首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inversions are portions of a chromosome where the gene order is reversed relative to a standard reference orientation. Because of reduced levels of recombination in heterokaryotypes, inversions have a potentially important effect on patterns of nucleotide variability in those genomic regions close to, or included in, the inverted fragments. Here we report sequence variation at three anonymous regions (STSs) located at different positions in relation to second-chromosome inversion breakpoints in 29 isochromosomal lines derived from an Argentinean population of Drosophila buzzatii. In agreement with previous findings in Drosophila, gene flux (crossing over and/or gene conversion) between arrangements seems to appreciably increase as we approach the middle sections of inversion 2j, and patterns of nucleotide variability within, as well as genetic differentiation between chromosome arrangements, are comparable to those observed at the molecular marker outside the inverted fragments. On the other hand, nucleotide diversity near the proximal breakpoint of inversion 2j is reduced when contrasted with that found at the other regions, particularly in the case of derived inverted chromosomes. Using the data from the breakpoint, we estimate that the inversion polymorphism is approximately 1.63 N generations old, where N is the effective population size. An excess of low-frequency segregating polymorphisms is detected; mostly in the ancestral 2st arrangement and probably indicating a population expansion that predates the coalescent time of inversion 2j. Heterogeneity in mutation rates between the markers linked to the inversions may be sufficient to explain the different levels of nucleotide diversity observed. When considered in the context of other studies on patterns of variation relative to physical distance to inversion breakpoints, our data appear to be consistent with the conclusion that inversions are unlikely to be "long-lived" balanced polymorphisms.  相似文献   

2.
The relationship between ontogenetic, static, and evolutionary levels of allometry is investigated. Extrapolation from relative size relationships in adults to relative growth in ontogeny depends on the variability of slopes and intercepts of ontogenetic vectors relative to variability in length of the vector. If variability in slopes and intercepts is low relative to variability in length, ontogenetic and static allometries will be similar. The similarity of ontogenetic and static allometries was tested by comparing the first principal component, or size vector, for correlations among 48 cranial traits in a cross-sectional ontogenetic sample of rhesus macaques from Cayo Santiago with a static sample from which all age- and sex-related variation had been removed. The vector correlation between the components is high but significantly less than one while two of three allometric patterns apparent in the ontogenetic component are not discernable in the static component. This indicates that there are important differences in size and shape relationships among adults and within ontogenies. Extrapolation from intra- or interspecific phenotypic allometry to evolutionary allometry is shown to depend on the similarity of genetic and phenotypic allometry patterns. Similarity of patterns was tested by comparing the first principal components of the phenotypic, genetic, and environmental correlation matrices calculated using standard quantitative genetic methods. The patterns of phenotypic, genetic, and environmental allometry are dissimilar; only the environmental allometries show ontogenetic allometric patterns. This indicates that phenotypic allometry may not be an accurate guide to patterns of evolutionary change in size and shape.  相似文献   

3.
A Sánchez-Gracia  J Rozas 《Heredity》2011,106(1):191-201
Chromosomal inversion polymorphism play a major role in the evolutionary dynamics of populations and species because of their effects on the patterns of genetic variability in the genomic regions within inversions. Though there is compelling evidence for the adaptive character of chromosomal polymorphisms, the mechanisms responsible for their maintenance in natural populations is not fully understood. For this type of analysis, Drosophila subobscura is a good model species as it has a rich and extensively studied chromosomal inversion polymorphism system. Here, we examine the patterns of DNA variation in two natural populations segregating for chromosomal arrangements that differentially affect the surveyed genomic region; in particular, we analyse both nucleotide substitutions and insertion/deletion variations in the genomic region encompassing the odorant-binding protein genes Obp83a and Obp83b (Obp83 region). We show that the two main gene arrangements are genetically differentiated, but are consistent with a monophyletic origin of inversions. Nevertheless, these arrangements interchange some genetic information, likely by gene conversion. We also find that the frequency spectrum-based tests indicate that the pattern of nucleotide variation is not at equilibrium; this feature probably reflects the rapid increase in the frequency of the new gene arrangement promoted by positive selection (that is an adaptive change). Furthermore, a comparative analysis of polymorphism and divergence patterns reveals a relaxation of the functional constraints at the Obp83b gene, which might be associated with particular ecological or demographic features of the Canary island endemic species D. guanche  相似文献   

4.
Heterochrony is widely regarded as an important evolutionary mechanism, one that may underlie most, if not all, morphological evolution, yet relatively few studies have examined variation in the sequence of development. Even fewer studies have been designed so that intraspecific variation in the relative sequence of developmental events can be assessed, although this variation must be the basis for evolutionary change. Intraspecific variation in developmental ossification sequences was documented from the zebrafish (Danio rerio) by Cubbage and Mabee (1996) and from the Siamese fighting fish (Betta splendens) by Mabee and Trendler (1996), but a quantitative analysis of the patterns within this variation was not made. Here, we quantify the effect of rearing temperature on the sequence of ossification and characterize the levels and patterns of intraspecific variation in these fishes. For Danio, there were no temperature effects on the sequence of bone development across the cranium, cranial region development, cartilage versus dermal bones, or lateral line bone versus nonassociated bones. Likewise the level of variation in relative sequence (position) of ossification was low, about two ranks, across temperatures. At higher temperatures, we found higher levels of variation in iterated cranial bones and less in bones forming early in the sequence. No temperature effects on variation were found among regions, between lateral line-associated bones and nonassociated bones, between median and paired bones, or across the entire sequence, indicating concordant variability among the three temperatures. Individual bones with the highest levels of variability were not consistent among temperatures. Baseline patterns of intraspecific variation in Danio were compared to those of Betta. For both species, the level of intraspecific variation in sequence position was low and the variability of cranial bones was concordant. Individual bones with the highest levels of variability were not consistent between species. In both species, variation was widespread (distributed evenly across the sequence). We used comparisons (among regions, between dermal and cartilage bones, between lateral line-associated and other bones, between median and paired bones, between iterated and noniterated bones, between feeding-associated bones and others) to see which subsets were most variable and thus potentially useful in predicting high levels of evolutionary change. The only subset of bones that was significantly more variable than others was cartilage bones. If interspecific patterns are parallel to these intraspecific differences, cartilage bones would be expected to show higher levels of heterochrony. Although concordance across the cranial ossification sequence and among regions in Danio, Betta, and two other teleosts, Oryzias and Barbus, suggests an evolutionarily conserved pattern of ossification, identity in sequence position across taxa was not observed for any bone. Thus, variation existed in sequence position across temperatures and species. Intraspecific variation of this sort may influence the morphological outcome and evolutionary trajectories of species.  相似文献   

5.
Intraspecies variability is investigated in two regions of the wrist, for the purpose of determining whether patterns may be discerned in the variability that may be compared in the functional and phylogenetic analysis of living and fossil catarrhines. In the midcarpal joint region, two lunatohamate configuration patterns are found, and at the fourth carpometacarpal joint four types of configuration are identified. These two sites previously were reported to show almost continuous variability in humans, thus precluding comparison with other species. The different types of configuration in our study are delineated on the basis of their relation to differences in joint function. At the lunatohamate site there is a strong tendency in each species examined for one type to dominate in frequency. At the fourth carpometacarpal joins there is a tendency for one type or for two related types to predominate in each species. The chimpanzee sample exhibits the least variability of all species studied in joint configuration at the two sites. Australopithecus afarensis has a combination of joint types in these regions likely to be found today in only a small percentage of living Hominoidea. We conclude that patterns may be discerned at some joints in what was formerly considered to be a continuum of variation. Since these patterns (joint types) differ in their relative frequencies among living species, the frequency differences may be useful as a guide to the reconstruction of phylogenetic relationships and of potential wrist functions in fossil species. © 1994 Wiley-Liss, Inc.  相似文献   

6.
Variation within communication systems can be examined at several levels: variation among individual notes, variation in the arrangement of notes, and variation in delivery. Here, variation in the arrangement and delivery of notes used in female red-winged-blackbird vocalizations is described, and this variation is examined for correlations with the context in which the vocalizations were given. Within a vocalization, notes were normally arranged in a series of similar notes. Of the 75 different note arrangements recorded from the population, 12 arrangements accounted for 84 % of vocalizations. Provisional results indicate that the arrangement of notes was influence by the following contexts: 1. The stage of the breeding season; 2. The individual female; 3. The breeding status of the female; 4. Certain female behaviour patterns; 5. Other red-winged-blackbird vocalizations; and 6. The presence or absence of a female's mate in the territory. Variation in delivery was measured by the number of notes within a vocalization; delivery was influenced by the stage of the breeding season, the individual female, and the breeding status of a female. Most note arrangements were used in a wide variety of contexts and did not appear to be functionally distinct.  相似文献   

7.
8.
Navarro A  Barbadilla A  Ruiz A 《Genetics》2000,155(2):685-698
Recombination is a main factor determining nucleotide variability in different regions of the genome. Chromosomal inversions, which are ubiquitous in the genus Drosophila, are known to reduce and redistribute recombination, and thus their specific effect on nucleotide variation may be of major importance as an explanatory factor for levels of DNA variation. Here, we use the coalescent approach to study this effect. First, we develop analytical expressions to predict nucleotide variability in old inversion polymorphisms that have reached mutation-drift-flux equilibrium. The effects on nucleotide variability of a new arrangement appearing in the population and reaching a stable polymorphism are then studied by computer simulation. We show that inversions modulate nucleotide variability in a complex way. The establishment of an inversion polymorphism involves a partial selective sweep that eliminates part of the variability in the population. This is followed by a slow convergence to the equilibrium values. During this convergence, regions close to the breakpoints exhibit much lower variability than central regions. However, at equilibrium, regions close to the breakpoints have higher levels of variability and differentiation between arrangements than regions in the middle of the inverted segment. The implications of these findings for overall variability levels during the evolution of Drosophila species are discussed.  相似文献   

9.
Patterns of RFLP association were studied, to identify gene regions influencing quantitative variation in lipid and lipoprotein traits (coronary artery disease [CAD] risk factors or metabolically related traits). Subjects (118 female and 229 male; age 20-59 years) were selected for health. Multiple RFLPs were used to sample variability in regions around genes for apolipoprotein (apo) B (restriction enzymes HincII, PvuII, EcoRI, and XbaI), apo AI-CIII-AIV (BamHI, XmnI, TaqI, PstI, SstI, and PvuII) and cholesterol ester transfer protein (TaqI). Separate analyses were done by gender. The sample was truncated at mean +/- 4 SD, to remove extreme outliers. There was no significant gender difference in RFLP genotype frequency distribution. After trait-level adjustment to maximize removal of concomitant variability, analysis of variance was used to estimate the percentage trait phenotypic variance explained by measured variability in the gene regions studied. Fewer gene regions were involved in men, with less influence on quantitative trait variation than in women, in whom hormone use affected association patterns. Gender differences imply that pooling genders or adjusting data for gender effects removes genetic information and should be avoided. The association patterns show that variability around the candidate genes modulates trait levels: the genes are contributors to the genetics of CAD risk variables in a healthy sample.  相似文献   

10.
The present investigation assesses a number of explanations for the patterns of variability in dental dimensions. Coefficients of variation were calculated for mesiodistal and buccolingual diameters in a sample of 105 Papio ursinus crania (52 male, 53 female). Variability profiles consisting of arrays of values of coefficients of variation were evaluated by means of Friedman's two-way analysis of variance and Kendall's coefficient of concordance. Although molar teeth were found to be the most dimensionally stable, our results failed to support either the morphogenetic field theory or the occlusal complexity hypothesis. The data presented here are generally supportive of Pengilly's phenotypic complexity theory. However, speciesspecific clustering patterns found in our regressions of dimensional variability on mean tooth size suggest that differences in variability levels might be related to differences in selective pressures.  相似文献   

11.
Heterogeneity among individuals in fitness components is what selection acts upon. Evolutionary theories predict that selection in constant environments acts against such heterogeneity. But observations reveal substantial non-genetic and also non-environmental variability in phenotypes. Here, we examine whether there is a relationship between selection pressure and phenotypic variability by analysing structured population models based on data from a large and diverse set of species. Our findings suggest that non-genetic, non-environmental variation is in general neither truly neutral, selected for, nor selected against. We find much variations among species and populations within species, with mean patterns suggesting nearly neutral evolution of life-course variability. Populations that show greater diversity of life courses do not show, in general, increased or decreased population growth rates. Our analysis suggests we are only at the beginning of understanding the evolution and maintenance of non-genetic non-environmental variation.  相似文献   

12.
Previous research has identified extensive inter-population variability in the morphology of the shore crab (Carcinus maenas L.). To determine the source of this variation (genetic or environmental), morphological and genetic data were analysed from crabs collected from eight sites around the coast of the UK. Ten morphometric traits were measured from over 800 crabs and the degree of morphological similarity among sites was calculated using multivariate techniques. Allozyme electrophoresis was used to investigate patterns of genetic similarity. Extensive morphological variability was detected: eight out of the ten morphometric traits analysed were useful when discriminating between crabs from each site. Discriminant function analysis revealed that over 35% of individuals could be classified to their site of origin on the basis of their morphology. In contrast, the allozyme analysis revealed low levels of genetic variability, both within the meta-population and among the crab population at each site. Pairwise comparisons revealed a moderate correlation between the degree of morphological and genetic similarity of crabs at each site, which suggests that the observed phenotypic variability has a genetic component. However, only around 20% of the phenotypic variability detected was associated with the patterns of genetic similarity. This means that patterns of morphological variability in this species are largely determined by the local environmental conditions: local factors could have a within-generation selective influence on mean trait values or C. maenas may exhibit phenotypic plasticity.  相似文献   

13.
Early vertebrate embryos pass through a period of remarkable morphological similarity. Possible causes for such similarity of early embryos include modularity, developmental constraints, stabilizing selection, canalization, and exhausted genetic variability. Supposedly, each process creates different patterns of variation and covariation of embryonic traits. We study the patterns of variation of the embryonic phenotype to test ideas about possible evolutionary mechanisms shaping the early embryonic development. We use the zebra fish, Danio rerio, as a model organism and apply repeated measures of individual embryos to study temporal changes of phenotypic variability during development. In particular, we are looking at the embryonic development from 12 hours post fertilization until 27 hours post fertilization. During this time period, the development of individual embryos is documented at hourly intervals. We measured maximum diameter of the eye, length of embryo, number of somites, inclination of somites, and the yolk size (as a maternal effect). The coefficient of variation (CV) was used as a measure of variability that was independent of size. We used a principal component analysis for analysis of morphological integration. The experimental setup kept environment x genotype interactions constant. Nongenetic parental contributions had no significant effects on interindividual variability. Thus all observed phenotypic variation was based on additive genetic variance and error variance. The average CV declined from 14% to 7.7%. The decline of the CV was in particular expressed during 15-19 h post fertilization and occurred in association with multiple correlations among embryonic traits and a relatively high degree of morphological integration. We suggest that internal constraints determine the patterns of variability during early embryonic development of zebra fish.  相似文献   

14.
Microsatellite primers are often developed in one species and used to assess neutral variability in related species. Such analyses may be confounded by ascertainment bias (i.e. a decline in amplification success and allelic variability with increasing genetic distance from the source of the microsatellites). In addition, other factors, such as the size of the microsatellite, whether it consists of perfect or interrupted tandem repeats, and whether it is autosomal or X-linked, can affect variation. To test the relative importance of these factors on microsatellite variation, we examine patterns of amplification and allelic diversity in 52 microsatellite loci amplified from five individuals in each of six populations of Cyrtodiopsis stalk-eyed flies that range from 2.2 % to 11.2% mitochondrial DNA sequence divergence from the population used for microsatellite development. We find that amplification success and most measures of allelic diversity declined with genetic distance from the source population, in some cases an order of magnitude faster than in birds or mammals. The median and range of the repeat array length did not decline with genetic distance. In addition, for loci on the X chromosome, we find evidence of lower observed heterozygosity compared with loci on autosomes. The differences in variability between X-linked and autosomal loci are not adequately explained by differences in effective population sizes of the chromosomes. We suggest, instead, that periodic selection events associated with X-chromosome meiotic drive, which is present in many of these populations, reduces X-linked variation.  相似文献   

15.
Many aposematic species show variation in their color patterns even though selection by predators is expected to stabilize warning signals toward a common phenotype. Warning signal variability can be explained by trade‐offs with other functions of coloration, such as thermoregulation, that may constrain warning signal expression by favoring darker individuals. Here, we investigated the effect of temperature on warning signal expression in aposematic Amata nigriceps moths that vary in their black and orange wing patterns. We sampled moths from two flight seasons that differed in the environmental temperatures and also reared different families under controlled conditions at three different temperatures. Against our prediction that lower developmental temperatures would reduce the warning signal size of the adult moths, we found no effect of temperature on warning signal expression in either wild or laboratory‐reared moths. Instead, we found sex‐ and population‐level differences in wing patterns. Our rearing experiment indicated that ~70% of the variability in the trait is genetic but understanding what signaling and non‐signaling functions of wing coloration maintain the genetic variation requires further work. Our results emphasize the importance of considering both genetic and plastic components of warning signal expression when studying intraspecific variation in aposematic species.  相似文献   

16.
Morphometric correlation matrices from 11 Mediterranean and European honey bee races have been compared. The degree of integration, measured by the eigenvalue variance of the correlation matrix or by Cheverud's index of integration, varies considerably between races but covaries neither with overall body size nor with the variance of the respective sample. Hence, the degree of morphological integration does not depend on body size or the level of variability The patterns of morphometric correlation are significantly similar among all races, but some minor differences in the patterns could be detected: The similarity between the correlation matrices is independent of the degree of phylogenetic relatedness between the respective races. In all races characters belonin to the same functional and/or developmental unit (leg, wing, abdominal characters) have Eiter correlations than the average. Most of the variation in the pattern of correlation can be expfained as a side effect of variation in the degree of integration. Races with high levels of integration tend to have hiher correlations between the main groups of characters, and races with low levels of integration tave smaller correlations between the main grous of characters, while the basic pattern remains undisturbed. In summary, the comparative analysis of morphometric correlation matrices reveals a picture of stability with respect to the pattern of integration and of variation in the degree of integration, which is random with respect to body size, degree of variability, and phylogeny.  相似文献   

17.
Identifying the conditions and mechanisms that control ecosystem processes, such as net primary production, is a central goal of ecosystem ecology. Ideas have ranged from single limiting-resource theories to colimitation by nutrients and climate, to simulation models with edaphic, climatic, and competitive controls. Although some investigators have begun to consider the influence of land-use practices, especially cropping, few studies have quantified the impact of cropping at large scales relative to other known controls over ecosystem processes. We used a 9-year record of productivity, biomass seasonality, climate, weather, soil conditions, and cropping in the US Great Plains to quantify the controls over spatial and temporal patterns of net primary production and to estimate sensitivity to specific driving variables. We considered climate, soil conditions, and long-term average cropping as controls over spatial patterns, while weather and interannual cropping variations were used as controls over temporal variability. We found that variation in primary production is primarily spatial, whereas variation in seasonality is more evenly split between spatial and temporal components. Our statistical (multiple linear regression) models explained more of the variation in the amount of primary production than in its seasonality, and more of the spatial than the temporal patterns. Our results indicate that although climate is the most important variable for explaining spatial patterns, cropping explains a substantial amount of the residual variability. Soil texture and depth contributed very little to our models of spatial variability. Weather and cropping deviation both made modest contributions to the models of temporal variability. These results suggest that the controls over seasonality and temporal variation are not well understood. Our sensitivity analysis indicates that production is more sensitive to climate than to weather and that it is very sensitive to cropping intensity. In addition to identifying potential gaps in out knowledge, these results provide insight into the probable long- and short-term ecosystem response to changes in climate, weather, and cropping.  相似文献   

18.
19.
Coefficients of variation were used to examine the variability of bill, wing and foot measurements of 11 sexually size dimorphic and seven monomorphic shearwater ( Puffinus ) species, and to investigate the selective regimes that may be acting on these traits. The effects of phylogeny can lead to a lack of statistical independence among interspecies data, so randomization tests were performed in addition to standard statistical approaches, which assume independence. However, the results obtained from the two approaches always agreed. Among the 18 species, bill measurements were significantly more variable than those of the wing or foot; furthermore, bill depth dimensions exhibited the greatest amount of phenotypic variation. Both sexually monomorphic and sexually dimorphic species exhibited the same patterns of phenotypic variation. In the sexually dimorphic species, patterns of trait variation did not differ significantly between sexes. The findings suggest that variation in the bill of dimorphic Puffinus species is not due to sexual selection. More probably, variability among the traits is due to differences in the strength of natural selection, with those traits under strong stabilizing selection (e.g. wing, tarsus and mid-toe) exhibiting reduced variability, as optimum physical dimensions are being selected for.  相似文献   

20.
Species are the units used to measure ecological diversity and alleles are the units of genetic diversity. Genetic variation within and among species has been documented most extensively using allozyme electrophoresis. This reveals wide differences in genetic variability within, and genetic distances among, species, demonstrating that species are not equivalent units of diversity. The extent to which the pattern observed for allozymes can be used to infer patterns of genetic variation in quantitative traits depends on the forces generating and maintaining variability. Allozyme variation is probably not strictly neutral but, nevertheless, heterozygosity is expected to be influenced by population size and genetic distance will be affected by time since divergence. The same is true for quantitative traits influenced by many genes and under weak stabilizing selection. However, the limited data available suggest that allozyme variability is a poor predictor of genetic variation in quantitative traits within populations. It is a better predictor of general phenotypic divergence and of postzygotic isolation between populations or species, but is only weakly correlated with prezygotic isolation. Studies of grasshopper and planthopper mating signal variation and assortative mating illustrate how these characters evolve independently of general genetic and morphological variation. The role of such traits in prezygotic isolation, and hence speciation, means that they will contribute significantly to the diversity of levels of genetic variation within and among species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号