首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Streptomyces coelicolor genome carries two apparently paralogous genes, SCO4164 and SCO5854, that encode putative thiosulfate sulfurtransferases (rhodaneses). These genes (and their presumed translation products) are highly conserved and widely distributed across actinobacterial genomes. The SCO4164 knockout strain was unable to grow on minimal media with either sulfate or sulfite as the sole sulfur source. The SCO5854 mutant had no growth defects in the presence of various sulfur sources; however, it produced significantly less amounts of actinorhodin. Furthermore, we discuss possible links between basic interconversions of inorganic sulfur species and secondary metabolism in S. coelicolor.  相似文献   

2.
Drought-stressed plants accumulate cyclitols such as myo-inositol, pinitol, quercitol in the cytosol. These solutes (compatible solutes) protect plants from stress effects. Synthetic myo-inositol was used in the investigation of drought stress tolerance in pepper plants. Hydrogen peroxide (H2O2), membrane damage, ascorbate peroxidase (AP), catalase (CAT), proline and calcium increased in plants under drought conditions. Water status, calcium level, glutathione reductase activities increased in myo-inositol treated Capsicum annuum L. (pepper) under drought stress. Exogenous myo-inositol significantly decreased H2O2, membrane damage and proline levels and AP (except for 5 µM) and CAT activity, compared with untreated plants. Myo-inositol can play a role as effective as proline in signal transduction and in regulating concentrations of reactive oxygen species within tolerable ranges and in maintaining cell turgor by binding water molecules. Myo-inositol may become a useful instrument to eliminate the negative effects of drought environments.  相似文献   

3.
4.
Cytisus aeolicus Guss. ex Lindl. (Fabaceae family, subfamily Faboideae) is an endangered endemic species of the Aeolian Islands, Sicily. In vitro multiplication of C. aeolicus shoots was described in this work and cell cultures were established from cotyledons and hypocotyls to investigate their potential production of isoflavones. Aseptically germinated seeds, cultivated on LS modified basal medium, gave the initial explants used both to induce axillary propagation and callus cultures. The LS (Linsmaier and Skoog) basal medium, supplemented with 0.1 mg L?1 of 6-benzylaminopurine were used to induce axillary propagation. The callus induction was performed using the basal medium added with 5 mg L?1 2,4-dichlorophenoxy acetic acid and 5 mg L?1 kinetin (control medium). Basal medium was also added with 2000 mg L?1 casein hydrolysate (CH) or 900 mg L?1myo-inositol (MI). C. aeolicus callus cultures on CH and MI media produced an unique compound, the isoflavone genistein 7-O-ß-D-glucopyranoside (genistin), which has not previously been isolated from wild plants. Callus cultures grown on the medium containing myo-inositol produced the greatest amount of genistin. C. aeolicus tissue culture procedures could provide suitable plant material both for germplasm preservation (by micropropagation) and for biotechnological selective isoflavone production (by callus culture).  相似文献   

5.
Phytate (myo-inositol hexakisphosphate), the major form of phosphorous storage in plant seeds, is an inositol phosphate compound poorly digested by humans and monogastric animals. A major goal for grain crop improvement is the reduction of its content in the seed to improve micronutrient bioavailability and phosphorus utilisation by humans and non-ruminant animals, respectively. We are interested in lowering phytic acid in common bean seed and to this goal we have undertaken a two-strategy approach: the isolation of mutants from an EMS mutagenised population (Campion et al. 2009) and the identification of genes coding for candidate enzymes involved in inositol phosphate metabolism for future targeted mutant isolation and/or study. In this paper we report data referred to the second approach and concerning the isolation and genomic organisation of Phaseolus vulgaris genes coding for myo-inositol 1-phosphate synthase (PvMIPSs and PvMIPSv), inositol monophosphatase (PvIMP), myo-inositol kinase (PvMIK), inositol 1,4,5-tris-phosphate kinase (PvIPK2), inositol 1,3,4-triphosphate 5/6-kinase (PvITPKα and PvITPKβ) and inositol 1,3,4,5,6 pentakisphosphate 2-kinase (PvIPK1). All these genes have been mapped on the common bean reference genetic map of McClean (NDSU) 2007 using a virtual mapping strategy. Bean markers, presumably associated to each gene of the phytic acid pathway, have also been identified. In addition, we provide a picture of the expression, during seed development, of the genes involved in phytic acid synthesis, including those such as MIK, IMP and IPK2, for which this information was lacking.  相似文献   

6.

Background

Microbial lipid production represents a potential alternative feedstock for the biofuel and oleochemical industries. Since Escherichia coli exhibits many genetic, technical, and biotechnological advantages over native oleaginous bacteria, we aimed to construct a metabolically engineered E. coli strain capable of accumulating high levels of triacylglycerol (TAG) and evaluate its neutral lipid productivity during high cell density fed-batch fermentations.

Results

The Streptomyces coelicolor TAG biosynthesis pathway, defined by the acyl-CoA:diacylglycerol acyltransferase (DGAT) Sco0958 and the phosphatidic acid phosphatase (PAP) Lppβ, was successfully reconstructed in an E. coli diacylglycerol kinase (dgkA) mutant strain. TAG production in this genetic background was optimized by increasing the levels of the TAG precursors, diacylglycerol and long-chain acyl-CoAs. For this we carried out a series of stepwise optimizations of the chassis by 1) fine-tuning the expression of the heterologous SCO0958 and lpp β genes, 2) overexpression of the S. coelicolor acetyl-CoA carboxylase complex, and 3) mutation of fadE, the gene encoding for the acyl-CoA dehydrogenase that catalyzes the first step of the β-oxidation cycle in E. coli. The best producing strain, MPS13/pET28-0958-ACC/pBAD-LPPβ rendered a cellular content of 4.85% cell dry weight (CDW) TAG in batch cultivation. Process optimization of fed-batch fermentation in a 1-L stirred-tank bioreactor resulted in cultures with an OD600nm of 80 and a product titer of 722.1 mg TAG L-1 at the end of the process.

Conclusions

This study represents the highest reported fed-batch productivity of TAG reached by a model non-oleaginous bacterium. The organism used as a platform was an E. coli BL21 derivative strain containing a deletion in the dgkA gene and containing the TAG biosynthesis genes from S. coelicolor. The genetic studies carried out with this strain indicate that diacylglycerol (DAG) availability appears to be one of the main limiting factors to achieve higher yields of the storage compound. Therefore, in order to develop a competitive process for neutral lipid production in E. coli, it is still necessary to better understand the native regulation of the carbon flow metabolism of this organism, and in particular, to improve the levels of DAG biosynthesis.
  相似文献   

7.
Arabidopsis glucuronokinase (AtGlcAK), as a member of the GHMP kinases family, is implicated in the de novo synthesis of UDP-glucuronic acid (UDP-GlcA) by the myo-inositol oxygenation pathway. In this study, two T-DNA insertion homozygous mutants of AtGlcAK, atglcak-1 and atglcak-2, were identified. AtGlcAK was highly expressed in roots and flowers. There was reduced primary root elongation and lateral root formation in atglcak mutants under osmotic stress. The atglcak mutants displayed enhanced stomatal opening in response to abscisic acid (ABA), elevated water loss and impaired drought tolerance. Under water stress, the accumulation of reducing and soluble sugars was reduced in atglcak mutants, and the metabolism of glucose and sucrose was affected by the synthetic pathway of UDP-GlcA. Furthermore, a reduced level of starch in atglcak mutants was observed under normal conditions. The phylogenetic analysis suggested that GlcAK was conserved in numerous dicots and monocots plants. In short, AtGlcAK mutants displayed hypersensitivity to ABA and reduced root development under water stress, rendering the plants more susceptible to drought stress.  相似文献   

8.

Key message

Arabidopsis det1 mutants exhibit salt and osmotic stress resistant germination. This phenotype requires HY5, ABF1, ABF3, and ABF4.

Abstract

While DE-ETIOLATED 1 (DET1) is well known as a negative regulator of light development, here we describe how det1 mutants also exhibit altered responses to salt and osmotic stress, specifically salt and mannitol resistant germination. LONG HYPOCOTYL 5 (HY5) positively regulates both light and abscisic acid (ABA) signalling. We found that hy5 suppressed the det1 salt and mannitol resistant germination phenotype, thus, det1 stress resistant germination requires HY5. We then queried publically available microarray datasets to identify genes downstream of HY5 that were differentially expressed in det1 mutants. Our analysis revealed that ABA regulated genes, including ABA RESPONSIVE ELEMENT BINDING FACTOR 3 (ABF3), are downregulated in det1 seedlings. We found that ABF3 is induced by salt in wildtype seeds, while homologues ABF4 and ABF1 are repressed, and all three genes are underexpressed in det1 seeds. We then investigated the role of ABF3, ABF4, and ABF1 in det1 phenotypes. Double mutant analysis showed that abf3, abf4, and abf1 all suppress the det1 salt/osmotic stress resistant germination phenotype. In addition, abf1 suppressed det1 rapid water loss and open stomata phenotypes. Thus interactions between ABF genes contribute to det1 salt/osmotic stress response phenotypes.
  相似文献   

9.
10.
11.
Auxin receptors TIR1/AFBs play an essential role in a series of signaling network cascades. These F-box proteins have also been identified to participate in different stress responses via the auxin signaling pathway in Arabidopsis. Cucumber (Cucumis sativus L.) is one of the most important crops worldwide, which is also a model plant for research. In the study herein, two cucumber homologous auxin receptor F-box genes CsTIR and CsAFB were cloned and studied for the first time. The deduced amino acid sequences showed a 78% identity between CsTIR and AtTIR1 and 76% between CsAFB and AtAFB2. All these proteins share similar characteristics of an F-box domain near the N-terminus, and several Leucine-rich repeat regions in the middle. Arabidopsis plants ectopically overexpressing CsTIR or CsAFB were obtained and verified. Shorter primary roots and more lateral roots were found in these transgenic lines with auxin signaling amplified. Results showed that expression of CsTIR/AFB genes in Arabidopsis could lead to higher seeds germination rates and plant survival rates than wild-type under salt stress. The enhanced salt tolerance in transgenic plants is probably caused by maintaining root growth and controlling water loss in seedlings, and by stabilizing life-sustaining substances as well as accumulating endogenous osmoregulation substances. We proposed that CsTIR/AFB-involved auxin signal regulation might trigger auxin mediated stress adaptation response and enhance the plant salt stress resistance by osmoregulation.  相似文献   

12.
In addition to the already known cagA gene, novel genetic markers have been associated with Helicobacter pylori (H. pylori) virulence: the dupA and vacAi genes. These genes might play an important role as specific markers to determine the clinical outcome of the disease, especially the vacAi gene, which has been expected to be a good marker of severe pathologies like gastric adenocarcinoma. In the present study, the association of cagA, dupA, and vacAi genes with gastroduodenal pathologies in Chilean patients was studied. One hundred and thirty-two patients positive for H. pylori were divided into two groups—non-severe and severe gastric pathologies—and investigated for the presence of cagA, dupA, and vacAi H. pylori virulence genes by PCR. The cagA gene was detected in 20/132 patients (15.2%), the vacAi1 gene was detected in 54/132 patients (40.9%), the vacAi2 gene was detected in 26/132 patients (19.7%), and the dupA gene was detected in 50/132 (37.9%) patients. Logistic regression model analysis showed that the vacAi1 isoform gene in the infected strains and the severity of the diseases outcome were highly associated, causing severe gastric damage that may lead to gastric cancer (p < 0.0001; OR = 8.75; 95% CI 3.54–21.64). Conversely, cagA (p = 0.3507; OR = 1.62; 95% CI 0.59–4.45) and vacAi2 (p = 0.0114; OR = 3.09; 95% CI 1.26–7.60) genes were not associated with damage, while the dupA gene was associated significantly with non-severe clinical outcome (p = 0.0032; OR = 0.25; 95% CI 0.09–0.65). In addition, dupA gene exerts protection against severe gastric pathologies induced by vacAi1 by delaying the outcome of the disease by approximately 20 years.  相似文献   

13.
The high molecular weight insecticidal toxin complexes (Tcs), including four toxin-complex loci (tca, tcb, tcc and tcd), were first identified in Photorhabdus luminescens W14. Each member of tca, tcb or tcc is required for oral toxicity of Tcs. However, the sequence sources of the C-termini of tccC3, tccC4, tccC6 and tccC7 are unknown. Here, we performed a whole genome survey to identify the orthologs of Tc genes, and found 165 such genes in 14 bacterial genomes, including 40 genes homologous to tccC1-7 in P. luminescens TT01. The sequence sources of the C-termini of tccC2-6 were determined by sequence analysis. Further phylogenetic investigations suggested that the C-termini of 6 tccC genes experienced horizontal gene transfer events.  相似文献   

14.

Background

Hox and ParaHox gene clusters are thought to have resulted from the duplication of a ProtoHox gene cluster early in metazoan evolution. However, the origin and evolution of the other genes belonging to the extended Hox group of homeobox-containing genes, that is, Mox and Evx, remains obscure. We constructed phylogenetic trees with mouse, amphioxus and Drosophila extended Hox and other related Antennapedia-type homeobox gene sequences and analyzed the linkage data available for such genes.

Results

We claim that neither Mox nor Evx is a Hox or ParaHox gene. We propose a scenario that reconciles phylogeny with linkage data, in which an Evx/Mox ancestor gene linked to a ProtoHox cluster was involved in a segmental tandem duplication event that generated an array of all Hox-like genes, referred to as the 'coupled' cluster. A chromosomal breakage within this cluster explains the current composition of the extended Hox cluster (with Evx, Hox and Mox genes) and the ParaHox cluster.

Conclusions

Most studies dealing with the origin and evolution of Hox and ParaHox clusters have not included the Hox-related genes Mox and Evx. Our phylogenetic analyses and the available linkage data in mammalian genomes support an evolutionary scenario in which an ancestor of Evx and Mox was linked to the ProtoHox cluster, and that a tandem duplication of a large genomic region early in metazoan evolution generated the Hox and ParaHox clusters, plus the cluster-neighbors Evx and Mox. The large 'coupled' Hox-like cluster EvxHox/MoxParaHox was subsequently broken, thus grouping the Mox and Evx genes to the Hox clusters, and isolating the ParaHox cluster.
  相似文献   

15.
16.
The B subfamily of ATP-binding cassette (ABC) proteins (ABCB) plays a vital role in auxin efflux. However, no systematic study has been done in apple. In this study, we performed genomewide identification and expression analyses of the ABCB family in Malus domestica for the first time. We identified a total of 25 apple ABCBs that were divided into three clusters based on the phylogenetic analysis. Most ABCBs within the same cluster demonstrated a similar exon–intron organization. Additionally, the digital expression profiles of ABCB genes shed light on their functional divergence. ABCB1 and ABCB19 are two well-studied auxin efflux carrier genes, and we found that their expression levels are higher in young shoots of M106 than in young shoots of M9. Since young shoots are the main source of auxin synthesis and auxin efflux involves in tree height control. This suggests that ABCB1 and ABCB19 may also take a part in the auxin efflux and tree height control in apple.  相似文献   

17.
18.
Tuber huidongense and T. liyuanum are common commercial white truffles in China that belong to the Rufum and Puberulum groups of the genus Tuber, respectively. Their mycorrhizae were successfully synthesized with two native trees—Castanea mollissima and Pinus armandii—under greenhouse conditions. The identities of the mycorrhizae were confirmed through internal transcribed spacer (ITS) sequence analyses, and their morphological characteristics were described. All of the obtained mycorrhizae have an interlocking pseudoparenchymatous mantle, which is a typical feature of truffle mycorrhizae. The mycorrhizae of T. huidongense on the two trees have hyaline branched emanating hyphae, similar to the documented mycorrhizae of the Rufum group. The unramified, spiky, and hyaline cystidia on the mycorrhizae of T. liyuanum with both C. mollissima and P. armandii further confirmed that this characteristic is constant for the mycorrhizae of the Puberulum group. The successful mycorrhizal syntheses on the two nut-producing trees will be of economic importance in the cultivation of the two truffles.  相似文献   

19.
20.
The existence of the cluster of duplicated sit silicon transporter genes in the chromosome of the diatom Synedra acus subsp. radians was shown for the first time. Earlier, the localization of sit genes in the same chromosome and cluster formation caused by gene duplication was shown only for the marine raphid pennate diatom P. tricornutum. Only non-clustered sit genes were found in the genomes of other diatoms. It is reasonable to assume that sit tandem (sit-td) and sit triplet (sit-tri) genes of S. acus subsp. radians occurred as a result of gene duplication followed by divergence of gene copies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号