共查询到20条相似文献,搜索用时 15 毫秒
1.
S. Koutaniemi M.P. van Gool M. Juvonen J. Jokela S.W. Hinz H.A. Schols M. Tenkanen 《Journal of biotechnology》2013
Mass spectrometric analysis was used to compare the roles of two acetyl esterases (AE, carbohydrate esterase family CE16) and three acetyl xylan esterases (AXE, families CE1 and CE5) in deacetylation of natural substrates, neutral (linear) and 4-O-methyl glucuronic acid (MeGlcA) substituted xylooligosaccharides (XOS). AEs were similarly restricted in their action and apparently removed in most cases only one acetyl group from the non-reducing end of XOS, acting as exo-deacetylases. In contrast, AXEs completely deacetylated longer neutral XOS but had difficulties with the shorter ones. Complete deacetylation of neutral XOS was obtained after the combined action of AEs and AXEs. MeGlcA substituents partially restricted the action of both types of esterases and the remaining acidic XOS were mainly substituted with one MeGlcA and one acetyl group, supposedly on the same xylopyranosyl residue. These resisting structures were degraded to great extent only after inclusion of α-glucuronidase, which acted with the esterases in a synergistic manner. When used together with xylan backbone degrading endoxylanase and β-xylosidase, both AE and AXE enhanced the hydrolysis of complex XOS equally. 相似文献
2.
Katharina Drzewiecki Angel Angelov Meike Ballschmiter Klaus‐Jürgen Tiefenbach Reinhard Sterner Wolfgang Liebl 《Microbial biotechnology》2010,3(1):84-92
An esterase which is encoded within a Thermotoga maritima chromosomal gene cluster for xylan degradation and utilization was characterized after heterologous expression of the corresponding gene in Escherichia coli and purification of the enzyme. The enzyme, designated AxeA, shares amino acid sequence similarity and its broad substrate specificity with the acetyl xylan esterase from Bacillus pumilus, the cephalosporin C deacetylase from Bacillus subtilis, and other (putative) esterases, allowing its classification as a member of carbohydrate esterase family 7. The recombinant enzyme displayed activity with p-nitrophenyl-acetate as well as with various acetylated sugar substrates such as glucose penta-acetate, acetylated oat spelts xylan and DMSO (dimethyl sulfoxide)-extracted beechwood xylan, and with cephalosporin C. Thermotoga maritima AxeA represents the most thermostable acetyl xylan esterase known to date. In a 10 min assay at its optimum pH of 6.5 the enzyme's activity peaked at 90°C. The inactivation half-life of AxeA at a protein concentration of 0.3 µg µl−1 in the absence of substrate was about 13 h at 98°C and about 67 h at 90°C. Differential scanning calorimetry analysis of the thermal stability of AxeA corroborated its extreme heat resistance. A multi-phasic unfolding behaviour was found, with two apparent exothermic peaks at approximately 100–104°C and 107.5°C. In accordance with the crystal structure, gel filtration analysis at ambient temperature revealed that the enzyme has as a homohexameric oligomerization state, but a dimeric form was also found. 相似文献
3.
Bacillus pumilus PS213 was found to be able to release acetate from acetylated xylan. The enzyme catalyzing this reaction has been purified to homogeneity and characterized. The enzyme was secreted, and its production was induced by corncob powder and xylan. Its molecular mass, as determined by gel filtration, is 190 kDa, while sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed a single band of 40 kDa. The isoelectric point was found to be 4.8, and the enzyme activity was optimal at 55 degrees C and pH 8.0. The activity was inhibited by most of the metal ions, while no enhancement was observed. The Michaelis contant (Km) and Vmax for alpha-naphthyl acetate were 1.54 mM and 360 micromol min-1 mg of protein-1, respectively. 相似文献
4.
5.
Veeresh Juturu Christina Aust Jin Chuan Wu 《World journal of microbiology & biotechnology》2013,29(4):597-605
Acetyl xylan esterase (AXE) from basidiomycete Coprinopsis cinerea Okayama 7 (#130) was functionally expressed in Pichia pastoris with a C-terminal tag under the alcohol oxidase 1 (AOX1) promoter and secreted into the medium at 1.5 mg l?1. Its molecular mass was estimated to be 65.5 kDa based on the SDS-PAGE analysis, which is higher than the calculated molecular mass of 40 kDa based on amino acid composition. In-silico analysis of the amino acid sequence predicted two potential N-glycosylation sites. Results from PNGase F deglycosylation and mass spectrum confirmed the presence of N-glycosylation on the recombinant AXE with predominant N-glycans HexNAc2Hex9–16. The recombinant AXE showed best activity at 40 °C and pH 8. It showed not only acetyl esterase activity with a Km of 4.3 mM and a Vmax of 2.15 U mg?1 for hydrolysis of 4-nitrophenyl acetate but also a butyl esterase activity for hydrolysis of 4-nitrophenyl butyrate with a Km of 0.11 mM and Vmax of 0.78 U mg?1. The presence of two additional amino acid residues at its native N-terminus was found to help stabilize the enzyme against the protease cleavages without affecting its activity. 相似文献
6.
7.
Walter Pangborn Mary Erman Naiyin Li Brian M. Burkhart Vladimir Z. Pletnev William L. Duax Rodrigo Gutierrez Alessandra Peirano Jaime Eyzaguirre Daniel J. Thiel Debashis Ghosh 《Proteins》1996,24(4):523-524
Acetyl xylan esterase from Penicillium purpurogenum, a single-chain 23 kDa member of a newly characterized family of esterases that cleaves side chain ester linkages in xylan, has been crystallized. The crystals diffract to better than 1 Å resolution at the Cornell High Energy Synchrotron Source (CHESS) and are highly stable in the synchrotron radiation. The space group is P212121 and cell dimensions are a = 34.9 Å, b = 61.0 Å, c = 72.5 Å. 相似文献
8.
以枯草芽胞杆菌CICC 20034为研究对象,对其分泌的高相对分子质量酯酶进行鉴定,并考察诱导剂对其活力的影响。结果表明:枯草芽胞杆菌CICC 20034可分泌一种相对分子质量为1.07×105的酯酶,经蛋白质质谱鉴定为乙酰木聚糖酯酶,单体分相对子质量为3.56×104。在发酵培养基中添加乙酸乙酯和木糖可以显著的促进乙酰木聚糖酯酶的活力,而三丁酸甘油酯和大分子诱导剂——木聚糖、玉米芯粉和壳聚糖对酯酶的活力几乎无促进作用。枯草芽胞杆菌CICC 20034以乙酸乙酯为诱导剂时最高比酶活为0.62 U/mL,为已知报道的野生细菌乙酰木聚糖酯酶的最高酯酶活力。 相似文献
9.
【目的】从嗜热厌氧微生物热解纤维素菌属F32(Caldicellulosiruptor sp.F32)菌株中鉴定出可水解木聚糖侧链乙酰基团的脂酶。【方法】通过基因组序列注释、比对以及蛋白结构预测的方法,发现一个潜在的脂酶7家族的(CE-7)乙酰木聚糖脂酶Axe7。利用基因克隆、质粒构建以及在大肠杆菌中表达目标蛋白并纯化等实验方法,获得了该酶的重组蛋白。【结果】以4-甲基乙酸伞形酯(4-Methylumbelliferyl-acetate)作为底物时,该酶的最适反应p H在6.5-7.0之间,最适反应温度为85°C,在最适的温度和p H条件下,Axe7活性半衰期(Half-life)超过4 h。在不同金属离子(1.5 mmol/L)存在下,Axe7活性可保持为最适反应酶活的(66.3±4.6)%-(95.7±2.3)%之间,说明金属离子对其酶活有一定的影响。通过测定酶动力学发现Axe7的Km和kcat值分别为0.39 mmol/L和66.95 s-1。【结论】从高温厌氧微生物中发现并表征一个热稳定性良好的乙酰木聚糖脂酶,为木质纤维素的高温糖化和生物炼制提供了一个可工业化的潜在选择。 相似文献
10.
Soni Surabhi Sathe Sneha S. Odaneth Annamma A. Lali Arvind M. Chandrayan Sanjeev K. 《Extremophiles : life under extreme conditions》2017,21(4):687-697
Extremophiles - Caldicellulosiruptor bescii, the most thermophilic cellulolytic bacterium, is rich in hydrolytic and accessory enzymes that can degrade untreated biomass, but the precise role of... 相似文献
11.
Peter Biely Mária Cziszárová Jane W. Agger Xin-Liang Li Vladimír Puchart Mária Vršanská Vincent G.H. Eijsink Bjorge Westereng 《Biochimica et Biophysica Acta (BBA)/General Subjects》2014
Background
Trichoderma reesei CE16 acetyl esterase (AcE) is a component of the plant cell wall degrading system of the fungus. The enzyme behaves as an exo-acting deacetylase removing acetyl groups from non-reducing end sugar residues.Methods
In this work we demonstrate this exo-deacetylating activity on natural acetylated xylooligosaccharides using MALDI ToF MS.Results
The combined action of GH10 xylanase and acetylxylan esterases (AcXEs) leads to formation of neutral and acidic xylooligosaccharides with a few resistant acetyl groups mainly at their non-reducing ends. We show here that these acetyl groups serve as targets for TrCE16 AcE. The most prominent target is the 3-O-acetyl group at the non-reducing terminal Xylp residues of linear neutral xylooligosaccharides or on aldouronic acids carrying MeGlcA at the non-reducing terminus. Deacetylation of the non-reducing end sugar may involve migration of acetyl groups to position 4, which also serves as substrate of the TrCE16 esterase.Conclusion
Concerted action of CtGH10 xylanase, an AcXE and TrCE16 AcE resulted in close to complete deacetylation of neutral xylooligosaccharides, whereas substitution with MeGlcA prevents removal of acetyl groups from only a small fraction of the aldouronic acids. Experiments with diacetyl derivatives of methyl β-d-xylopyranoside confirmed that the best substrate of TrCE16 AcE is 3-O-acetylated Xylp residue followed by 4-O-acetylated Xylp residue with a free vicinal hydroxyl group.General significance
This study shows that CE16 acetyl esterases are crucial enzymes to achieve complete deacetylation and, consequently, complete the saccharification of acetylated xylans by xylanases, which is an important task of current biotechnology. 相似文献12.
David C. Goldstone Graeme T. Attwood Christina D. Moon Willam J. Kelly Vickery L. Arcus 《Proteins》2013,81(5):911-917
Butyrivibrio proteoclasticus is a significant component of the microbial population of the rumen of dairy cattle. It is a xylan‐degrading organism whose genome encodes a large number of open reading frames annotated as fiber‐degrading enzymes. We have determined the three‐dimensional structure of Est2A, an acetyl xylan esterase from B. proteoclasticus, at 2.1 Å resolution, along with the structure of an inactive mutant (H351A) at 2.0 Å resolution. The structure reveals two domains—a C‐terminal SGNH domain and an N‐terminal jelly‐roll domain typical of CE2 family structures. The structures are accompanied by experimentally determined enzymatic parameters against two model substrates, para‐nitrophenyl acetate and para‐nitrophenyl butyrate. The suite of fiber‐degrading enzymes produced by B. proteoclasticus provides a rich source of new enzymes of potential use in industrial settings. Proteins 2013. © 2012 Wiley Periodicals, Inc. 相似文献
13.
A 1,067-bp cDNA, designated axeA, coding for an acetyl xylan esterase (AxeA) was cloned from the anaerobic rumen fungus Orpinomyces sp. strain PC-2. The gene had an open reading frame of 939 bp encoding a polypeptide of 313 amino acid residues with a calculated mass of 34,845 Da. An active esterase using the original start codon of the cDNA was synthesized in Escherichia coli. Two active forms of the esterase were purified from recombinant E. coli cultures. The size difference of 8 amino acids was a result of cleavages at two different sites within the signal peptide. The enzyme released acetate from several acetylated substrates, including acetylated xylan. The activity toward acetylated xylan was tripled in the presence of recombinant xylanase A from the same fungus. Using p-nitrophenyl acetate as a substrate, the enzyme had a K(m) of 0.9 mM and a V(max) of 785 micromol min(-1) mg(-1). It had temperature and pH optima of 30 degrees C and 9.0, respectively. AxeA had 56% amino acid identity with BnaA, an acetyl xylan esterase of Neocallimastix patriciarum, but the Orpinomyces AxeA was devoid of a noncatalytic repeated peptide domain (NCRPD) found at the carboxy terminus of the Neocallimastix BnaA. The NCRPD found in many glycosyl hydrolases and esterases of anaerobic fungi has been postulated to function as a docking domain for cellulase-hemicellulase complexes, similar to the dockerin of the cellulosome of Clostridium thermocellum. The difference in domain structures indicated that the two highly similar esterases of Orpinomyces and Neocallimastix may be differently located, the former being a free enzyme and the latter being a component of a cellulase-hemicellulase complex. Sequence data indicate that AxeA and BnaA might represent a new family of hydrolases. 相似文献
14.
15.
Qianqian Tian Ping Song Ling Jiang Shuang Li He Huang 《Applied microbiology and biotechnology》2014,98(5):2081-2089
A cephalosporin deacetylating acetyl xylan esterase was cloned from the genomic DNA of Bacillus subtilis CICC 20034 and functionally expressed in Escherichia coli. Its gene contained an open reading frame of 957 bp encoding 318 amino acids with a calculated mass of 35,607 Da, and it displayed significant identity to acetyl xylan esterases from Bacillus sp. 916, B. subtilis 168, and Bacillus pumilus Cect5072. The enzyme was a native homohexamer but a trimer under the condition of 1 % sodium dodecyl sulfate (SDS); both forms were active and could transit to each other by incubating in or removing SDS. The enzyme belongs to carbohydrate esterase family 7 and had a double specificity on both the acetylated oligosaccharide and cephalosporin C (CPC) and 7-aminocephalosporanic acid (7-ACA). The activity of this purified enzyme toward CPC and 7-ACA was highest among all the acetyl xylan esterase from CE family 7, which were 484 and 888 U/mg, respectively, and endowed itself with great industrial interest on semi-synthetic β-lactam antibiotics. The optimum pH of the purified enzyme was 8.0, and the optimum temperature was 50 °C, and the enzyme had high thermal stability, broad range of pH tolerance, and extremely organic solvent tolerance. 相似文献
16.
Yi Zhang Hai-Tao Ding Wen-Xin Jiang Xia Zhang Hai-Yan Cao Jing-Ping Wang Chun-Yang Li Feng Huang Xi-Ying Zhang Xiu-Lan Chen Yu-Zhong Zhang Ping-Yi Li 《The Journal of biological chemistry》2021,297(1)
SGNH-type acetyl xylan esterases (AcXEs) play important roles in marine and terrestrial xylan degradation, which are necessary for removing acetyl side groups from xylan. However, only a few cold-adapted AcXEs have been reported, and the underlying mechanisms for their cold adaptation are still unknown because of the lack of structural information. Here, a cold-adapted AcXE, AlAXEase, from the Arctic marine bacterium Arcticibacterium luteifluviistationis SM1504T was characterized. AlAXEase could deacetylate xylooligosaccharides and xylan, which, together with its homologs, indicates a novel SGNH-type carbohydrate esterase family. AlAXEase showed the highest activity at 30 °C and retained over 70% activity at 0 °C but had unusual thermostability with a Tm value of 56 °C. To explain the cold adaption mechanism of AlAXEase, we next solved its crystal structure. AlAXEase has similar noncovalent stabilizing interactions to its mesophilic counterpart at the monomer level and forms stable tetramers in solutions, which may explain its high thermostability. However, a long loop containing the catalytic residues Asp200 and His203 in AlAXEase was found to be flexible because of the reduced stabilizing hydrophobic interactions and increased destabilizing asparagine and lysine residues, leading to a highly flexible active site. Structural and enzyme kinetic analyses combined with molecular dynamics simulations at different temperatures revealed that the flexible catalytic loop contributes to the cold adaptation of AlAXEase by modulating the distance between the catalytic His203 in this loop and the nucleophilic Ser32. This study reveals a new cold adaption strategy adopted by the thermostable AlAXEase, shedding light on the cold adaption mechanisms of AcXEs. 相似文献
17.
Expression of fungal acetyl xylan esterase in Arabidopsis thaliana improves saccharification of stem lignocellulose 下载免费PDF全文
Prashant Mohan‐Anupama Pawar Marta Derba‐Maceluch Sun‐Li Chong Leonardo D. Gómez Eva Miedes Alicja Banasiak Christine Ratke Cyril Gaertner Grégory Mouille Simon J. McQueen‐Mason Antonio Molina Anita Sellstedt Maija Tenkanen Ewa J. Mellerowicz 《Plant biotechnology journal》2016,14(1):387-397
Cell wall hemicelluloses and pectins are O‐acetylated at specific positions, but the significance of these substitutions is poorly understood. Using a transgenic approach, we investigated how reducing the extent of O‐acetylation in xylan affects cell wall chemistry, plant performance and the recalcitrance of lignocellulose to saccharification. The Aspergillus niger acetyl xylan esterase AnAXE1 was expressed in Arabidopsis under the control of either the constitutively expressed 35S CAMV promoter or a woody‐tissue‐specific GT43B aspen promoter, and the protein was targeted to the apoplast by its native signal peptide, resulting in elevated acetyl esterase activity in soluble and wall‐bound protein extracts and reduced xylan acetylation. No significant alterations in cell wall composition were observed in the transgenic lines, but their xylans were more easily digested by a β‐1,4‐endoxylanase, and more readily extracted by hot water, acids or alkali. Enzymatic saccharification of lignocellulose after hot water and alkali pretreatments produced up to 20% more reducing sugars in several lines. Fermentation by Trametes versicolor of tissue hydrolysates from the line with a 30% reduction in acetyl content yielded ~70% more ethanol compared with wild type. Plants expressing 35S:AnAXE1 and pGT43B:AnAXE1 developed normally and showed increased resistance to the biotrophic pathogen Hyaloperonospora arabidopsidis, probably due to constitutive activation of defence pathways. However, unintended changes in xyloglucan and pectin acetylation were only observed in 35S:AnAXE1‐expressing plants. This study demonstrates that postsynthetic xylan deacetylation in woody tissues is a promising strategy for optimizing lignocellulosic biomass for biofuel production. 相似文献
18.
Nisole A Lussier FX Morley KL Shareck F Kazlauskas RJ Dupont C Pelletier JN 《Protein expression and purification》2006,46(2):274-284
Acetyl xylan esterase A (AxeA) from Streptomyces lividans belongs to a large family of industrially relevant polysaccharide esterases. AxeA and its truncated form containing only the catalytically competent domain, AxeA(tr), catalyze both the deacetylation of xylan and the N-deacetylation of chitosan. This broad substrate specificity lends additional interest to their characterization and production. Here, we report three systems for extracellular production of AxeA(tr): secretion from the native host S. lividans with the native signal peptide, extracellular production in Escherichia coli with the native signal peptide, and in E. coli with the OmpA signal peptide. Over five to seven days of a shake flask culture, the native host S. lividans with the native signal peptide secreted AxeA(tr) into the extracellular medium in high yield (388 mg/L) with specific activity of 19 U/mg corresponding to a total of 7000 U/L. Over one day of shake flask culture, E. coli with the native secretion signal peptide produced 84-fold less in the extracellular medium (4.6 mg/L), but the specific activity was higher (100 U/mg) corresponding to a total of 460 U/L. A similar E. coli culture using the OmpA signal peptide, produced 10mg/L with a specific activity of 68 U/mg, corresponding to a total of 680 U/L. In 96-well microtiter plates, extracellular production with E. coli gave approximately 30 and approximately 86 microg/mL in S. lividans. Expression in S. lividans with the native signal peptide is best for high level production, while expression in E. coli using the OmpA secretion signal peptide is best for high-throughput expression and screening of variants in microtiter plate format. 相似文献
19.
20.
The Clostridium cellulovorans xynA gene encodes the cellulosomal endo-1,4-beta-xylanase XynA, which consists of a family 11 glycoside hydrolase catalytic domain (CD), a dockerin domain, and a NodB domain. The recombinant acetyl xylan esterase (rNodB) encoded by the NodB domain exhibited broad substrate specificity and released acetate not only from acetylated xylan but also from other acetylated substrates. rNodB acted synergistically with the xylanase CD of XynA for hydrolysis of acetylated xylan. Immunological analyses revealed that XynA corresponds to a major xylanase in the cellulosomal fraction. These results indicate that XynA is a key enzymatic subunit for xylan degradation in C. cellulovorans. 相似文献