首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
To investigate the time course of speciation, we gathered literature data on 119 pairs of closely related Drosophila species with known genetic distances, mating discrimination, strength of hybrid sterility and inviability, and geographic ranges. Because genetic distance is correlated with divergence time, these data provide a cross-section of taxa at different stages of speciation. Mating discrimination and the sterility or inviability of hybrids increase gradually with time. Hybrid sterility and inviability evolve at similar rates. Among allopatric species, mating discrimination and postzygotic isolation evolve at comparable rates, but among sympatric species strong mating discrimination appears well before severe sterility or inviability. This suggests that prezygotic reproductive isolation may be reinforced when allopatric taxa become sympatric. Analysis of the evolution of postzygotic isolation shows that recently diverged taxa usually produce sterile or inviable male but not female hybrids. Moreover, there is a large temporal gap between the evolution of male-limited and female hybrid sterility or inviability. This gap, which is predicted by recent theories about the genetics of speciation, explains the overwhelming preponderance of hybridizations yielding male-limited hybrid sterility or inviability (Haldane's rule).  相似文献   

2.

Background

Analyses of speciation genes – genes that contribute to the cessation of gene flow between populations – can offer clues regarding the ecological settings, evolutionary forces and molecular mechanisms that drive the divergence of populations and species. This review discusses the identities and attributes of genes that contribute to reproductive isolation (RI) in plants, compares them with animal speciation genes and investigates what these genes can tell us about speciation.

Scope

Forty-one candidate speciation genes were identified in the plant literature. Of these, seven contributed to pre-pollination RI, one to post-pollination, prezygotic RI, eight to hybrid inviability, and 25 to hybrid sterility. Genes, gene families and genetic pathways that were frequently found to underlie the evolution of RI in different plant groups include the anthocyanin pathway and its regulators (pollinator isolation), S RNase-SI genes (unilateral incompatibility), disease resistance genes (hybrid necrosis), chimeric mitochondrial genes (cytoplasmic male sterility), and pentatricopeptide repeat family genes (cytoplasmic male sterility).

Conclusions

The most surprising conclusion from this review is that identities of genes underlying both prezygotic and postzygotic RI are often predictable in a broad sense from the phenotype of the reproductive barrier. Regulatory changes (both cis and trans) dominate the evolution of pre-pollination RI in plants, whereas a mix of regulatory mutations and changes in protein-coding genes underlie intrinsic postzygotic barriers. Also, loss-of-function mutations and copy number variation frequently contribute to RI. Although direct evidence of positive selection on speciation genes is surprisingly scarce in plants, analyses of gene family evolution, along with theoretical considerations, imply an important role for diversifying selection and genetic conflict in the evolution of RI. Unlike in animals, however, most candidate speciation genes in plants exhibit intraspecific polymorphism, consistent with an important role for stochastic forces and/or balancing selection in development of RI in plants.Key words: Speciation, reproductive isolation, mating system isolation, pollinator isolation, ecological isolation, unilateral incompatibility, hybrid necrosis, hybrid sterility, hybrid inviability, hybrid breakdown, cytoplasmic male sterility, restoration  相似文献   

3.
Speciation is intimately associated with the evolution of sex-and-reproduction-related traits, including those affecting hybrid incompatibility (postzygotic isolation) and species recognition (prezygotic isolation). Genes controlling such traits are not randomly distributed in the genome but are particularly abundant on the sex chromosomes. However, the evolutionary consequences of the sex linkage of genes involved in speciation have been little explored. Here, we present simulations of a continent-island diploid model that examines the effects of reduced recombination using both autosomal and sex-linked inheritance. We show first that linkage between genes affecting postzygotic and prezygotic isolation leads to a positive feedback loop in which both are strengthened. As species recognition evolves, genes causing hybrid incompatibility will hitchhike along with those improving premating isolation, leading to stronger hybrid incompatibility and thus increased pressure for further preference divergence. Second, we show that this loop effect is generally enhanced by sex linkage, because recombination is eliminated in the heterogametic sex, leading to tighter effective linkage between the two classes of genes and because natural selection is more efficient at sex-linked loci, as recessive alleles are not masked by dominance in the heterogametic sex. Accordingly, hitchhiking can be important in promoting speciation and can also lead to increased postzygotic isolation through adaptive evolution.  相似文献   

4.
New species arise as reproductive isolation evolves between diverging populations. Here we review recent work in the genetics of postzygotic reproductive isolation-the sterility and inviability of species hybrids. Over the last few years, research has taken two new directions. First, we have begun to learn a good deal about the population genetic forces driving the evolution of postzygotic isolation. It has, for instance, become increasingly clear that conflict-driven processes, like sexual selection and meiotic drive, may contribute to the evolution of hybrid sterility. Second, we have begun to learn something about the identity and molecular characteristics of the actual genes causing hybrid problems. Although molecular genetic data are limited, early findings suggest that "speciation genes" correspond to loci having normal functions within species and that these loci sometimes diverge as a consequence of evolution in gene regulation.  相似文献   

5.
The Genetics of Postzygotic Isolation in the Drosophila Virilis Group   总被引:8,自引:7,他引:1  
H. A. Orr  J. A. Coyne 《Genetics》1989,121(3):527-537
In a genetic study of postzygotic reproductive isolation among species of the Drosophila virilis group, we find that the X chromosome has the largest effect on male and female hybrid sterility and inviability. The X alone has a discernible effect on postzygotic isolation between closely related species. Hybridizations involving more distantly related species also show large X-effects, although the autosomes may also play a role. In the only hybridization yet subjected to such analysis, we show that hybrid male and female sterility result from the action of different X-linked loci. Our results accord with genetic studies of other taxa, and support the view that both Haldane's rule (heterogametic F1 sterility or inviability) and the large effect of the X chromosome on reproductive isolation result from the accumulation by natural selection of partially recessive or underdominant mutations. We also describe a method that allows genetic analysis of reproductive isolation between species that produce completely sterile or inviable hybrids. Such species pairs, which represent the final stage of speciation, cannot be analyzed by traditional methods. The X chromosome also plays an important role in postzygotic isolation between these species.  相似文献   

6.
Sexual isolating mechanisms that act before fertilization are often considered the most important genetic barriers leading to speciation in animals. While recent progress has been made toward understanding the genetic basis of the postzygotic isolating mechanisms of hybrid sterility and inviability, little is known about the genetic basis of prezygotic sexual isolation. Here, we map quantitative trait loci (QTL) contributing to prezygotic reproductive isolation between the sibling species Drosophila simulans and D. mauritiana. We mapped at least seven QTL affecting discrimination of D. mauritiana females against D. simulans males, three QTL affecting D. simulans male traits against which D. mauritiana females discriminate, and six QTL affecting D. mauritiana male traits against which D. simulans females discriminate. QTL affecting sexual isolation act additively, are largely different in males and females, and are not disproportionately concentrated on the X chromosome: The QTL of greatest effect are located on chromosome 3. Unlike the genetic components of postzygotic isolation, the loci for prezygotic isolation do not interact epistatically. The observation of a few QTL with moderate to large effects will facilitate positional cloning of genes underlying sexual isolation.  相似文献   

7.
The empirical study of speciation has brought us closer to unlocking the origins of life’s vast diversity. By examining recently formed species, a number of general patterns, or rules, become apparent. Among fixed differences between species, sexual genes and traits are one of the most rapidly evolving and novel functional classes, and premating isolation often develops earlier than postmating isolation. Among interspecific hybrids, sterility evolves faster than inviability, the X-chromosome has a greater effect on incompatibilities than autosomes, and hybrid dysfunction affects the heterogametic sex more frequently than the homogametic sex (Haldane’s rule). Haldane’s rule, in particular, has played a major role in reviving interest in the genetics of speciation. However, the large genetic and reproductive differences between taxa and the multi-factorial nature of each rule have made it difficult to ascribe general mechanisms. Here, we review the extensive progress made since Darwin on understanding the origin of species. We revisit the rules of speciation, regarding them as landmarks as species evolve through time. We contrast these ‘rules’ of speciation to ‘mechanisms’ of speciation representing primary causal factors ranging across various levels of organization—from genic to chromosomal to organismal. To explain the rules, we propose a new ‘hierarchical faster-sex’ theory: the rapid evolution of sex and reproduction-related (SRR) genes (faster-SRR evolution), in combination with the preferential involvement of the X-chromosome (hemizygous X-effects) and sexually selected male traits (faster-male evolution). This unified theory explains a comprehensive set of speciation rules at both the prezyotic and postzygotic levels and also serves as a cohesive alternative to dominance, composite, and recent genomic conflict interpretations of Haldane’s rule.  相似文献   

8.
Identifying the manner in which reproductive barriers accumulate during lineage divergence is central to establishing general principles of species formation. One outstanding question is which isolating mechanisms form the first complete barrier to gene flow in a given lineage or under a particular set of conditions. To identify these initial reproductive barriers requires examining lineages in very early stages of divergence, before multiple reproductive barriers have evolved to completion. We quantified the strength of three postmating barriers in a pair of darter species and compared these estimates to each other and to the strength of behavioral isolation (BI) reported in a previous study. Results reveal no evidence of gametic incompatibility but intermediate levels of conspecific sperm precedence and hybrid inviability. As BI is nearly complete, our analysis comparing the strength of multiple reproductive barriers implicates the evolution of mate choice as central to both the origin and maintenance of these species. Further examination of ecological isolation and hybrid sterility is necessary to determine the role of these barriers in darter speciation.  相似文献   

9.
Speciation, the evolution of reproductive isolation between populations, serves as the driving force for generating biodiversity. Postzygotic barriers to gene flow, such as F 1 hybrid sterility and inviability, play important roles in the establishment and maintenance of biological species. F 1 hybrid incompatibilities in taxa that obey Haldane's rule, the observation that the heterogametic sex suffers greater hybrid fitness problems than the homogametic sex, are thought to often result from interactions between recessive-acting X-linked loci and dominant-acting autosomal loci. Because they play such prominent roles in producing hybrid incompatibilities, we examine the dominance and nature of epistasis between alleles derived from Drosophila persimilis that confer hybrid male sterility in the genetic background of its sister species, D. pseudoobscura bogotana . We show that epistasis elevates the apparent dominance of individually recessive-acting QTL such that they can contribute to F 1 hybrid sterility. These results have important implications for assumptions underlying theoretical models of hybrid incompatibilities and may offer a possible explanation for why, to date, identification of dominant-acting autosomal "speciation genes" has been challenging.  相似文献   

10.
Ecological speciation proceeds through the accumulation of divergent traits that contribute to reproductive isolation, but in the face of gene flow traits that characterize incipient species may become disassociated through recombination. Heliconius butterflies are well known for bright mimetic warning patterns that are also used in mate recognition and cause both pre- and post-mating isolation between divergent taxa. Sympatric sister taxa representing the final stages of speciation, such as Heliconius cydno and Heliconius melpomene, also differ in ecology and hybrid fertility. We examine mate preference and sterility among offspring of crosses between these species and demonstrate the clustering of Mendelian colour pattern loci and behavioural loci that contribute to reproductive isolation. In particular, male preference for red patterns is associated with the locus responsible for the red forewing band. Two further colour pattern loci are associated, respectively, with female mating outcome and hybrid sterility. This genetic architecture in which ‘speciation genes’ are clustered in the genome can facilitate two controversial models of speciation, namely divergence in the face of gene flow and hybrid speciation.  相似文献   

11.
什么是物种?新物种是如何形成的?这些问题是生命科学研究的重大问题.物种的形成是在生殖隔离的基础上某些新的生物学性状的形成和保留,是生物进化的最基本过程,其实质是基因结构突变的积累与功能的分化. 地理隔离使群体中的基因不能交流,基因突变也会影响个体间交配趣向,从而造成交配隔离或者交配后杂合体的基因组不亲和、杂交不育甚至杂交不活,使不同的群体逐渐分化为新物种. 随着分子生物学与基因组学的飞速发展,进化生物学家已经发现一些与物种形成有关的基因-物种形成基因(speciation genes),鉴定并了解这些基因的功能,不仅能使我们在分子水平上理解新物种形成的实质和规律、而且对于我们突破种间屏障进行远缘杂交育种也有重要的理论指导意义.本文综述了目前对几个物种形成基因及其功能的研究进展,为该领域的进一步研究提供资料.  相似文献   

12.
Studies of postzygotic isolation often involve well-differentiated taxa that show a consistent level of incompatibility, thereby limiting our understanding of the initial stages and development of reproductive barriers. Dendroctonus ponderosae provides an informative system because recent evidence suggests that distant populations produce hybrids with reproductive incompatibilities. Dendroctonus ponderosae shows an isolation-by-distance gene flow pattern allowing us to characterize the evolution of postzygotic isolation (e.g., hybrid inviability, hybrid sterility) by crossing populations along a continuum of geographic/genetic divergence. We found little evidence of hybrid inviability among these crosses. However, crosses between geographically distant populations produced sterile males (consistent with Haldane's rule). This effect was not consistent with the fixation of mutations in an isolation-by-distance pattern, but instead is spatially localized. These reproductive barriers are uncorrelated with a reduction in gene flow suggesting their recent development. Crosses between geographically proximal populations bounding the transition from compatibility to hybrid male sterility showed evidence of unidirectional reduction in hybrid male fecundity. Our study describes significant postzygotic isolation occurring across a narrow and molecularly cryptic geographic zone between the states of Oregon and Idaho. This study provides a view of the early stages of postzygotic isolation in a geographically widespread species.  相似文献   

13.
The evolution of reproductive barriers is of central importance for speciation. Here, we investigated three components of postzygotic isolation-embryo mortality, hybrid inviability, and hybrid sterility-in a group of food-deceptive Mediterranean orchids from the genera Anacamptis, Neotinea, and Orchis. In these orchids, pollinator-mediated isolation is weak, which suggests that postpollination barriers exist. Based on crossing experiments and a literature survey, we found that embryo mortality caused complete reproductive isolation among 36.3% of the species pairs, and hybrid inviability affected 55.6% of the potentially hybridizing species pairs. Hybrid sterility was assessed experimentally for seven species pairs. A strong reduction of fertility in all investigated hybrids was found, together with clear differences between male and female components of hybrid sterility. Postzygotic isolation was found to evolve gradually with genetic divergence, and late postzygotic isolation (i.e., hybrid inviability and sterility) evolved faster than embryo mortality, which is an earlier postzygotic isolation stage. These results reveal that intrinsic postzygotic isolation strongly contributes to maintaining species boundaries among Mediterranean food-deceptive orchids while establishing a prominent role for these reproductive barriers in the early stage of species isolation.  相似文献   

14.
Willett CS 《Genetica》2008,133(2):129-136
Two different forces are thought to contribute to the rapid accumulation of hybrid male sterility that has been observed in many inter-specific crosses, namely the faster male and the dominance theories. For male heterogametic taxa, both faster male and dominance would work in the same direction to cause the rapid evolution of male sterility; however, for taxa lacking differentiated sex chromosomes only the faster male theory would explain the rapid evolution of male hybrid sterility. It is currently unknown what causes the faster evolution of male sterility, but increased sexual selection on males and the sensitivity of genes involved in male reproduction are two hypotheses that could explain the observation. Here, patterns of hybrid sterility in crosses of genetically divergent copepod populations are examined to test potential mechanisms of faster male evolution. The study species, Tigriopus californicus, lacks differentiated, hemizygous sex chromosomes and appears to have low levels of divergence caused by sexual selection acting upon males. Hybrid sterility does not accumulate more rapidly in males than females in these crosses suggesting that in this taxon male reproductive genes are not inherently more prone to disruption in hybrids.  相似文献   

15.
 The main subject for models of postzygotic isolation has been how reproductive isolation genes (RI genes) which cause hybrid inviability or sterility spread within populations despite their deleterious effects. The models are divided into three categories according to the within-population effect of RI genes in their fixation process. (1) The beneficial effect model, where RI genes are assumed to spread within populations by a positive selective force via natural or sexual selection. (2) The neutral effect model, where RI genes are assumed not to affect the fitness of individuals in their fixation process and to be spread by genetic drift. (3) The deleterious effect model, where RI genes are assumed to exhibit some (slightly) deleterious effects in their fixation process and to be spread by genetic drift. Factors that affect the applicability of these models are discussed. If a selective force such as sexual conflict or natural selection facilitates the evolution of RI genes, the beneficial effect model should be applied. Many empirical studies have suggested that positive selection plays an important role in the evolution of hybrid male sterility. If the mutation rates of RI genes are low, and the specificity of epistatic interaction causing hybrid inviability or sterility is high, the neutral effect model should be applied. However, if the opposite condition applies, the deleterious effect model should be applied. Received: February 7, 2002 / Accepted: October 17, 2002 Acknowledgments We are grateful to two anonymous reviewers and the editor for helpful comments and suggestions. Correspondence to:T.I. Hayashi  相似文献   

16.
Evolution of reproductive isolation is an important process, generating biodiversity and driving speciation. To better understand this process, it is necessary to investigate factors underlying reproductive isolation through various approaches but also in various taxa. Previous studies, mainly focusing on diploid animals, supported the prevalent view that reproductive barriers evolve gradually as a by-product of genetic changes accumulated by natural selection by showing a positive relationship between the degree of reproductive isolation and genetic distance. Haplodiploid animals are expected to generate additional insight into speciation, but few studies investigated the prevalent view in haplodiploid animals. In this study, we investigate whether the relationship also holds in a haplodiploid spider mite, Amphitetranychus viennensis (Zacher). We sampled seven populations of the mite in the Palaearctic region, measured their genetic distance (mtDNA) and carried out cross experiments with all combinations. We analyzed how lack of fertilization rate (as measure of prezygotic isolation) as well as hybrid inviability and hybrid sterility (as measures of postzygotic isolation) varies with genetic distance. We found that the degree of reproductive isolation varies among cross combinations, and that all three measures of reproductive isolation have a positive relationship with genetic distance. Based on the mtDNA marker, lack of fertilization rate, hybrid female inviability and hybrid female sterility were estimated to be nearly complete (99.0–99.9% barrier) at genetic distances of 0.475–0.657, 0.150–0.209 and 0.145–0.210, respectively. Besides, we found asymmetries in reproductive isolation. The prevalent view on the evolution of reproductive barriers is supported in the haplodiploid spider mite we studied here. According to the estimated minimum genetic distance for total reproductive isolation in parent population crosses in this study and previous work, a genetic distance of 0.15–0.21 in mtDNA (COI) appears required for speciation in spider mites. Variations and asymmetries in the degree of reproductive isolation highlight the importance of reinforcement of prezygotic reproductive isolation through incompatibility and the importance of cytonuclear interactions for reproductive isolation in haplodiploid spider mites.  相似文献   

17.
The process of speciation is a crucial aspect of evolutionary biology. In this study, we analysed the patterns of evolution of postzygotic reproductive isolation in Galliformes using information on hybridization and genetic distance among species. Four main patterns arose: (1) hybrid inviability and sterility in F1 hybrids increase as species diverge; (2) the presence of geographical overlap does not affect the evolution of postzygotic isolation; (3) the galliforms follow Haldane's rule; (4) hybrid inviability is higher in F2 than in F1 hybrids, but does not appear to be increased in the backcrosses. This study contributes to the growing evidence suggesting that the patterns of evolution of postzygotic isolation and the process of speciation are shared among avian groups (and animals in general). In particular, our results support the notion of F2 hybrid inviability as being key for the maintenance of species genetic integrity when prezygotic isolation barriers are overcome in closely related species, in which postzygotic isolation in the F1 hybrid might still not be fully developed. To the contrary, hybrids from backcrosses did not show serious inviability problems (at least not more than F1 hybrids), demonstrating that they could generate gene flow among bird species. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 110 , 528–542.  相似文献   

18.
Nosil P  Crespi BJ  Gries R  Gries G 《Genetica》2007,129(3):309-327
Sexual isolation can evolve due to natural selection against hybrids (reinforcement). However, many different forms of hybrid dysfunction, and selective processes that do not involve hybrids, can contribute to the evolution of sexual isolation. Here we review how different selective processes affect the evolution of sexual isolation, describe approaches for distinguishing among them, and assess how they contribute to variation in sexual isolation among populations of Timema cristinae stick-insects. Pairs of allopatric populations of T. cristinae living on different host-plant species exhibit greater sexual isolation than those on the same host, indicating that some sexual isolation has evolved due to host adaptation. Sexual isolation is strongest in regions where populations on different hosts are in geographic contact, a pattern of reproductive character displacement that is indicative of reinforcement. Ecological costs to hybridization do occur but traits under ecological selection (predation) do not co-vary strongly with the probability of between-population mating such that selection on ecological traits is not predicted to produce a strong correlated evolutionary response in mate preference. Moreover, F1 hybrid egg inviability is lacking and the factors contributing to reproductive character displacement require further study. Finally, we show that sexual isolation involves, at least in part, olfactory communication. Our results illustrate how understanding of the evolution of sexual isolation can be enhanced by isolating the roles of diverse ecological and evolutionary processes.  相似文献   

19.
Sex-linked hybrid sterility in a butterfly   总被引:4,自引:0,他引:4  
Recent studies, primarily in Drosophila, have greatly advanced our understanding of Haldane's rule, the tendency for hybrid sterility or inviability to affect primarily the heterogametic sex (Haldane 1922). Although dominance theory (Turelli and Orr 1995) has been proposed as a general explanation of Haldane's rule, this remains to be tested in female-heterogametic taxa, such as the Lepidoptera. Here we describe a novel example of Haldane's rule in Heliconius melpomene (Lepidoptera; Nymphalidae). Female F1 offspring are sterile when a male from French Guiana is crossed to a female from Panama, but fertile in the reciprocal cross. Male F1s are fertile in both directions. Similar female F1 sterility occurs in crosses between French Guiana and eastern Colombian populations. Backcrosses and linkage analysis show that sterility results from an interaction between gene(s) on the Z chromosome of the Guiana race with autosomal factors in the Panama genome. Large X (or Z) effects are commonly observed in Drosophila, but to our knowledge have not been previously demonstrated for hybrid sterility in Lepidoptera. Differences in the abundance of male versus female or Z-linked versus autosomal sterility factors cannot be ruled out in our crosses as causes of Haldane's rule. Nonetheless, the demonstration that recessive Z-linked loci cause hybrid sterility in a female heterogametic species supports the contention that dominance theory provides a general explanation of Haldane's rule (Turelli and Orr 2000).  相似文献   

20.
Advances in the genetics of reproductive isolation in Drosophila   总被引:2,自引:0,他引:2  
E Zouros 《Génome》1989,31(1):211-220
Speciation genetics is defined as the study of genetic events and processes that differentiate the probabilities that genetic material from individual members of a population will co-occur in individuals of some future generation. It follows that phenotypic attributes that contribute to this differentiation of probabilities (e.g., mating preferences, sterility, or infertility of individuals from certain types of matings) constitute the phenotype of speciation, and genetic loci that may affect these phenotypic attributes can be considered as speciation genes. The literature on genetic differences between hybridizable species of Drosophila that are responsible for morphological differences, mating preferences, hybrid inviability, and hybrid sterility are reviewed with special reference to the species pair D. mojavensis - D. arizonensis. The case for the involvement of karyotypic changes in speciation in rodents is briefly discussed. It is concluded that no major advance has been made in the speciation genetics of Drosophila since Dobzhansky initiated the field 40 years ago. Yet, the identification of several gene loci that cause hybrid inviability or sterility may open the way to the understanding of reproductive isolation at the molecular level. It is not clear whether this approach will lead to general molecular mechanisms underlying the speciation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号