species have been able to find a way of responding to the threat exerted by other ants. These ants, which tolerate the presence of the wasp nest, are capable of efficaciously protecting the tree or the branch sheltering the nest.  相似文献   

18.
Multiple gene duplication events in the precursor of the Aculeata (bees, ants, hornets) gave rise to four silk genes. Whilst these homologs encode proteins with similar amino acid composition and coiled coil structure, the retention of all four homologs implies they each are important. In this study we identified, produced and characterized the four silk proteins from Apis dorsata, the giant Asian honeybee. The proteins were readily purified, allowing us to investigate the folding behavior of solutions of individual proteins in comparison to mixtures of all four proteins at concentrations where they assemble into their native coiled coil structure. In contrast to solutions of any one protein type, solutions of a mixture of the four proteins formed coiled coils that were stable against dilution and detergent denaturation. The results are consistent with the formation of a heteromeric coiled coil protein complex. The mechanism of silk protein coiled coil formation and evolution is discussed in light of these results.  相似文献   

19.
Hornets, the largest social wasps, have a reputation of being facultatively nocturnal. Here we confirm flight activity of hornet workers in dim twilight. We studied the eyes and ocelli of European hornets (Vespa crabro) and common wasps (Vespula vulgaris) with the goal to find the optical and anatomical adaptations that enable them to fly in dim light. Adaptations described for obligately nocturnal hymenoptera such as the bees Xylocopa tranquebarica and Megalopta genalis and the wasp Apoica pallens include large ocelli and compound eyes with wide rhabdoms and large facet lenses. Interestingly, we did not find any such adaptations in hornet eyes or ocelli. On the contrary, their eyes are even less sensitive than those of the obligately diurnal common wasps. Therefore we conclude that hornets, like several facultatively nocturnal bee species such as Apis mellifera adansonii, A. dorsata and X. tenuiscapa are capable of seeing in dim light simply due to the large body and thus eye size. We propose that neural pooling strategies and behavioural adaptations precede anatomical adaptations in the eyes and ocelli when insects with apposition compound eyes turn to dim light activity.  相似文献   

20.
J. Kojima 《Insectes Sociaux》1992,39(3):275-284
Summary The frequency of application of ant repellent secreted from the metasomal sternum VI gland to the nest petiole (=rubbing behavior) inParapolybia indica colonies decreased significantly from the preemergence, single-foundress stage to the post-emergence stage. In the pre-emergence stage, rubbing occurred in close temporal association with the departure from the nest, which may maximize the antrepelling effect of the rubbing substance during the period when the nest is not attended by any wasps. On the other hand, only a small proportion of the departures was associated with rubbing in the post-emergence stage.Unlike in other independent-founding polistine wasps, rubbing inP. indica was not associated with petiole enlargement. Among independent-founding polistines,P. indica is unusual in that females enlarge the nest petiole with a large amount of plant fibers instead of strict use of adult saliva, and in that the petiole surface is rough, and may be much more absorbent than that of the secretion petiole. On the other hand, in the species showing a temporal association between petiole enlargement and rubbing, females typically rub immediately after petiole licking (application of oral secretion). This fact, and the lack of such a temporal association inP. indica, may suggest a possibility that the mixture of oral secretion and rubbing substance on the smooth surface of the secretion petiole makes the chemical barrier last longer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号