首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Producing valuable coproducts from oleaginous microalgae is an option to reduce the total cost of biofuel production. Here, the influence of nitrogen sources on biomass yield and lipid accumulation of a newly identified oleaginous green microalgal strain, Mychonastes afer HSO-3-1, was evaluated. Carbon assimilation and the following lipid biosynthesis of M. afer were inhibited to some extent under weak acidic conditions (6 < pH < 7) and any of the tested nitrogen source. The highest lipid productivity of 50.7 mg L?1 day?1 was achieved with a 17.6 mM nitrogen supplement in the form of urea. The cell polar lipid content was significantly higher than triacylglycerol (TAG), and saturated palmitic acid (C16:0) occupied a dominant position in the fatty acid profiles while culturing M. afer in acidic medium with NH4 + as the nitrogen source. Under neutral conditions, the lipid productivities of M. afer cultivated in media containing 17.6 mM of NaNO3, NH4Cl, and NH4NO3 were 76.2, 77.5, and 79.0 mg L?1 day?1, respectively. The greatest TAG content (58.56%) of total lipids was obtained when NaNO3 was used as the nitrogen source. There was no significant difference in the fatty acid composition of M. afer cells when they were cultivated in neutral media supplemented with NaNO3, urea, NH4Cl, and NH4NO3. Therefore, NH4 + was not a suitable nitrogen source for M. afer cultivation due to the additional labor, working procedures, and alkali required to adjust the medium pH. Considering that using urea as nitrogen source could reduce the cost of nutrient salts substantially and urea can be taken up and utilized by most microalgae, it is a preferred nitrogen source. The major properties of biodiesel derived from M. afer HSO-3-1 met biodiesel quality, and nervonic acid concentrations remained at approximately 3.0% of total fatty acids.  相似文献   

2.
A magnetophoretic harvesting agent, a polypyrrole/Fe3O4 magnetic nanocomposite, is proposed as a cost and energy efficient alternative to recover biomass of the microalgae Botryococcus braunii, Chlorella protothecoides, and Chlorella vulgaris from their culture media. The maximal recovery efficiency reached almost 99 % for B. braunii, 92.4 % for C. protothecoides, and 90.8 % for C. vulgaris. The maximum adsorption capacity (Q 0) of the magnetic nanocomposite for B. braunii (63.49 mg dry biomass mg?1 PPy/Fe3O4) was higher than that for C. protothecoides (43.91 mg dry biomass mg?1 PPy/Fe3O4) and C. vulgaris (39.98 mg dry biomass mg?1 PPy/Fe3O4). The highest harvesting efficiency for all the studied microalgae were at pH 10.0, and measurement of zeta-potential confirmed that the flocculation was induced by charge neutralization. This study showed that polypyrrole/Fe3O4 can be a promising flocculant due to its high efficacy, low dose requirements, short settling time, its integrity with cells, and with great potential for saving energy because of its recyclability.  相似文献   

3.
Glucose-6-phosphate dehydrogenases (G6PDs) are important enzymes widely used in bioassay and biocatalysis. In this study, we reported the cloning, expression, and enzymatic characterization of G6PDs from the thermophilic bacterium Thermoanaerobacter tengcongensis MB4 (TtG6PD). SDS-PAGE showed that purified recombinant enzyme had an apparent subunit molecular weight of 60 kDa. Kinetics assay indicated that TtG6PD preferred NADP+ (k cat/K m = 2618 mM?1 s?1, k cat = 249 s?1, K m = 0.10 ± 0.01 mM) as cofactor, although NAD+ (k cat/K m = 138 mM?1 s?1, k cat = 604 s?1, K m = 4.37 ± 0.56 mM) could also be accepted. The K m values of glucose-6-phosphate were 0.27 ± 0.07 mM and 5.08 ± 0.68 mM with NADP+ and NAD+ as cofactors, respectively. The enzyme displayed its optimum activity at pH 6.8–9.0 for NADP+ and at pH 7.0–8.6 for NAD+ while the optimal temperature was 80 °C for NADP+ and 70 °C for NAD+. This was the first observation that the NADP+-linked optimal temperature of a dual coenzyme-specific G6PD was higher than the NAD+-linked and growth (75 °C) optimal temperature, which suggested G6PD might contribute to the thermal resistance of a bacterium. The potential of TtG6PD to measure the activity of another thermophilic enzyme was demonstrated by the coupled assays for a thermophilic glucokinase.  相似文献   

4.
The environmental pollution caused by pesticides is considered a major problem worldwide. Glyphosate is one of the herbicides most widely used, and its use has increased sharply in the last years. In this work, the toxicity of four commercial glyphosate formulations (Eskoba®, Panzer Gold®, Roundup Ultramax® and Sulfosato Touchdown®) was assessed by determining the median effective concentration at 96 h (96 h-EC50) using the microalga Chlorella vulgaris as the biological model. Although the formulations tested are moderately to slightly toxic to C. vulgaris according to the World Health Organization’s toxicity categories for aquatic and terrestrial organisms, this research shows that the four formulations are toxic, with Eskoba® the least toxic and Roundup Ultramax® the most toxic one. A UV/H2O2 remediation process for the detoxification of the samples was tested also. Its effectiveness was evaluated using a C. vulgaris growth inhibition test. Growth inhibition of C. vulgaris did not reach 18.2 %, indicating the efficacy of the UV/H2O2 remediation process to reduce glyphosate toxicity. In some of the samples tested within the first 48 h of the assay, C. vulgaris growth was even increased. The results of the present work suggest that the selected species was a good indicator to determine the toxicity level of glyphosate formulations and shows the relevance of the ecotoxicological tests to evaluate a physicochemical remediation process.  相似文献   

5.
6.
Alcaligenes faecalis strain NR has the capability of simultaneous ammonium and organic carbon removal under sole aerobic conditions. The growth and substrate removal characteristics of A. faecalis strain NR were studied and appropriate kinetic models were developed. The maximum substrate removal rate of NH4 +-N and TOC were determined as 2.27 mg NH4 +-N/L/h and 30.00 mg TOC/L/h, respectively with initial NH4 +-N = 80 mg/L and TOC = 800 mg/L. Single-substrate models and double-substrate models based on Monod, Contois, Moser and Teissier were employed to describe the bioprocess kinetic coefficients. As a result, two double-substrate models, Teissier-Contois and Contois-Contois, were considered to be appropriate to model growth kinetics with both NH4 +-N and TOC as limiting substrates. The kinetic constants of maximum growth rate (μ max) and half-saturation constant (K S and B S) were obtained by solving multiple equations with regression. This work can be used to further understand and predict the performance of heterotrophic nitrifiers, and thus provides specific guidance of these functional strains in practical wastewater treatment process.  相似文献   

7.
8.
Indigoidine is a bacterial natural product with antioxidant and antimicrobial activities. Its bright blue color resembles the industrial dye indigo, thus representing a new natural blue dye that may find uses in industry. In our previous study, an indigoidine synthetase Sc-IndC and an associated helper protein Sc-IndB were identified from Streptomyces chromofuscus ATCC 49982 and successfully expressed in Escherichia coli BAP1 to produce the blue pigment at 3.93 g/l. To further improve the production of indigoidine, in this work, the direct biosynthetic precursor l-glutamine was fed into the fermentation broth of the engineered E. coli strain harboring Sc-IndC and Sc-IndB. The highest titer of indigoidine reached 8.81 ± 0.21 g/l at 1.46 g/l l-glutamine. Given the relatively high price of l-glutamine, a metabolic engineering technique was used to directly enhance the in situ supply of this precursor. A glutamine synthetase gene (glnA) was amplified from E. coli and co-expressed with Sc-indC and Sc-indB in E. coli BAP1, leading to the production of indigoidine at 5.75 ± 0.09 g/l. Because a nitrogen source is required for amino acid biosynthesis, we then tested the effect of different nitrogen-containing salts on the supply of l-glutamine and subsequent indigoidine production. Among the four tested salts including (NH4)2SO4, NH4Cl, (NH4)2HPO4 and KNO3, (NH4)2HPO4 showed the best effect on improving the titer of indigoidine. Different concentrations of (NH4)2HPO4 were added to the fermentation broths of E. coli BAP1/Sc-IndC+Sc-IndB+GlnA, and the titer reached the highest (7.08 ± 0.11 g/l) at 2.5 mM (NH4)2HPO4. This work provides two efficient methods for the production of this promising blue pigment in E. coli.  相似文献   

9.
Optimization of process parameters for phytase production by Enterobacter sp. ACSS led to a 4.6-fold improvement in submerged fermentation, which was enhanced further in fed-batch fermentation. The purified 62 kDa monomeric phytase was optimally active at pH 2.5 and 60 °C and retained activity over a wide range of temperature (40–80 °C) and pH (2.0–6.0) with a half-life of 11.3 min at 80 °C. The kinetic parameters K m, V max, K cat, and K cat/K m of the pure phytase were 0.21 mM, 131.58 nmol mg?1 s?1, 1.64 × 103 s?1, and 7.81 × 106 M?1 s?1, respectively. The enzyme was fairly stable in the presence of pepsin under physiological conditions. It was stimulated by Ca+2, Mg+2 and Mn+2, but inhibited by Zn+2, Cu+2, Fe+2, Pb+2, Ba+2 and surfactants. The enzyme can be applied in dephytinizing animal feeds, and the baking industry.  相似文献   

10.
Bacillus thuringiensis (Berliner) bears essential characteristics in the control of insect pests, such as its unique mode of action, which confers specificity and selectivity. This study assessed cry gene contents from Bt strains and their entomotoxicity against Diatraea saccharalis (F.) and Diatraea flavipennella (Box) (Lepidoptera: Crambidae). Bioassays with Bt strains were performed against neonates to evaluate their lethal and sublethal activities and were further analyzed by PCR, using primers to identify toxin genes. For D. saccharalis and D. flavipennella, 16 and 18 strains showed over 30% larval mortality in the 7th day, respectively. The LC50 values of strains for D. saccharalis varied from 0.08 × 105 (LIIT-0105) to 4104 × 105 (LIIT-2707) spores + crystals mL?1. For D. flavipennella, the LC50 values of strains varied from 0.40 × 105 (LIIT-2707) to 542 × 105 (LIIT-2109) spores + crystals mL?1. For the LIIT-0105 strain, which was the most toxic to D. saccharalis, the genes cry1Aa, cry1Ab, cry1Ac, cry1B, cry1C, cry1D, cry1F, cry1I, cry2Aa, cry2Ab, cry8, and cry9C were detected, whereas for the strain LIIT-2707, which was the most toxic to D. flavipennella, detected genes were cry1Aa, cry1Ab, cry1Ac, cry1B, cry1D, cry1F, cry1I, cry2Aa, cry2Ab, and cry9. The toxicity data and toxin gene content in these strains of Bt suggest a great variability of activity with potential to be used in the development of novel biopesticides or as source of resistance genes that can be expressed in plants to control pests.  相似文献   

11.
A new anti-Prelog short-chain dehydrogenase/reductase (SDR) encoding gene lcsdr was cloned from Lactobacillus composti DSM 18527, and heterologously expressed in Escherichia coli. LcSDR is nicotinamide adenine dinucleotide phosphate (NADPH)-dependent and has a molecular weight of approximately 30 kDa. The optimal pH and temperature were 6.5 and 30?°C, respectively. The maximal reaction rate Vmax was 133.9 U mg?1; the Michaelis–Menten constant K m of LcSDR were 0.345 mM for acetophenone (1a), and 0.085 mM for NADPH. Through introducing an EsGDH-catalyzed NADPH regeneration system, a biocatalytic process for (R)-1-phenylethanol ((R)-1b) was developed with outstanding time–space yield. Under the optimized conditions, 50 g l?1 1a was converted to (R)-1b in 2 h with a yield of 93.8%, enantiomeric excess of product (e.e.p) above 99% and space–time yield of 562.8 g l?1 d?1.  相似文献   

12.
Impact of different levels of elevated CO 2 on the activity of Frankia (Nitrogen-fixing actinomycete) in Casuarina equisetifolia rooted stem cuttings has been studied to understand the relationship between C. equisetifolia, Frankia and CO2. The stem cuttings of C. equietifolia were collected and treated with 2000 ppm of Indole Butyric Acid (IBA) for rooting. Thus vegetative propagated rooted stem cuttings of C. equisetifolia were inoculated with Frankia and placed in the Open top chambers (OTC) with elevated CO2 facilities. These planting stocks were maintained in the OTC for 12 months under different levels of elevated CO2 (ambient control, 600 ppm, 900 ppm). After 12 months, the nodule numbers, bio mass, growth, and photosynthesis of C. equisetifolia rooted stem cuttings inoculated with Frankia were improved under 600 ppm of CO2. The rooted stem cuttings of C. equisetifolia inoculated with Frankia showed a higher number of nodules under 900 ppm of CO2 and cuttings without Frankia inoculation exhibited poor growth. Tissue Nitrogen (N) content was also higher under 900 ppm of CO2 than ambient control and 600 ppm levels. The photosynthetic rate was higher (17.8 μ mol CO2 m?2 s?1) in 900 ppm of CO2 than in 600 ppm (13.2 μ mol CO2 m?2 s?1) and ambient control (8.3 μ mol CO2 m?2 s?1). This study showed that Frankia can improve growth, N fixation and photosynthesis of C. equietifolia rooted stem cuttings under extreme elevated CO2 level conditions (900 ppm).  相似文献   

13.

Objectives

To identify a robust NADP+ dependent formate dehydrogenase from Lactobacillus buchneri NRRL B-30929 (LbFDH) with unique biochemical properties.

Results

A new NADP+ dependent formate dehydrogenase gene (fdh) was cloned from genomic DNA of L. buchneri NRRL B-30929. The recombinant construct was expressed in Escherichia coli BL21(DE3) with 6?×?histidine at the C-terminus and the purified protein obtained as a single band of approx. 44 kDa on SDS-PAGE and 90 kDa on native-PAGE. The LbFDH was highly active at acidic conditions (pH 4.8–6.2). Its optimum temperature was 60 °C and 50 °C with NADP+ and NAD+, respectively and its Tm value was 78 °C. Its activity did not decrease after incubation in a solution containing 20% of DMSO and acetonitrile for 6 h. The KM constants were 49.8, 0.12 and 1.68 mM for formate (with NADP+), NADP+ and NAD+, respectively.

Conclusions

An NADP+ dependent FDH from L. buchneri NRRL B-30929 was cloned, expressed and identified with its unusual characteristics. The LbFDH can be a promising candidate for NADPH regeneration through biocatalysis requiring acidic conditions and high temperatures.
  相似文献   

14.
In this study, we analysed metagenomes along with biogeochemical profiles from Skagerrak (SK) and Bothnian Bay (BB) sediments, to trace the prevailing nitrogen pathways. NO3 ? was present in the top 5 cm below the sediment-water interface at both sites. NH4 + increased with depth below 5 cm where it overlapped with the NO3 ? zone. Steady-state modelling of NO3 ? and NH4 + porewater profiles indicates zones of net nitrogen species transformations. Bacterial protease and hydratase genes appeared to make up the bulk of total ammonification genes. Genes involved in ammonia oxidation (amo, hao), denitrification (nir, nor), dissimilatory NO3 ? reduction to NH4 + (nfr and otr) and in both of the latter two pathways (nar, nap) were also present. Results show ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) are similarly abundant in both sediments. Also, denitrification genes appeared more abundant than DNRA genes. 16S rRNA gene analysis showed that the relative abundance of the nitrifying group Nitrosopumilales and other groups involved in nitrification and denitrification (Nitrobacter, Nitrosomonas, Nitrospira, Nitrosococcus and Nitrosomonas) appeared less abundant in SK sediments compared to BB sediments. Beggiatoa and Thiothrix 16S rRNA genes were also present, suggesting chemolithoautotrophic NO3 ? reduction to NO2 ? or NH4 + as a possible pathway. Our results show the metabolic potential for ammonification, nitrification, DNRA and denitrification activities in North Sea and Baltic Sea sediments.  相似文献   

15.
Rhinusa pilosa (Gyllenhal) is a highly specific weevil that induces stem galls on the common toadflax Linaria vulgaris Mill. females oviposit the eggs near the apex of a growing shoot. The act of oviposition is accompanied by secretion of an ovipositional fluid, which is considered to be cecidogen, directly involved in gall induction. The remains of cecidogenic fluid were collected from the surface of the oviposition point on the stem. We performed a comparative analysis of the phenolics extracted from cecidogen, the stem and galls of L. vulgaris and adult and larva of R. pilosa by HPLC-DAD. One compound with A max at 273, 332 nm (R t 30.65 min) was exclusively found in the methanol extract of cecidogen. To further characterize the cecidogen and stem phenolic profiles, we used UHPLC coupled with an OrbiTrap mass analyzer. Among 49 phenolic compounds extracted from both the ovipositional fluid and the plant, protocatechuic acid and two phenolic glycosides were exclusively found in cecidogen: diosmetin-O-acetylrutinoside and an unidentified compound. The unknown compound produced an MS2 base peak at 387 and 327 and 267 m/z base peaks at MS3 and MS4 fragmentation, respectively, and had the molecular formula C32H31O18. The plausible role of phenolic compounds in the induction of gall formation on L. vulgaris is discussed.  相似文献   

16.
The yeast strain XJ5-1 isolated from the Taklimakan desert soil was identified to be a strain of Aureobasdium melanogenum and could produce a large amount of melanin when it was grown in the PDA medium, but its melanin biosynthesis and expression of the PKS gene responsible for the melanin biosynthesis was significantly repressed in the presence of (NH4)2SO4. However, A. melanogenum P5 strain isolated from a mangrove ecosystem grown in both the presence and the absence of (NH4)2SO4 did not produce any melanin. The cell size of A. melanogenum XJ5-1 strain was much higher than that of A. melanogenum P5 strain. The melanized cells of the yeast strain XJ5-1 had higher tolerance to UV radiation, oxidation (200.0 mM H2O2), heat treatment (40 °C), salt shock (200.0 g/L NaCl), desiccation and strong acid hydrolysis (6.0 M HCl) at high temperature (80 °C) than the non-melanized cells of the same yeast strain XJ5-1. At the same time, the melanized cells of the yeast strain XJ5-1 also had higher tolerance to UV radiation, oxidation (200.0 mM H2O2), desiccation and strong acid hydrolysis (6.0 M HCl) at high temperature (80 °C) than A. melanogenum P5 strain, but had similar resistance to heat treatment (40 °C) and salt shock (200.0 g/L NaCl) compared to those of A. melanogenum P5 strain. All the results revealed that many characteristics of A. melanogenum XJ5-1 isolated from the Taklimakan desert soil was different from those of A. melanogenum P5 strain isolated from the mangrove ecosystem.  相似文献   

17.
Botryococcus braunii is a microalga considered for biofuel production and may require physical disruption of cells/colonies for efficient hydrocarbon extraction. In this study, the strength of individual cells of B. braunii was measured using a nanoindenter. From the load and cell size, the pressure for bursting the cell was calculated to be 56.9 MPa. This value is 2.3–10 times those of Saccharomyces cerevisiae and Chlorella vulgaris found in another research, because B. braunii has two types of cell walls with different thicknesses. The energy required to disrupt 1 g of dry B. braunii cells, estimated by load-displacement curves, is 3.19 J g?1 which is 0.19–1.2 times higher than those of S. cerevisiae and C. vulgaris. When using a high-pressure homogenizer for disrupting B. braunii cells, the cell disruption degree increased with the treatment pressure at above 30 MPa, and 70% of cells were disrupted at 80 MPa.  相似文献   

18.
19.
Transgenic hairy roots of Datura spp., established using strain A4 of Agrobacterium rhizogenes, are genetically stable and produce high levels of tropane alkaloids. To increase biomass and tropane alkaloid content of this plant tissue, four Pseudomonas strains, Pseudomonas fluorescens P64, P66, C7R12, and Pseudomonas putida PP01 were assayed as biotic elicitors on transgenic hairy roots of Datura stramonium, Datura tatula, and Datura innoxia. Alkaloids were extracted from dried biomass, and hyoscyamine and scopolamine were quantified using liquid chromatography-tandem mass spectrometry analysis. D. stramonium and D. innoxia biomass production was stimulated by all Pseudomonas spp. strains after a 5-d treatment. All strains of P. fluorescens increased hyoscyamine yields compared to untreated cultures after both 5 and 10 d of treatment. Hyoscyamine yields were highest in D. tatula cultures exposed to a 5-d treatment with C7R12 (16.633 + 0.456 mg g?1 dry weight, a 431% increase) although the highest yield increases compared to the control were observed in D. stramonium cultures exposed to strains P64 (511% increase) and C7R12 (583% increase) for 10 d. D. innoxia showed the highest scopolamine yields after elicitation with P. fluorescens strains P64 for 5 d (0.653 + 0.021 mg g?1 dry weight, a 265% increase) and P66 for 5 and 10 d (5 d, 0.754 + 0.0.031 mg g?1 dry weight, a 321% increase; 10 d 0.634 + 0.046 mg g?1 dry weight, a 277% increase). These results show that the Pseudomonas strains studied here can positively and significantly affect biomass and the yields of hyoscyamine and scopolamine from transgenic roots of the three Datura species.  相似文献   

20.
To introduce endangered plants to urban green space for ex situ conservation successfully, it is important to better understand the optimal NO3 ?/NH4 + ratios for profitable plant. Increasing nitrogen deposition altered the nitrate to ammonium ratio (NO3 ?/NH4 +) in soil. This change may strongly affect the fate of endangered plants, which often have little ability to adapt to environmental changes. In this study, we carried out a microcosm hydroponic experiment by growing Mosla hangchowensis (an endangered species) to test its preference to NO3 ?/NH4 + ratios and used congeneric M. dianthera (a widespread species) for comparison. Results showed that M. hangchowensis preferred an equal NO3 ?/NH4 + ratio to NO3 ? as an N source, with a higher biomass observed under NO3 ?/NH4 + ratios of 50/50 and 75/25 than other treatments. However, M. dianthera preferred NO3 ? as N source, with a higher biomass under NO3 ?/NH4 + ratios of 100/0 and 75/25 than other treatments. NH4 + is the dominant form of N in atmospheric deposition in China and continued increasing in nitrogen deposition may be detrimental to M. hangchowensis, while only have minimal effects on M. dianthera. Urban regions are expanding, and the high environmental heterogeneity in urban areas can provide potential habitats for M. hangchowensis. Based on this study, we advise that the ex suit conservation of M. hangchowensis in urban green spaces needs to adjust the fertilization strategy according to the situation of nitrogen deposition to achieve the optimal NO3 ?/NH4 + ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号