首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Under anaerobic conditions an exponentially growing culture of Escherichia coli K-12 was exposed to hydrogen peroxide in the presence of various compounds. Hydrogen peroxide (0.1 mM) together with 0.1 mM L-cysteine or L-cystine killed the organisms more rapidly than 10 mM hydrogen peroxide alone. The exposure of E. coli to hydrogen peroxide in the presence of L-cysteine inhibited some of the catalase. This inhibition, however, could not fully explain the 100-fold increase in hydrogen peroxide sensitivity of the organism in the presence of L-cysteine. Of other compounds tested only some thiols potentiated the bactericidal effect of hydrogen peroxide. These thiols were effective, however, only at concentrations significantly higher than 0.1 mM. The effect of L-cysteine and L-cystine could be annihilated by the metal ion chelating agent 2,2'-bipyridyl. DNA breakage in E. coli K-12 was demonstrated under conditions where the organisms were killed by hydrogen peroxide.  相似文献   

2.
Detection of the common electrochemical interferents, ascorbic acid and hydrogen peroxide, using a SIRE (Sensors based on Injection of the Recognition Element) technology based biosensor in reverse mode operation is reported. The differential measuring principle employed in the SIRE biosensor during operation in reverse mode is such that the sample is measured first in the presence of enzyme (yielding matrix signal only), and then measured again in the absence of enzyme (yielding signal from matrix+analyte). Subtraction of the signal obtained in the presence of enzyme from the signal obtained in the absence of enzyme gives a specific signal for the analyte only and correlates directly to its concentration in solution. The linear range for the determination of ascorbic acid and hydrogen peroxide was 0-3 mM and 0-2 mM, respectively, with an enzyme concentration of 25 U ascorbate oxidase/ml and 1000 U catalase/ml. The reproducibility was 5% for ascorbic acid (R.S.D. n=15) and 10% for hydrogen peroxide (R.S.D. n=18). The cost per measurement was 0.28 USD for ascorbic acid analysis and 0.0008 USD for hydrogen peroxide analysis. The degradation of ascorbic acid in cereal was followed in real-time, as was the stabilization of low pH on the degradation process.  相似文献   

3.
The oxidative stress response in Bacillus subtilis   总被引:9,自引:0,他引:9  
Abstract Bacillus subtilis undergoes a typical bacterial stress response when exposed to low concentrations (0.1 mM) of hydrogen peroxide. Protection is thereby induced against otherwise lethal, challenge concentrations (10 mM) of this oxidant and a number of proteins are induced including the scavenging enzymes, catalase and alkyl hydroperoxide reductase, and a putative DNA binding and protecting protein. Induced protection against higher concentrations (10–30 mM) of hydrogen peroxide is eliminated in a catalase-deficient mutant. Both RecA and Spo0A influence the basal but not the induced resistance to hydrogen peroxide. A regulatory mutation has been characterized that affects the inducible phenotype and is constitutively resistant to high concentrations of hydrogen peroxide. This mutant constitutively overexpresses the proteins induced by hydrogen peroxide in the wild-type. The resistance of spores to hydrogen peroxide is partly attributable to binding of small acid soluble proteins by the spore DNA and partly to a second step which coincides with the depletion of the NADH pool, which may inhibit the generation of hydroxyl radicals from hydrogen peroxide.  相似文献   

4.
Hydrogen peroxide removal rates by hemoglobin were enhanced in the presence of reduced pyridine nucleotides. The species which had the activity to oxidize pyridine nucleotides was purified from human blood and identified as hemoglobin A. Hydrogen peroxide removal rates by hemoglobin A without reduced pyridine nucleotides at 0.2 mM hydrogen peroxide were 0.87+/-0.11 micromol/s/g hemoglobin, and the removal rates using 0.2 mM NADH and NADPH were 2.02+/-0.20 and 1.96+/-0.31 micromol/s/g hemoglobin, respectively. We deduced that the removal reaction by hemoglobin included formations of methemoglobin and the ferryl radical and reduction of the latter with pyridine nucleotides. The hydrogen peroxide removal ability by hemoglobin was less than that by catalase but was larger than that by glutathione peroxidase-glutathione reductase system at 0.2 mM hydrogen peroxide. Under acatalasemic conditions, it was suggested that NAD(P)H were important factors to prevent the oxidative degradation of hemoglobin.  相似文献   

5.
Ascorbic acid at concentrations between 0.57 and 5.7 mM in aerated medium caused an eight fold increase in catalase activity in Escherchia coli. The hydrogen peroxide concentrations resulting from ascorbate oxidation were between 20 and 120 μM and hydrogen peroxide by itself caused a similar increase in catalase levels in both aerobic and anaerobic media. Three catalase activity bands visualized on polyacrylamide gels were increased. Chloramphenicol which inhibits protein synthesis, anaerobic medium and EDTA, which prevent ascorbate oxidation, and exogenous catalase, which removes hydrogen peroxide from the medium, all prevented the increase in catalase in response to ascorbate. Superoxide dismutase activity was not affected by ascorbate.  相似文献   

6.
Cyclic voltammetry was used for simultaneous formation and immobilization of nickel oxide nano-scale islands and catalase on glassy carbon electrode. Electrodeposited nickel oxide may be a promising material for enzyme immobilization owing to its high biocompatibility and large surface. The catalase films assembled on nickel oxide exhibited a pair of well defined, stable and nearly reversible CV peaks at about -0.05 V vs. SCE at pH 7, characteristic of the heme Fe (III)/Fe (II) redox couple. The formal potential of catalase in nickel oxide film were linearly varied in the range 1-12 with slope of 58.426 mV/pH, indicating that the electron transfer is accompanied by single proton transportation. The electron transfer between catalase and electrode surface, (k(s)) of 3.7(+/-0.1) s(-1) was greatly facilitated in the microenvironment of nickel oxide film. The electrocatalytic reduction of hydrogen peroxide at glassy carbon electrode modified with nickel oxide nano-scale islands and catalase enzyme has been studied. The embedded catalase in NiO nanoparticles showed excellent electrocatalytic activity toward hydrogen peroxide reduction. Also the modified rotating disk electrode shows good analytical performance for amperometric determination of hydrogen peroxide. The resultant catalase/nickel oxide modified glassy carbon electrodes exhibited fast amperometric response (within 2 s) to hydrogen peroxide reduction (with a linear range from 1 microM to 1 mM), excellent stability, long term life and good reproducibility. The apparent Michaelis-Menten constant is calculated to be 0.96(+/-0.05)mM, which shows a large catalytic activity of catalase in the nickel oxide film toward hydrogen peroxide. The excellent electrochemical reversibility of redox couple, high stability, technical simplicity, lake of need for mediators and short preparations times are advantages of this electrode. Finally the activity of biosensor for nitrite reduction was also investigated.  相似文献   

7.
Studies on the autoxidation of dopamine: interaction with ascorbate   总被引:2,自引:0,他引:2  
An oxygen electrode was used to monitor the reaction between dopamine (DA, 1-20 mM) and oxygen at pH 7.4 and 37 degrees C, in both the presence and absence of ascorbate (10 mM). The selected concentrations approximate levels within DA neurons. Diethylenetriaminepentaacetic acid (DTPA, 0.1 mM) was used to suppress catalysis by trace metals in the reagents. Separate experiments with catalase showed that oxygen consumption could be equated with the formation of hydrogen peroxide. Depending upon the experimental conditions, ascorbate acted either as an antioxidant, suppressing oxygen consumption (H2O2 production) to 6-8% of the expected rate, or as a prooxidant, amplifying oxygen consumption by 640%. The antioxidant action is consistent with the scavenging of superoxide radicals by ascorbate. The prooxidant action is probably the result of redox cycling of a pre-melanin oxidation product derived from DA. Analyses conducted by high-performance liquid chromatography with electrochemical detection revealed formation of a product with a very low oxidation potential; the product was not 6-hydroxydopamine. These observations may be relevant to concepts of toxicity mediated by DA within neuronal systems.  相似文献   

8.
A carbon paste electrode containing ruthenium(IV) oxide as a modifier was tested as an effective hydrogen peroxide amperometric sensor in bulk measurements (hydrodynamic amperometry). Factors that influence its overall analytical perform ance, such as pH and the applied potential, were examined. The RuO2-modified electrode displayed high sensitivity towards hydrogen peroxide, with detection limits as low as 0.02 mm at pH 7.4 and 0.007 mM at pH 9.0. The method was applied for monitoring the decomposition of hydrogen peroxide (by catalase) in phosphate buffer of pH 7.4. The relative response of the electrode towards ascorbic acid was assessed and it was found that the selectivity of the RuO2-modified electrode towards hydrogen peroxide over ascorbic acid could be significantly improved by electro-polymerizing m-phenylenediamine on its surface prior to measurements. The RuO2-modified electrode was used for the kinetic (fixed time) determination of catalase activity in the range of 4-40 U/mL (detection limit 1.2 U/mL). The method was applied to the determination of catalase-like activity in various plant materials (recov-ery ranged from 93 to 101%, detection limit 480 U/100 g).  相似文献   

9.
We tested the ability of saturated n-monocarboxylic acids ranging from eight to 12 carbons in length to self-assemble into vesicles, and determined the minimal concentrations and chain lengths necessary to form stable bilayer membranes. Under defined conditions of pH and concentrations exceeding 150 mM, an unbranched monocarboxylic acid as short as eight carbons in length (n-octanoic acid) assembled into vesicular structures. Nonanoic acid (85 mM) formed stable vesicles at pH 7.0, the pK of the acid in bilayers, and was chosen for further testing. At pH 6 and below, the vesicles were unstable and the acid was present as droplets. At pH ranges of 8 and above clear solutions of micelles formed. However, addition of small amounts of an alcohol (nonanol) markedly stabilized the bilayers, and vesicles were present at significantly lower concentrations (approximately 20 mM) at pH ranges up to 11. The formation of vesicles near the pK(a) of the acids can be explained by the formation of stable RCOO(-)...HOOCR hydrogen bond networks in the presence of both ionized and neutral acid functions. Similarly, the effects of alcohols at high pH suggests the formation of stable RCOO(-)...HOR hydrogen bond networks when neutral RCOOH groups are absent. The vesicles provided a selective permeability barrier, as indicated by osmotic activity and ionic dye capture, and could encapsulate macromolecules such as DNA and a protein. When catalase was encapsulated in vesicles of decanoic acid and decanol, the enzyme was protected from degradation by protease, and could act as a catalyst for its substrate, hydrogen peroxide, which readily diffused across the membrane. We conclude that membranous vesicles produced by mixed short chain monocarboxylic acids and alcohols are useful models for testing the limits of stabilizing hydrophobic effects in membranes and for prebiotic membrane formation.  相似文献   

10.
Werner M. Kaiser 《Planta》1979,145(4):377-382
Hydrogen peroxide (6x10-4 M) causes a 90% inhibition of CO2-fixation in isolated intact chloroplasts. The inhibition is reversed by adding catalase (2500 U/ml) or DTT (10 mM). If hydrogen peroxide is added to a suspension of intact chloroplasts in the light, the incorporation of carbon into hexose- and heptulose bisphosphates and into pentose monophosphates is significantly increased, whereas; carbon incorporation into hexose monophosphates and ribulose 1,5-bisphosphate is decreased. At the same time formation of 6-phosphogluconate is dramatically stimulated, and the level of ATP is increased. All these changes induced by hydrogen peroxide are reversed by addition of catalase or DTT. Additionally, the conversion of [14C]glucose-6-phosphate into different metabolites by lysed chloroplasts in the dark has been studied. In presence of hydrogen peroxide, formation of ribulose-1,5-bisphosphate is inhibited, whereas formation of other bisphosphates,of triose phosphates, and pentose monophosphates is stimulated. Again, DTT has the opposite effect. The release of 14CO2 from added [14C]glucose-6-phosphate by the soluble fraction of lysed chloroplasts via the reactions of oxidative pentose phosphate cycle is completely inhibited by DTT (0.5 mM) and re-activated by comparable concentrations of hydrogen peroxide. These results indicate that hydrogen peroxide interacts with reduced sulfhydryl groups which are involved in the light activation of enzymes of the Calvin cycle at the site of fructose- and sedoheptulose bisphophatase, of phosphoribulokinase, as well as in light-inactivation of oxidative pentose phosphate cycle at the site of glucose-6-phosphate dehydrogenase.Abbreviations ADPG ADP-glucose - DHAP dihydroxyacetone phosphate - DTT dithiothreitol - FBP fructose-1,6-bisphosphate - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - HMP hexose monophosphates (fructose-6-phosphate, glucose-6-phosphate, glucose-1-phosphate) - 6-PGI 6-phosphogluconate - PMP pentose monophosphates (xylulose-5-phosphate, ribose-5-phosphate, ribulose-5-phosphate) - RuBP ribulose-1,5-bisphosphate - S7P sedoheptulose-7-phosphate - SBP sedoheptulose-1,7-bisphosphate Dedicated to Prof. Dr. W. Simonis on the occasion of his 70th birthday  相似文献   

11.
Lactic acid bacteria isolated from an industrial-scale ethanol fermentation process were used to evaluate sulfite as a bacterial-contamination control agent in a cell-recycled continuous ethanol fermentation process. The viabilities of bacteria were decreased by sulfite at concentrations of 100 to 400 mg liter-1, while sulfite at the same concentrations did not change the viability of the Saccharomyces cerevisiae strain used in this process. Sulfite was effective only in the presence of oxygen. Bacteria showed differences in their susceptibilities to sulfite. Facultatively heterofermentative Lactobacillus casei 4-3 was more susceptible than was obligatory heterofermentative Lactobacillus fermentum 7-1. The former showed higher enzyme activities involved in the production and consumption of hydrogen peroxide than did the latter. The viability of L. fermentum 7-1 could be selectively controlled by hydrogen peroxide at concentrations of 1 to 10 mM. Based on these findings, it is hypothesized that the sulfur trioxide radical anions formed by peroxidase in the presence of hydrogen peroxide are responsible for the control of contaminating bacteria. Sulfite did not kill the yeast strain, which has catalase to degrade hydrogen peroxide. A cell-recycled continuous ethanol fermentation process was run successfully with sulfite treatments.  相似文献   

12.
Previously, we showed the presence in radish (Raphanus sativus L.) plasmalemma vesicles of an NAD(P)H oxidase, active at pH 4.5-5.0, which elicits the formation of anion superoxide (Vianello and Macrí (1989) Biochim. Biophys. Acta 980, 202-208). In this work, we studied the role of hydrogen peroxide and iron ions upon this oxidase activity. NADH oxidation was stimulated by ferrous ions and, to a lesser extent, by ferric ions. Salicylate and benzoate, two known hydroxyl radical scavengers, inhibited both basal and iron-stimulated NADH oxidase activity. The iron chelators EDTA (ethylenediaminetetraacetic acid) and DFA (deferoxamine melysate) at high concentrations (2 mM) inhibited the NADH oxidation, whereas they were ineffective at lower concentrations (80 microM); the subsequent addition of ferrous ions caused a rapid and limited increase of oxygen consumption which later ceased. Hydrogen peroxide was not detected during NADH oxidation but, in the presence of salicylate, its formation was found in significant amounts. NADH oxidase activity was also associated to a Fe2+ oxidation which was only partially inhibited by salicylate. Ferrous ion oxidation was partially inhibited by catalase and prevented by superoxide dismutase, while ferric ion reduction was abolished by catalase and unaffected by superoxide dismutase. These results show that during NADH oxidation iron ions undergo oxidoreduction and that hydrogen peroxide is produced and rapidly consumed. As previously suggested, this oxidation appears linked to the univalent oxidoreduction of iron ions by a reduced flavoprotein of radish plasmalemma which is then converted to a radical form. The latter, reacting with oxygen generates the superoxide anion which dismutases to H2O2. Hydrogen peroxide, through a Fenton's reaction, may react with Fe2+ to produce hydroxyl radicals, or with Fe3+ to generate the superoxide anion.  相似文献   

13.
F Heinz  S Reckel  J R Kalden 《Enzyme》1979,24(4):247-254
A new method for the determination of guanase is described. Xanthine, the product of the guanase reaction, is oxidized by xanthine oxidase, forming uric acid and hydrogen peroxide. Hydrogen peroxide is further reduced to water by catalase in the presence of ethanol. The acetaldehyde formed in this reaction step is dehydrogenated NAD or NADP dependent by aldehyde dehydrogenase. The NADH or NADPH production is measured and utilized for the calculation of the guanase activity. The sensitivity of the method can be doubled by the addition of uricase, which oxidizes uric acid to permit the formation of another mole of hydrogen peroxide.  相似文献   

14.
Two fluorescent heme degradation compounds are detected during autoxidation of oxyhemoglobin. These fluorescent compounds are similar to fluorescent compounds formed when hydrogen peroxide reacts with hemoglobin [E. Nagababu and J. M. Rifkind, Biochem. Biophys. Res. Commun. 247, 592-596 (1998)]. Low levels of heme degradation in the presence of superoxide and catalase are attributed to a reaction involving the superoxide produced during autoxidation. The inhibition of most of the degradation by catalase suggests that the hydrogen peroxide generated during autoxidation of oxyhemoglobin produces heme degradation by the same mechanism as the direct addition of hydrogen peroxide to hemoglobin. The formation of the fluorescent degradation products was inhibited by the peroxidase substrate, ABTS, which reduces ferrylhemoglobin to methemoglobin, indicating that ferrylhemoglobin is produced during the autoxidation of hemoglobin. It is the transient formation of this highly reactive Fe(IV) hemoglobin, which is responsible for most of the heme degradation during autoxidation.  相似文献   

15.
Microglia are resident brain macrophages that become activated and proliferate following brain damage or stimulation by immune mediators, such as IL-1beta or TNF-alpha. We investigated the mechanisms by which microglial proliferation is regulated in primary cultures of rat glia. We found that basal proliferation of microglia was stimulated by proinflammatory cytokines IL-1beta or TNF-alpha, and this proliferation was completely inhibited by catalase, implicating hydrogen peroxide as a mediator of proliferation. In addition, inhibitors of NADPH oxidase (diphenylene iodonium or apocynin) also prevented microglia proliferation, suggesting that this may be the source of hydrogen peroxide. IL-1beta and TNF-alpha rapidly stimulated the rate of hydrogen peroxide produced by isolated microglia, and this was inhibited by diphenylene iodonium, implying that the cytokines were acting directly on microglia to stimulate the NADPH oxidase. Low concentrations of PMA or arachidonic acid (known activators of NADPH oxidase) or xanthine/xanthine oxidase or glucose oxidase (generating hydrogen peroxide) also increased microglia proliferation and this was blocked by catalase, showing that NADPH oxidase activation or hydrogen peroxide was sufficient to stimulate microglia proliferation. In contrast to microglia, the proliferation of astrocytes was unaffected by the presence of catalase. In conclusion, these findings indicate that microglial proliferation in response to IL-1beta or TNF-alpha is mediated by hydrogen peroxide from NADPH oxidase.  相似文献   

16.
No catalase activity was detected in four strains of glucose-grown Mycoplasma pneumoniae at any time during the replication of the organism. Exogenous catalase dramatically increased the O(2) uptake with glycerol, presumably by releasing inhibition caused by hydrogen peroxide. The effect of added catalase on the O(2) uptake of washed organisms with glucose as substrate was moderate and variable in degree. The production of hydrogen peroxide was demonstrated by the quantitative enzymatic assay for inorganic peroxide and by the fact that added pyruvate, which is non-enzymatically oxidized by H(2)O(2) to acetic acid and CO(2) could mimic the action of catalase.  相似文献   

17.
Kettle AJ  Winterbourn CC 《Biochemistry》2001,40(34):10204-10212
The predominant physiological activity of myeloperoxidase is to convert hydrogen peroxide and chloride to hypochlorous acid. However, this neutrophil enzyme also degrades hydrogen peroxide to oxygen and water. We have undertaken a kinetic analysis of this reaction to clarify its mechanism. When myeloperoxidase was added to hydrogen peroxide in the absence of reducing substrates, there was an initial burst phase of hydrogen peroxide consumption followed by a slow steady state loss. The kinetics of hydrogen peroxide loss were precisely mirrored by the kinetics of oxygen production. Two mols of hydrogen peroxide gave rise to 1 mol of oxygen. With 100 microM hydrogen peroxide and 6 mM chloride, half of the hydrogen peroxide was converted to hypochlorous acid and the remainder to oxygen. Superoxide and tyrosine enhanced the steady-state loss of hydrogen peroxide in the absence of chloride. We propose that hydrogen peroxide reacts with the ferric enzyme to form compound I, which in turn reacts with another molecule of hydrogen peroxide to regenerate the native enzyme and liberate oxygen. The rate constant for the two-electron reduction of compound I by hydrogen peroxide was determined to be 2 x 10(6) M(-1) s(-1). The burst phase occurs because hydrogen peroxide and endogenous donors are able to slowly reduce compound I to compound II, which accumulates and retards the loss of hydrogen peroxide. Superoxide and tyrosine drive the catalase activity because they reduce compound II back to the native enzyme. The two-electron oxidation of hydrogen peroxide by compound I should be considered when interpreting mechanistic studies of myeloperoxidase and may influence the physiological activity of the enzyme.  相似文献   

18.
Salicylic acid (SA) plays an important role in the regulation of plant growth and development in response to water deficit. The effect of SA (0, 0.4 and 0.8?mM) on some physiological parameters of three soybean genotypes was investigated in three irrigation schedules included (85%, 65% and 45% of field capacity) during 2014–2015. Results showed that water deficit decreased stomatal conductance, leaf area index, relative water content, membrane stability index, yield components and grain yield particularly in L17 genotype. Activities of superoxide dismutase, ascorbate peroxidase and concentration of hydrogen peroxide, proline and total protein were increased in response to water deficit as well as SA applications. SA inhibited catalase activity resulting in increased hydrogen peroxide accumulation in soybean genotypes. Application of 0.4?mM SA decreased the adverse effects of water deficit in soybean genotypes by elevation of antioxidant enzymes activity and reducing malondialdehyde formation especially in Williams genotype.  相似文献   

19.
Glucose oxidase (GOD) and catalase (CAT) were simultaneously co-immobilized onto magnesium silicate (florisil) by covalent coupling. Glucose was added in immobilization mixture and hydrogen peroxide which is the substrate of CAT was produced in coupling mixture during immobilization time. Therefore, co-immobilization of GOD and CAT was carried out in presence of both their substrate: glucose and hydrogen peroxide, respectively. The effect of glucose concentration in immobilization mixture on activities of GOD and CAT of co-immobilized samples were investigated. Maximum GOD and CAT activities were determined for samples co-immobilized in presence of 15 and 20 mM glucose, respectively. Co-immobilization of GOD and CAT in presence of their substrates highly improved the activity and reusability of both enzymes.  相似文献   

20.
The purpose of this work was to evaluate the effectiveness of a new Membrane Electrochemical Reactor (MER) for the production of gluconic acid by glucose oxidase (GOD) catalysed glucose oxidation. The GOD was confined against the electrode surface with a dialysis membrane. The role of the electrochemical step was to eliminate by oxidation the hydrogen peroxide that appeared as a by-product of the reaction and strongly inhibited and/or inactivated GOD. The dialysis MER gave a transformation ratio of 30% with an initial glucose concentration of around 300 mM. This result is significantly better than the maximum of 10% obtained when hydrogen peroxide was eliminated by addition of a large excess of catalase in solution, as is generally done. The D-MER also revealed unexpected properties of the enzyme kinetics, such as an oscillatory behaviour, which were discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号