首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The protecting and staining properties of biofilms grown on oil-treated surfaces of Pinus sylvestris L. sapwood were investigated with respect to their potential to create homogeneous coloured surfaces. Linseed oil pressure-treated blocks of P. sylvestris L. were evaluated after 36 months of outdoor exposure. The biofilm was characterized by colony counts and PCR cloning, the interactions with wood were assessed microscopically. The results show that a biofilm consisting of Aureobasidium pullulans has the potential to create protecting and staining functions on a wood surface. The conditions and factors which lead to a selective growth of A. pullulans are discussed with respect to the practical application of the formed biofilm in the field of environmental and civil engineering.  相似文献   

2.
The visual system relies on patterns of light to provide information about the layout of objects that populate our environment. Light is structured by the way it interacts with the three-dimensional shape, reflectance, and transmittance properties of objects. The input for vision is therefore a complex, conflated mixture of different sources of physical variation that the brain must somehow disentangle to recover the intrinsic properties of the objects and materials that fill the world.  相似文献   

3.
Identification and characterization of protein functional surfaces are important for predicting protein function, understanding enzyme mechanism, and docking small compounds to proteins. As the rapid speed of accumulation of protein sequence information far exceeds that of structures, constructing accurate models of protein functional surfaces and identify their key elements become increasingly important. A promising approach is to build comparative models from sequences using known structural templates such as those obtained from structural genome projects. Here we assess how well this approach works in modeling binding surfaces. By systematically building three-dimensional comparative models of proteins using Modeller, we determine how well functional surfaces can be accurately reproduced. We use an alpha shape based pocket algorithm to compute all pockets on the modeled structures, and conduct a large-scale computation of similarity measurements (pocket RMSD and fraction of functional atoms captured) for 26,590 modeled enzyme protein structures. Overall, we find that when the sequence fragment of the binding surfaces has more than 45% identity to that of the template protein, the modeled surfaces have on average an RMSD of 0.5 Å, and contain 48% or more of the binding surface atoms, with nearly all of the important atoms in the signatures of binding pockets captured.  相似文献   

4.
The purpose of this study was to compare various metabolic and functional responses while playing tennis on clay and hard courts. Twelve 90-minute matches were played (6 on clay courts and 6 on hard courts) by 4 nationally ranked players. During the on-court tests, oxygen uptake (VO2) and heart rate (HR) were measured using portable systems. Capillary blood lactate concentration (LA) was measured every 10 minutes. Additionally, distance ran, playing time, resting time, and exercise to rest ratio were monitored by time-motion analysis. The statistical analysis showed that playing time was higher on clay courts than on hard courts (p < 0.05), and resting time on clay courts and hard courts was not statistically different (p > 0.05). The exercise to rest ratio was affected by the interaction between playing time and resting time, showing a longer recovery time per unit of exercise on hard courts than on clay courts (p < 0.05). Distance ran, mean HR, and mean LA were significantly higher on clay courts than on hard courts (p < 0.05). There was less fluctuation of the VO2 response on clay courts than on hard courts. Therefore, it is suggested that conditioning programs should be adjusted according to the playing surface to account for the longer playing time, greater exercise to rest ratio, increased HR and LA, and a more steady pattern of VO2 seen on clay courts.  相似文献   

5.
6.
Conditions for the processing and mixing of biodegradable polymers at temperatures less than their thermal destruction (130–150°C) using standard equipment have been identified. The structure of the polyhydroxybutyrate/valerate (PHB/V) copolymer has been revealed and peculiarities of the crystal phase formation at different monomer ratios have been investigated. It was shown that pure PHB with molecular mass 180–270 kDa has elastic module approximately 1.2 GPa, strength approximately 25 MPa, and elongation at break approximately 10%. The most active biodestructors of PHB, PHB/V, and their composites have been selected (Aspergillus caespitosus), and the ability of basidiomycete Panus tigrinus to biodegrade polyalkanoates was demonstrated for the first time. It was shown that A. caespitosus degraded PHB/V and Biopol films along with the PHB with the destruction rate depending on the technology of the film production, on the molecular mass, and on the extend of the polymer crystallinity.  相似文献   

7.
Fluorescence confocal microscopy was used to characterize micron-sized microfabricated silicon particles and planar oxide surfaces after silanization and immobilization of IgG antibody. Surfaces treated with amino- and mercaptosilanes were tested for the presence of amine and sulfhydryl groups by labeling with specific fluorescein probes. In addition, human antibody (IgG) was immobilized to the thiol-coated microparticles using the heterobifunctional crosslinker succinimidyl 4-(N-maleimidolmethyl)-cyclohexane-1-carboxylate. Estimates of the surface density of IgG were consistent with 8.3% of a monolayer of covalently-bound antibody. Confocal images confirmed uniform layers of both silanes and antibodies on the microparticles. The sensitivity limit for the confocal measurements was determined to be as low as 1.5 x 10(-5) fluors per nm2.  相似文献   

8.
Mapping actin surfaces required for functional interactions in vivo   总被引:19,自引:8,他引:11       下载免费PDF全文
An in vivo strategy to identify amino acids of actin required for functional interactions with actin-binding proteins was developed. This approach is based on the assumption that an actin mutation that specifically impairs the interaction with an actin-binding protein will cause a phenotype similar to a null mutation in the gene that encodes the actin-binding protein. 21 actin mutations were analyzed in budding yeast, and specific regions of actin subdomain 1 were implicated in the interaction with fimbrin, an actin filament-bundling protein. Mutations in this actin subdomain were shown to be, like a null allele of the yeast fimbrin gene (SAC6), lethal in combination with null mutations in the ABP1 and SLA2 genes, and viable in combination with a null mutation in the SLA1 gene. Biochemical experiments with act1-120 actin (E99A, E100A) verified a defect in the fimbrin-actin interaction. Genetic interactions between mutant alleles of the yeast actin gene and null alleles of the SAC6, ABP1, SLA1, and SLA2 genes also demonstrated that the effects of the 21 actin mutations are diverse and allowed four out of seven pseudo-wild-type actin alleles to be distinguished from the wild-type gene for the first time, providing evidence for functional redundancy between different surfaces of actin.  相似文献   

9.
Plasma polymerized epoxide functional surfaces for DNA probe immobilization   总被引:1,自引:0,他引:1  
The development of functional surfaces for the immobilization of DNA probe is crucial for a successful design of a DNA sensor. In this report, epoxide functional thin films were achieved simply by pulsed plasma polymerization (PP) of glycidyl methacrylate (GMA) at low duty cycle. The presence of epoxide groups in the resulting ppGMA films was confirmed by Fourier transform infrared spectroscopy. The ppGMA coatings were found to be resistant to the non-specific adsorption of DNA strands, while the epoxide groups obtained could react with amine-modified DNA probes in a mild basic environment without any activation steps. A DNA sensor was made, and was successfully employed to distinguish different DNA sequences with one base pair mismatch as seen by surface plasmon enhanced fluorescence spectroscopy (SPFS). The regeneration of the present DNA sensor was also discussed. This result suggests that surface modification with ppGMA films is very promising for the fabrication of various DNA sensors.  相似文献   

10.
The general multiparameter system of testing chemical compounds allows to study biological matter on the basis of purely physical approaches. A "Tissue-1" device allows to study all types of biological tissues able to withstand different kinds of passive and/or active mechanic load.  相似文献   

11.
12.
13.
Tethered membranes have been proven during recent years to be a powerful and flexible biomimetic platform. We reported in a previous article on the design of a new architecture based on the self-assembly of a thiolipid on ultrasmooth gold substrates, which shows extremely good electrical sealing properties as well as functionality of a bilayer membrane. Here, we describe the synthesis of lipids for a more modular design and the adaptation of the linker part to silane chemistry. We were able to form a functional tethered bilayer lipid membrane with good electrical sealing properties covering a silicon oxide surface. We demonstrate the functional incorporation of the ion carrier valinomycin and of the ion channel gramicidin.  相似文献   

14.
We present a DNA biosensor based on self-assembled monolayers (SAMs) of thiol-derivatized peptide nucleic acid (PNA) molecules adsorbed on gold surfaces. Previous works have shown that PNA molecules at an optimal concentration can be self-assembled with their molecular axes normal to the surface. In such structural configuration BioSAMs of PNAs maintain their capability for recognizing complementary DNA. We describe the combined use of PM-RAIRS and synchrotron radiation XPS for the detection and spectroscopic characterization of PNA-DNA hybridization process on gold surfaces. RAIRS and XPS are powerful techniques for surface characterization and molecular detection, which do not require a fluorescence labeling of the target. We present a characterization of the spectroscopic IR and XPS features, some of them associated to the phosphate groups of the DNA backbone, as an unambiguous signature of the PNA-DNA heteroduplex formation. The N(1s) XPS core level peak after DNA hybridization is decomposed in curves components, and every component assigned to different chemical species. Therefore, the results obtained by means of two complementary structural characterization techniques encourage the use of PNA-based biosensors for the detection of DNA molecules on natural samples.  相似文献   

15.
We show that microtubule polymers can be immobilized selectively on lithographically patterned silane surfaces while retaining their native properties. Silane films were chemisorbed on polished silicon wafers or glass coverslips and patterned using a deep UV lithographic process developed at the Naval Research Laboratory. Hydrocarbon and fluorocarbon alkyl silanes, as well as amino and thiol terminal alkyl silanes, were investigated as substrates for microtubule adhesion with retention of biological activity. Microtubules were found to adhere strongly to amine terminal silanes while retaining the ability to act as substrates for the molecular motor protein kinesin. Aminosilane patterns with linewidths varying from 1 to 50 microns were produced lithographically and used to produce patterns of selectively adhered microtubules. Microtubules were partially aligned on the patterned lines by performing the immobilization in a fluid flow field. Patterns were imaged with atomic force microscopy and differential interference contrast microscopy. Motility assays were carried out using kinesin-coated beads and observed with differential interference contrast microscopy. Kinesin bead movement on the patterned microtubules was comparable to movement on microtubule control surfaces.  相似文献   

16.
A new route for coating various substrates with antifouling polymer layers was developed. It consisted in deposition of an amino-rich adhesion layer by means of RF magnetron sputtering of Nylon 6,6 followed by the well-controlled, surface-initiated atom transfer radical polymerization of antifouling polymer brushes initiated by bromoisobutyrate covalently attached to amino groups present in the adhesion layer. Polymer brushes of hydroxy- and methoxy-capped oligoethyleneglycol methacrylate and carboxybetaine acrylamide were grafted from bromoisobutyrate initiator attached to a 15 nm thick amino-rich adhesion layer deposited on gold, silicon, polypropylene, and titanium-aluminum-vanadium alloy surfaces. Well-controlled polymerization kinetics made it possible to control the thickness of the brushes at a nanometer scale. Zero fouling from single protein solutions and a reduction of more than 90% in the fouling from blood plasma observed on the uncoated surfaces was achieved. The feasibility of functionalization with bioactive compounds was tested by covalent attachment of streptavidin onto poly(oligoethylene glycol methacrylate) brush and subsequent immobilization of model antibodies and oligonucleotides. The procedure is nondestructive and does not require any chemical preactivation or the presence of reactive groups on the substrate surface. Contrary to current antifouling modifications, the developed coating can be built on various classes of substrates and preserves its antifouling properties even in undiluted blood plasma. The new technique might be used for fabrication of biotechnological and biomedical devices with tailor-made functions that will not be impaired by fouling from ambient biological media.  相似文献   

17.
Nanostructured amphiphilic block copolymers, graft copolymers, polymeric thermally responsive molecular brushes and polymer stars are only few examples of macromolecular architectures accessible either via controlled/living radical polymerization (CLRP) techniques or the combination of CLRP mechanisms with efficient post-polymerization routes including click chemistry. Precise control over the composition, molecular weight and functionalities is a prerequisite for soft polymeric materials to self-organize into ordered morphologies. This contribution describes novel orthogonal chemical routes for the synthesis of macromolecular architectures and self-assembly of functional soft polymeric materials. Emerging potential applications of well-defined block and graft copolymers are outlined as well.  相似文献   

18.
This is, to our knowledge, the first study of the injection molding of materials where wheat gluten (WG) is the main component. In addition to a plasticizer (glycerol), 5 wt.% natural montmorillonite clay was added. X-ray indicated intercalated clay and transmission electron microscopy indicated locally good clay platelet dispersion. Prior to feeding into the injection molder, the material was first compression molded into plates and pelletized. The filling of the circular mold via the central gate was characterized by a divergent flow yielding, in general, a stronger and stiffer material in the circumferential direction. It was observed that 20-30 wt.% glycerol yielded the best combination of processability and mechanical properties. The clay yielded improved processability, plate homogeneity and tensile stiffness. IR spectroscopy and protein solubility indicated that the injection molding process yielded a highly aggregated structure. The overall conclusion was that injection molding is a very promising method for producing WG objects.  相似文献   

19.
20.
Biomolecule patterning by photolithographic methods has considerable advantages because a large number of different biomolecules can be assembled on a spatial area by a combinatorial method and complex biomolecule patterning can be created in situ in closed environments such as microfluidic channels. Here, a photobiotin was used as the photoactivatable reagent to create patterned arrays of biomolecules. The variability of photobiotin deposition on glass substrates modified with a variety of materials having carboxyl, lysine, aldehyde, amine groups, and BSA (bovine serum albumin) was characterized by subsequent derivatization with Cy3-labeled streptavidin. The fluorescence images of the photobiotin patterned glass surfaces showed that the BSA/aldehyde-coated glass could be considered as the most appropriate substrate to immobilize photobiotin, in view of the homogeneous immobilization of biomolecules with high density in defined regions and the reduction of nonspecific binding to the surface. In streptavidin equilibrium adsorption assays, the maximum amount of streptavidin-Cy3 bound to the BSA/aldehyde-coated glass surface continued to rise with increasing streptavidin-Cy3 concentration until 12.0 microg/mL was reached and the surface then became saturated. Also, a line array of biotin-labeled single-strand probe DNAs was created on the BSA/aldehyde-coated glass by photolysis of photobiotin through a slit-type mask and biotin/streptavidin/biotin chemistry, extended to a quantitative measurement of the concentrations of target DNA. The results of target DNA analysis showed linearity over a wide range from 0.5 ng/mL to 5 microg/mL and were reproducible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号