首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Klotho, a transmembrane protein, which can be cleaved off as β-glucuronidase and hormone, is released in both, kidney and choroid plexus and encountered in blood and cerebrospinal fluid. Klotho deficiency leads to early appearance of age-related disorders and premature death. Klotho may modify transport by inhibiting 1,25(OH)2D3 formation or by directly affecting channel and carrier proteins. The present study explored whether Klotho influences the activity of the Na+-coupled excitatory amino acid transporters EAAT3 and EAAT4, which are expressed in kidney (EAAT3), intestine (EAAT3) and brain (EAAT3 and EAAT4). To this end, cRNA encoding EAAT3 or EAAT4 was injected into Xenopus oocytes with and without additional injection of cRNA encoding Klotho. EAAT expressing Xenopus oocytes were further treated with recombinant human β-Klotho protein with or without β-glucuronidase inhibitor D-saccharic acid 1,4-lactone monohydrate (DSAL). Electrogenic excitatory amino acid transport was determined as L-glutamate-induced current (Iglu) in two electrode voltage clamp experiments. EAAT3 and EAAT4 protein abundance in the Xenopus oocyte cell membrane was visualized by confocal microscopy and quantified utilizing chemiluminescence. As a result, coexpression of Klotho cRNA significantly increased Iglu in both, EAAT3 or EAAT4-expressing Xenopus oocytes. Klotho cRNA coexpression significantly increased the maximal current and cell membrane protein abundance of both EAAT3 and EAAT4. The effect of Klotho coexpression on EAAT3 and EAAT4 activity was mimicked by treating EAAT3 or EAAT4-expressing Xenopus oocytes with recombinant human β-Klotho protein. The effects of Klotho coexpression and of treatment with recombinant human β-Klotho protein were both abrogated in the presence of DSAL (10 µM). In conclusion, Klotho is a novel, powerful regulator of the excitatory amino acid transporters EAAT3 and EAAT4.  相似文献   

3.
Janus kinase 3 (JAK3) contributes to cytokine receptor signaling, confers cell survival and stimulates cell proliferation. The gain of function mutation JAK3A572V is found in acute megakaryoplastic leukemia. Replacement of ATP coordinating lysine by alanine yields inactive JAK3K855A. Most recent observations revealed the capacity of JAK3 to regulate ion transport. This study thus explored whether JAK3 regulates glutamate transporters EAAT1-4, carriers accomplishing transport of glutamate and aspartate in a variety of cells including intestinal cells, renal cells, glial cells, and neurons. To this end, EAAT1, 2, 3, or 4 were expressed in Xenopus oocytes with or without additional expression of mouse wild-type JAK3, constitutively active JAK3A568V or inactive JAK3K851A, and electrogenic glutamate transport was determined by dual electrode voltage clamp. Moreover, Ussing chamber was employed to determine electrogenic glutamate transport in intestine from mice lacking functional JAK3 (jak3 ?/?) and from corresponding wild-type mice (jak3 +/+). As a result, in EAAT1, 2, 3, or 4 expressing oocytes, but not in oocytes injected with water, addition of glutamate to extracellular bath generated an inward current (I g), which was significantly increased following coexpression of JAK3. I g in oocytes expressing EAAT3 was further increased by JAK3A568V but not by JAK3K851A. I g in EAAT3 + JAK3 expressing oocytes was significantly decreased by JAK3 inhibitor WHI-P154 (22 µM). Kinetic analysis revealed that JAK3 increased maximal I g and significantly reduced the glutamate concentration required for half maximal I g (K m). Intestinal electrogenic glutamate transport was significantly lower in jak3 ?/? than in jak3 +/+ mice. In conclusion, JAK3 is a powerful regulator of excitatory amino acid transporter isoforms.  相似文献   

4.
The glial transporter excitatory amino acid transporter-2 (EAAT2) is the main mediator of glutamate clearance in brain. The wild-type transporter (EAAT2wt) forms trimeric membrane complexes in which each protomer functions autonomously. Several EAAT2 variants are found in control and Alzheimer-diseased human brains; their expression increases with pathological severity. These variants might alter EAAT2wt-mediated transport by abrogating membrane trafficking, or by changing the configuration or functionality of the assembled transporter complex. HEK293 cells were transfected with EAAT2wt; EAAT2b, a C-terminal variant; or either of two exon-skipping variants: alone or in combination. Surface biotinylation studies showed that only the exon-7 deletion variant was not trafficked to the membrane when transfected alone, and that all variants could reach the membrane when co-transfected with EAAT2wt. Fluorescence resonance energy transfer (FRET) studies showed that co-transfected EAAT2wt and EAAT2 splice variants were expressed in close proximity. Glutamate transporter function was measured using a whole cell patch clamp technique, or by changes in membrane potential indexed by a voltage-sensitive fluorescent dye (FMP assay): the two methods gave comparable results. Cells transfected with EAAT2wt or EAAT2b showed glutamate-dependent membrane potential changes consistent with functional expression. Cells transfected with EAAT2 exon-skipping variants alone gave no response to glutamate. Co-transfection of EAAT2wt (or EAAT2b) and splice variants in various ratios significantly raised glutamate EC50 and decreased Hill coefficients. We conclude that exon-skipping variants form heteromeric complexes with EAAT2wt or EAAT2b that traffic to the membrane but show reduced glutamate-dependent activity. This could allow glutamate to accumulate extracellularly and promote excitotoxicity.  相似文献   

5.
Glutamate is an excitatory neurotransmitter that plays a major role in the pathogenesis of ischemia brain injury. The regulation of glutamate neurotransmission is carried out by excitatory amino acid transporters (EAATs) that act through reuptake of glutamate into cells. EAATs may also release glutamate into the extracellular space in a calcium-independent manner during ischemia and dysfunction of EAATs is specifically implicated in the pathology of cerebral ischemia. Recent studies show that up-regulation of EAAT2 provides neuroprotection during ischemic insult. This review summarizes current knowledge regarding the role of EAATs in cerebral ischemia.  相似文献   

6.
Excitatory amino acid transporters (EAATs) limit glutamatergic signaling and maintain extracellular glutamate concentrations below neurotoxic levels. Of the five known EAAT isoforms (EAATs 1–5), only the neuronal isoform, EAAT3 (EAAC1), can efficiently transport the uncharged amino acid L-cysteine. EAAT3-mediated cysteine transport has been proposed to be a primary mechanism used by neurons to obtain cysteine for the synthesis of glutathione, a key molecule in preventing oxidative stress and neuronal toxicity. The molecular mechanisms underlying the selective transport of cysteine by EAAT3 have not been elucidated. Here we propose that the transport of cysteine through EAAT3 requires formation of the thiolate form of cysteine in the binding site. Using Xenopus oocytes and HEK293 cells expressing EAAT2 and EAAT3, we assessed the transport kinetics of different substrates and measured transporter-associated currents electrophysiologically. Our results show that L-selenocysteine, a cysteine analog that forms a negatively-charged selenolate ion at physiological pH, is efficiently transported by EAATs 1–3 and has a much higher apparent affinity for transport when compared to cysteine. Using a membrane tethered GFP variant to monitor intracellular pH changes associated with transport activity, we observed that transport of either L-glutamate or L-selenocysteine by EAAT3 decreased intracellular pH, whereas transport of cysteine resulted in cytoplasmic alkalinization. No change in pH was observed when cysteine was applied to cells expressing EAAT2, which displays negligible transport of cysteine. Under conditions that favor release of intracellular substrates through EAAT3 we observed release of labeled intracellular glutamate but did not detect cysteine release. Our results support a model whereby cysteine transport through EAAT3 is facilitated through cysteine de-protonation and that once inside, the thiolate is rapidly re-protonated. Moreover, these findings suggest that cysteine transport is predominantly unidirectional and that reverse transport does not contribute to depletion of intracellular cysteine pools.  相似文献   

7.
Neurochemical Research - Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system. After its release from presynaptic nerve terminals, glutamate is quickly removed...  相似文献   

8.
Our recent studies demonstrate that SPAK (Ste20p-related Proline Alanine-rich Kinase), in combination with WNK4 [With No lysine (K) kinase], phosphorylates and stimulates the Na-K-2Cl cotransporter (NKCC1), whereas catalytically inactive SPAK (K104R) fails to activate the cotransporter. The catalytic domain of SPAK contains an activation loop between the well-conserved DFG and APE motifs. We speculated that four threonine residues (T231, T236, T243, and T247) in the activation loop might be sites of phosphorylation and kinase activation; therefore, we mutated each residue into an alanine. In this report, we demonstrate that coexpression of SPAK (T243A) or SPAK (T247A) with WNK4 not only prevented, but robustly inhibited, cotransporter activity in NKCC1-injected Xenopus laevis oocytes. These activation loop mutations produced an effect similar to that of the SPAK (K104R) mutant. In vitro phosphorylation experiments demonstrate that both intramolecular autophosphorylation of SPAK and phosphorylation of NKCC1 are significantly stronger in the presence of Mn2+ rather than Mg2+. We also show that SPAK activity is markedly inhibited by staurosporine and K252a, partially inhibited by N-ethylmaleimide and diamide, and unaffected by arsenite. OSR1, a kinase closely related to SPAK, exhibited similar kinase properties and similar functional activation of NKCC1 when coexpressed with WNK4.  相似文献   

9.
Connexin 43 (Cx43) is a major gap junction (GJ) protein found in many mammalian cell types. The C-terminal (CT) domain of Cx43 has unique characteristics in terms of amino acid (aa) sequence and its length differs from other connexins. This CT domain can be associated with protein partners to regulate GJ assembly and degradation, which results in the direct control of gap junction intercellular communication (GJIC). However, the essential roles of the CT regions involved in these mechanisms have not been fully elucidated. In this study, we aimed to investigate the specific regions of Cx43CT involved in GJ formation and internalization. Wild type Cx43((382aa)) and 10 CT truncated mutants were stably expressed in HeLa cells as GFP or DsRed tagged proteins. First, we found that the deletion of 235-382aa from Cx43 resulted in failure to make GJ and establish GJIC. Second, the Cx43 with 242-382aa CT deletion could form functional GJs and be internalized as annular gap junctions (AGJs). However, the plaques consisting of Cx43 with CT deletions (Δ242-382aa to Δ271-382aa) were longer than the plaques consisting of Cx43 with CT deletions (Δ302-382aa). Third, co-culture experiments of cells expressing wild type Cx43((382)) with cells expressing Cx43CT mutants revealed that the directions of GJ internalization were dependent on the length of the respective CT. Moreover, a specific region, 325-342aa residues of Cx43, played an important role in the direction of GJ internalization. These results showed the important roles of the Cx43 C-terminus in GJ expression and its turnover.  相似文献   

10.
11.
Secondary transporters in the excitatory amino acid transporter family terminate glutamatergic synaptic transmission by catalyzing Na+-dependent removal of glutamate from the synaptic cleft. Recent structural studies of the aspartate-specific archaeal homolog, GltPh, suggest that transport is achieved by a rigid body, piston-like movement of the transport domain, which houses the substrate-binding site, between the extracellular and cytoplasmic sides of the membrane. This transport domain is connected to an immobile scaffold by three loops, one of which, the 3–4 loop (3L4), undergoes substrate-sensitive conformational change. Proteolytic cleavage of the 3L4 was found to abolish transport activity indicating an essential function for this loop in the transport mechanism. Here, we demonstrate that despite the presence of fully cleaved 3L4, GltPh is still able to sample conformations relevant for transport. Optimized reconstitution conditions reveal that fully cleaved GltPh retains some transport activity. Analysis of the kinetics and temperature dependence of transport accompanied by direct measurements of substrate binding reveal that this decreased transport activity is not due to alteration of the substrate binding characteristics but is caused by the significantly reduced turnover rate. By measuring solute counterflow activity and cross-link formation rates, we demonstrate that cleaving 3L4 severely and specifically compromises one or more steps contributing to the movement of the substrate-loaded transport domain between the outward- and inward-facing conformational states, sparing the equivalent step(s) during the movement of the empty transport domain. These results reveal a hitherto unknown role for the 3L4 in modulating an essential step in the transport process.  相似文献   

12.
13.
STE20/SPS-1-related proline-alanine-rich protein kinase (SPAK) and oxidative stress-related kinase (OSR1) activate the potassium-dependent sodium-chloride co-transporter, NKCC2, and thiazide-sensitive sodium-chloride cotransporter, NCC, in vitro, and both co-localize with a kinase regulatory molecule, Cab39/MO25α, at the apical membrane of the thick ascending limb (TAL) and distal convoluted tubule (DCT). Yet genetic ablation of SPAK in mice causes a selective loss of NCC function, whereas NKCC2 becomes hyperphosphorylated. Here, we explore the underlying mechanisms in wild-type and SPAK-null mice. Unlike in the DCT, OSR1 remains at the TAL apical membrane of KO mice where it is accompanied by an increase in the active, phosphorylated form of AMP-activated kinase. We found an alterative SPAK isoform (putative SPAK2 form), which modestly inhibits co-transporter activity in vitro, is more abundant in the medulla than the cortex. Thus, enhanced NKCC2 phosphorylation in the SPAK knock-out may be explained by removal of inhibitory SPAK2, sustained activity of OSR1, and activation of other kinases. By contrast, the OSR1/SPAK/M025α signaling apparatus is disrupted in the DCT. OSR1 becomes largely inactive and displaced from M025α and NCC at the apical membrane, and redistributes to dense punctate structures, containing WNK1, within the cytoplasm. These changes are paralleled by a decrease in NCC phosphorylation and a decrease in the mass of the distal convoluted tubule, exclusive to DCT1. As a result of the dependent nature of OSR1 on SPAK in the DCT, NCC is unable to be activated. Consequently, SPAK−/− mice are highly sensitive to dietary salt restriction, displaying prolonged negative sodium balance and hypotension.  相似文献   

14.
The WNK1 and WNK4 genes have been found to be mutated in some patients with hyperkalemia and hypertension caused by pseudohypoaldosteronism type II. The clue to the pathophysiology of pseudohypoaldosteronism type II was its striking therapeutic response to thiazide diuretics, which are known to block the sodium chloride cotransporter (NCC). Although this suggests a role for WNK1 in hypertension, the precise molecular mechanisms are largely unknown. Here we have shown that WNK1 phosphorylates and regulates the STE20-related kinases, Ste20-related proline-alanine-rich kinase (SPAK) and oxidative stress response 1 (OSR1). WNK1 was observed to phosphorylate the evolutionary conserved serine residue located outside the kinase domains of SPAK and OSR1, and mutation of the OSR1 serine residue caused enhanced OSR1 kinase activity. In addition, hypotonic stress was shown to activate SPAK and OSR1 and induce phosphorylation of the conserved OSR1 serine residue, suggesting that WNK1 may be an activator of the SPAK and OSR1 kinases. Moreover, SPAK and OSR1 were found to directly phosphorylate the N-terminal regulatory regions of cation-chloride-coupled cotransporters including NKCC1, NKCC2, and NCC. Phosphorylation of NCC was induced by hypotonic stress in cells. These results suggested that WNK1 and SPAK/OSR1 mediate the hypotonic stress signaling pathway to the transporters and may provide insights into the mechanisms by which WNK1 regulates ion balance.  相似文献   

15.
Neuregulin 1 (NRG1) is a trophic factor that is thought to have important roles in the regulating brain circuitry. Recent studies suggest that NRG1 regulates synaptic transmission, although the precise mechanisms remain unknown. Here we report that NRG1 influences glutamate uptake by increasing the protein level of excitatory amino acid carrier (EAAC1). Our data indicate that NRG1 induced the up-regulation of EAAC1 in primary cortical neurons with an increase in glutamate uptake. These in vitro results were corroborated in the prefrontal cortex (PFC) of mice given NRG1. The stimulatory effect of NRG1 was blocked by inhibition of the NRG1 receptor ErbB4. The suppressed expression of ErbB4 by siRNA led to a decrease in the expression of EAAC1. In addition, the ablation of ErbB4 in parvalbumin (PV)-positive neurons in PV-ErbB4−/− mice suppressed EAAC1 expression. Taken together, our results show that NRG1 signaling through ErbB4 modulates EAAC1. These findings link proposed effectors in schizophrenia: NRG1/ErbB4 signaling perturbation, EAAC1 deficit, and neurotransmission dysfunction.  相似文献   

16.
Excitatory amino acid transporter (EAAT) glutamate transporters function not only as secondary active glutamate transporters but also as anion channels. Recently, a conserved aspartic acid (Asp112) within the intracellular loop near to the end of transmembrane domain 2 was proposed as a major determinant of substrate-dependent gating of the anion channel associated with the glial glutamate transporter EAAT1. We studied the corresponding mutation (D117A) in another EAAT isoform, EAAT4, using heterologous expression in mammalian cells, whole cell patch clamp, and noise analysis. In EAAT4, D117A modifies unitary conductances, relative anion permeabilities, as well as gating of associated anion channels. EAAT4 anion channel gating is characterized by two voltage-dependent gating processes with inverse voltage dependence. In wild type EAAT4, external l-glutamate modifies the voltage dependence as well as the minimum open probabilities of both gates, resulting in concentration-dependent changes of the number of open channels. Not only transport substrates but also anions affect wild type EAAT4 channel gating. External anions increase the open probability and slow down relaxation constants of one gating process that is activated by depolarization. D117A abolishes the anion and glutamate dependence of EAAT4 anion currents and shifts the voltage dependence of EAAT4 anion channel activation by more than 200 mV to more positive potentials. D117A is the first reported mutation that changes the unitary conductance of an EAAT anion channel. The finding that mutating a pore-forming residue modifies gating illustrates the close linkage between pore conformation and voltage- and substrate-dependent gating in EAAT4 anion channels.  相似文献   

17.
Abstract: We have used postnatal rat cerebellar astrocyte-enriched cultures to study the excitatory amino acid receptors present on these cells. In the cultures used, type-2 astrocytes (recognized by the monoclonal antibodies A2B5 and LB1) selectively took up γ-[3H]aminobutyric acid ([3H]GABA) and released it when incubated in the presence of micromolar concentrations of kainic and quisqualic acids. The releasing effect of kainic acid was concentration dependent in the range of 5–100 μ M . Quisqualate was more effective than kainate in the lower concentration range but less effective at concentrations at which its releasing activity was maximal (∼50 μ M ). N -Methyl- d -aspartic acid and dihydrokainate (100 μ M ) did not stimulate [3H]GABA release from cultured astrocytes. l -Glutamic acid (20–100 μ M ) stimulated [3H]GABA release as effectively as kainate. The stimulatory effects of kainate and quisqualate on [3H]GABA release were completely Na+ dependent; that of kainate was also partially Ca2+ dependent. Kynurenic acid (50–200 μ M ) selectively antagonized the releasing effects of kainic acid and also that of l -glutamate; quisqualate was unaffected. Quisqualic acid inhibited the releasing effects of kainic acid when both agonists were used at equimolar concentrations (50 μ M ). d -[3H]aspartate was taken up by both type-1 and type-2 astrocytes, but only type-2 astrocytes released it in the presence of kainic acid. Excitatory amino acid receptors with a pharmacology similar to that of the receptors present in type-2 astrocytes were also expressed by the immature, bipotential progenitors of type-2 astrocytes and oligodendrocytes.  相似文献   

18.
The sulfur-containing amino acids, L- and D-cysteate, L-cysteine, L- and D-cysteine sulfinate, L- and D-cysteine-S-sulfate, L-cystine, L- and D-homocysteate, L- and D-homocysteine sulfinate, L-homocysteine, L-serine-O-sulfate, and taurine were tested in two excitatory amino acid receptor functional assays and in receptor binding assays designed to label specifically the AA1/N-methyl-D-aspartate (NMDA), AA2/quisqualate, and AA3/kainate receptor recognition sites, as well as a CaCl2-dependent L-2-amino-4-phosphonobutanoate site, and a putative glutamate uptake site. Agonist efficacies were determined by chick retinal excitotoxicity and stimulated sodium efflux from rat brain slices. D-Homocysteine sulfinate, L-homocysteate, and L-serine-O-sulfate had affinities most selective for the NMDA binding site, whereas the binding affinities of D-cysteate, D-cysteine sulfinate, D-homocysteate, and L-homocysteine sulfinate were less selective. However, the correlation of agonist activity sensitive to blockade by D-2-amino-7-phosphonoheptanoate or D-2-amino-5-phosphonopentanoate in the functional assays with affinity in the NMDA binding assay (r = 0.87, p less than 0.005 and r = 0.98, p less than 0.005 for excitotoxicity and sodium efflux, respectively) allows characterization of these sulfur-containing amino acids as acting at NMDA subclass receptors. L-Homocysteate, which has been found in the brain, and L-serine-O-sulfate are selective agonists and could serve as endogenous neurotransmitters at the NMDA receptor.  相似文献   

19.
Photolabile precursors (caged compounds) of amino acids such as Ala, Leu, Lys, and Ser were prepared by some simple reactions. These compounds were designed for the rapid, photochemically initiated release of amino acids. These amino acid transporters were expressed in Xenopus oocyte by injecting mRNA prepared from rat kidney. The electrical response of each transporter was examined by applying the amino acids and caged compounds before and after photolysis. Photolysis of the caged amino acids increased the electrical response of the facilitated amino acid transporters expressed in the oocyte. Consequently, these synthesized caged amino acids would be applicable to kinetic investigations on the transporters when combined with a pulsed laser or xenon arc flash lamp.  相似文献   

20.
Mutations in the WNK [with no lysine (K) kinase] family instigate hypertension and pain perception disorders. Of the four WNK isoforms, much of the focus has been on WNK1, which is activated in response to osmotic stress by phosphorylation of its T-loop residue (Ser382). WNK isoforms phosphorylate and activate the related SPAK (SPS1-related proline/alanine-rich kinase) and OSR1 (oxidative stress-responsive kinase 1) protein kinases. In the present study, we first describe the generation of double-knockin ES (embryonic stem) cells, where SPAK and OSR1 cannot be activated by WNK1. We establish that NKCC1 (Na+/K+/2Cl- co-transporter 1), a proposed target of the WNK pathway, is not phosphorylated or activated in a knockin that is deficient in SPAK/OSR1 activity. We also observe that activity of WNK1 and WNK3 are markedly elevated in the knockin cells, demonstrating that SPAK/OSR1 significantly influences WNK activity. Phosphorylation of another regulatory serine residue, Ser1261, in WNK1 is unaffected in knockin cells, indicating that this is not phosphorylated by SPAK/OSR1. We show that WNK isoforms interact via a C-terminal CCD (coiled-coil domain) and identify point mutations of conserved residues within this domain that ablate the ability of WNK isoforms to interact. Employing these mutants, we demonstrate that interaction of WNK isoforms is not essential for their T-loop phosphorylation and activation, at least for overexpressed WNK isoforms. Moreover, we finally establish that full-length WNK1, WNK2 and WNK3, but not WNK4, are capable of directly phosphorylating Ser382 of WNK1 in vitro. This supports the notion that T-loop phosphorylation of WNK isoforms is controlled by trans-autophosphorylation. These results provide novel insights into the WNK signal transduction pathway and provide genetic evidence confirming the essential role that SPAK/OSR1 play in controlling NKCC1 function. They also reveal a role in which the downstream SPAK/OSR1 enzymes markedly influence the activity of the upstream WNK activators. The knockin ES cells lacking SPAK/OSR1 activity will be useful in validating new targets of the WNK signalling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号