首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
DNA错配修复与癌症的发生及治疗   总被引:3,自引:0,他引:3  
DNA错配修复是细胞复制后的一种修复机制,具有维持DNA复制保真度,控制基因变异的作用。DNA错配修复缺陷使整个基因组不稳定,最终会导致肿瘤和癌症的发生。DNA错配修复系统不仅通过矫正在DNA重组和复制过程中产生的碱基错配而保持基因组的稳定,而且通过诱导DNA损伤细胞的凋亡而消除由突变细胞生长形成的癌变。错配修复缺陷细胞的抗药性也引起了癌症化疗研究方面的关注。大多数情况下,错配修复健全型细胞对肿瘤化疗药物敏感,而错配修复缺陷细胞却有较高的抗性。DNA错配修复系统通过修复和诱导细胞凋亡维护基因组稳定的功能,显示了错配修复途径在癌症生物学和分子医学中的重要性。  相似文献   

2.
DNA错配修复、染色体不稳定和肿瘤的关系   总被引:1,自引:0,他引:1  
DNA错配修复系统可以识别并纠正DNA复制过程中出现的错误.保证基因组的稳定性和完整性.错配修复系统缺陷可能导致遗传物质发生突变,引发恶性肿瘤.肿瘤患者经常表现出染色体不稳定,具体表现为微卫星不稳定性和杂合性缺失.本文就DNA错配修复、染色体不稳定和肿瘤之间的联系予以综述.  相似文献   

3.
DNA损伤应答机制的存在有助于机体基因组稳定性的维持. BRCA1是一种重要的肿瘤抑制基因,它在DNA损伤应答中发挥了重要的作用. BRCA1可以与BARD1结合形成稳定的异源二聚体,作为BRCA1复合体蛋白组分的核心参与了DNA损伤信号传递、同源重组修复、DNA复制、细胞周期等多途径的调控.本文主要对BRCA1功能及其参与DNA损伤应答网络调控展开阐述,并总结了利用PARP抑制剂针对BRCA1突变肿瘤进行治疗产生耐药性的多种机制.  相似文献   

4.
MutS蛋白是DNA错配修复系统的关键成份,其突变会使细胞失去正常的错配修复功能,导致基因组不稳定和细胞异常.本研究利用易错PCR随机突变和利福平筛选,建立了研究MutS蛋白的新方法,发现影响MutS错配修复功能的新位点,并利用表面等离子共振、分子筛、farwestern等方法对错配修复功能缺陷的突变体进行了活性测定和分析;通过揭示MutS与错配修复功能相关的新信息,为MutS同源物多态性的研究及人源MutS同源物突变与癌症相关的研究提供新的线索.  相似文献   

5.
错配修复(mismatch repair,MMR)是DNA复制后的一种修复机制,对维持基因组稳定起重要作用.错配修复基因功能缺陷是继癌基因激活、抑癌基因失活之后又一肿瘤的发生、发展机制,错配修复基因的异常表达与全身多种肿瘤相关.涎腺肿瘤为口腔颌面部常见肿瘤之一,具有与其他系统肿瘤相似的组织学类型,多来源于肌上皮.近年来,有关涎腺肿瘤与错配修复基因的关系正逐步成为研究热点,本文就错配修复基因的组成、作用机制以及与涎腺肿瘤发生、发展的关系作一综述.  相似文献   

6.
DNA错配修复系统研究进展   总被引:3,自引:0,他引:3  
DNA错配修复(mismatch repair, MMR)系统广泛存在于生物体中.从原核生物大肠杆菌到真核生物及人类,MMR系统有不同的组成成分和修复机制.人体内MMR基因缺陷会造成基因组的不稳定并诱发遗传性非息肉型直肠癌以及其他自发性肿瘤.大肠杆菌MMR系统中的MutS蛋白可特异识别错配或未配对碱基,目前已经发展了多种基于MutS蛋白的基因突变/多态性检测技术.  相似文献   

7.
林德玲  罗瑛  宋宜 《遗传》2014,(4):309-315
DNA损伤发生时,细胞会激活一系列复杂的信号网络来调控细胞周期检查,完成DNA损伤修复或当损伤超过修复能力时诱导凋亡,这一信号网络被称为DNA损伤反应(DNA damage response,DDR)。以往DDR信号网络的研究主要集中于基因转录调控和蛋白共价修饰对功能分子的稳定性和活性调控。近年来,mRNA稳定性调控和mRNA翻译调控等基因转录后调控机制在DDR中的重要作用引起研究者越来越多的关注。研究证明:多种microRNAs和RNA结合蛋白(RNA-binding proteins,RBPs)在转录后水平调控诸多重要功能蛋白的表达,在DDR信号网络中起着不可或缺的作用。文章针对DDR反应中转录后调控的研究进展以及参与其中的microRNAs和RBPs进行阐述和讨论。  相似文献   

8.
DNA损伤响应涉及到损伤的感应、信号的传递、DNA修复等一系列通路和过程。在这些过程中,有大量蛋白质以其不同的修饰状态参与其中。有些蛋白质的修饰参与信号的识别和传递;有些修饰改变酶的活性;而有些修饰则参与调节,有大量的研究者对参与DNA损伤相关蛋白的功能及修饰进行了研究。它们在DNA损伤响应分别发挥着不同的功能,其协同作用使细胞得以从细胞周期关卡中恢复,进入正常周期。有大量研究者对参与DNA损伤相关蛋白的功能及其修饰进行了研究。在本综述中我们将从DDR所涉及的信号通路角度,主要对DDR及DNA损伤修复途径中所涉及到的蛋白质及其修饰进行总结。  相似文献   

9.
DNA损伤修复基本方式的研究进展   总被引:6,自引:0,他引:6  
DNA损伤修复基因可修复由不同原因导致的DNA损伤.从而保护遗传信息的完整性。DNA损伤修复有3种基本形式,即碱基切除修复、核苷酸切除修复和错配修复。本文综述了DNA损伤修复3种基本形式的研究进展情况并讨论了DNA链断裂重组和重接合修复及DNA聚合酶绕道修复DNA损伤。  相似文献   

10.
DNA损伤修复机制——解读2015年诺贝尔化学奖   总被引:1,自引:0,他引:1  
Tomas Lindahl, Paul Modrich和Aziz Sancar三位科学家因发现“DNA损伤修复机制”获得了2015年诺贝尔化学奖.Lindahl首次发现Escherichia Coli中参与碱基切除修复的第一个蛋白质--尿嘧啶 DNA糖基化酶(UNG); Modrich重建了错配修复的体外系统,从大肠杆菌到哺乳动物深入探究了错配修复的机制; Sancar利用纯化的UvrA、UvrB、UvrC重建了核苷酸切除修复的关键步骤,阐述了核苷酸切除修复的分子机制.DNA损伤是由生物所处体外环境和体内因素共同导致的,面对不同种类的损伤,机体启动多种不同的修复机制修复损伤,保护基因组稳定性.这些修复机制包括:光修复(light repairing);核苷酸切除修复(nucleotide excision repair, NER);碱基切除修复(base excision repair, BER);错配修复(mismatch repair, MMR);以及DNA双链断裂修复(DNA double strand breaks repair, DSBR).其中DNA双链断裂修复又分同源重组(homologous recombination, HR)和非同源末端连接(non homologous end joining, NHEJ)两种方式.本文将对上述几种修复的机制进行总结与讨论.  相似文献   

11.
含甲基化CpG结合域蛋白质4(methyl-CpG-binding domain protein 4,MBD4)是MBD核蛋白家族中的一员,它包含一个能特异结合甲基化CpG的MBD结构域和一个具有糖苷酶活性的DNA糖苷酶结构域。该蛋白质能特异地结合甲基化CpG岛,并且在DNA错配修复、抑制转录和调节凋亡等过程中发挥重要功能,并与微卫星不稳定性密切相关。MBD4是一个重要的DNA损伤修复蛋白,多方面的报道表明其许多功能都牵涉到细胞衰老。本文就其结构与功能的研究进展作一综述。  相似文献   

12.
DNA repair mechanisms are critical for maintaining the integrity of genomic DNA, and their loss is associated with cancer predisposition syndromes. Studies in Saccharomyces cerevisiae have played a central role in elucidating the highly conserved mechanisms that promote eukaryotic genome stability. This review will focus on repair mechanisms that involve excision of a single strand from duplex DNA with the intact, complementary strand serving as a template to fill the resulting gap. These mechanisms are of two general types: those that remove damage from DNA and those that repair errors made during DNA synthesis. The major DNA-damage repair pathways are base excision repair and nucleotide excision repair, which, in the most simple terms, are distinguished by the extent of single-strand DNA removed together with the lesion. Mistakes made by DNA polymerases are corrected by the mismatch repair pathway, which also corrects mismatches generated when single strands of non-identical duplexes are exchanged during homologous recombination. In addition to the true repair pathways, the postreplication repair pathway allows lesions or structural aberrations that block replicative DNA polymerases to be tolerated. There are two bypass mechanisms: an error-free mechanism that involves a switch to an undamaged template for synthesis past the lesion and an error-prone mechanism that utilizes specialized translesion synthesis DNA polymerases to directly synthesize DNA across the lesion. A high level of functional redundancy exists among the pathways that deal with lesions, which minimizes the detrimental effects of endogenous and exogenous DNA damage.  相似文献   

13.
The mismatch repair proteins, MutS and MutL, interact in a DNA mismatch and ATP-dependent manner to activate downstream events in repair. Here, we assess the role of ATP binding and hydrolysis in mismatch recognition by MutS and the formation of a ternary complex involving MutS and MutL bound to a mismatched DNA. We show that ATP reduces the affinity of MutS for mismatched DNA and that the modulation of DNA binding affinity by nucleotide is even more pronounced for MutS E694A, a protein that binds ATP but is defective for ATP hydrolysis. Despite the ATP hydrolysis defect, E694A, like WT MutS, undergoes rapid, ATP-dependent dissociation from a DNA mismatch. Furthermore, MutS E694A retains the ability to interact with MutL on mismatched DNA. The recruitment of MutL to a mismatched DNA by MutS is also observed for two mutant MutL proteins, E29A, defective for ATP hydrolysis, and R266A, defective for DNA binding. These results suggest that ATP binding in the absence of hydrolysis is sufficient to trigger formation of a MutS sliding clamp. However, recruitment of MutL results in the formation of a dynamic ternary complex that we propose is the intermediate that signals subsequent repair steps requiring ATP hydrolysis.  相似文献   

14.
DNA错配修复(mismatch repair, MMR)是一种进化中保守的机制,它校正DNA复制过程中产生的错误,维持基因组的稳定性。MMR家族蛋白同时也参与多种DNA相关的生物学功能。本研究从嗜热四膜虫鉴定了一种新的错配修复蛋白MLH3基因,该基因预测编码 319 个氨基酸,在有性生殖期特异表达。免疫荧光定位表明,HA-Mlh3定位在有性生殖期减数分裂的小核和新发育的大核中。MLH3 敲除的突变体细胞株,在有性生殖发育期停滞在两大核和两小核阶段,新大核DNA复制受阻。γ-H2A.X 检测表明,新大核和小核有性生殖后期断裂的基因组不能正常修复,发育中的细胞裂解,不能形成有性生殖后代。结果表明,Mlh3参与四膜虫新大核发育过程基因组的断裂修复和复制,对四膜虫的有性生殖是必需的。  相似文献   

15.
Oxidative DNA damage contributes to aging and the pathogenesis of numerous human diseases including cancer. 8-hydroxyguanine (8-oxoG) is the major product of oxidative DNA lesions. Although OGG1-mediated base excision repair is the primary mechanism for 8-oxoG removal, DNA mismatch repair has also been implicated in processing oxidative DNA damage. However, the mechanism of the latter is not fully understood. Here, we treated human cells defective in various 8-oxoG repair factors with H2O2 and performed biochemical, live cell imaging, and chromatin immunoprecipitation sequencing analyses to determine their response to the treatment. We show that the mismatch repair processing of oxidative DNA damage involves cohesive interactions between mismatch recognition protein MutSα, histone mark H3K36me3, and H3K36 trimethyltransferase SETD2, which activates the ATM DNA damage signaling pathway. We found that cells depleted of MutSα or SETD2 accumulate 8-oxoG adducts and fail to trigger H2O2-induced ATM activation. Furthermore, we show that SETD2 physically interacts with both MutSα and ATM, which suggests a role for SETD2 in transducing DNA damage signals from lesion-bound MutSα to ATM. Consistently, MutSα and SETD2 are highly coenriched at oxidative damage sites. The data presented here support a model wherein MutSα, SETD2, ATM, and H3K36me3 constitute a positive feedback loop to help cells cope with oxidative DNA damage.  相似文献   

16.
错配识别蛋白MutS的研究及应用进展   总被引:1,自引:0,他引:1  
全智勇  徐晋麟 《生命科学》2006,18(4):380-384
错配修复(mismatchrepairsystem,MMR)系统维护着遗传物质的稳定性。错配识别蛋白MutS是错配修复系统行使修复功能的第一个蛋白,具有识别并结合错配的能力。MutS蛋白具有特异性结合错配的特殊功能,在检测突变和SNP的研究中具有很大的应用潜力。近年来已有一些报道介绍了Muts蛋白的一些方法,虽然这些方法还有待改进,但MutS应用前景仍然十分诱人。  相似文献   

17.
The maintenance of genomic stability relies on the coordinated action of a number of cellular processes, including activation of the DNA-damage checkpoint, DNA replication, DNA repair, and telomere homeostasis. Many proteins involved in these cellular processes use different types of functional modules to regulate and execute their functions. Recent studies have revealed that many DNA-damage checkpoint and DNA repair proteins in human cells possess the oligonucleotide/oligosaccharide-binding (OB) fold domains, which are known to bind single-stranded DNA in both prokaryotes and eukaryotes. Furthermore, during the DNA damage response, the OB folds of the human checkpoint and DNA repair proteins play critical roles in DNA binding, protein complex assembly, and regulating protein–protein interactions. These findings suggest that the OB fold is an evolutionarily conserved functional module that is widely used by genome guardians. In this review, we will highlight the functions of several well-characterized or newly discovered eukaryotic OB-fold proteins in the DNA damage response.  相似文献   

18.
DNA-damage repair; the good, the bad, and the ugly   总被引:1,自引:0,他引:1  
Hakem R 《The EMBO journal》2008,27(4):589-605
Organisms have developed several DNA-repair pathways as well as DNA-damage checkpoints to cope with the frequent challenge of endogenous and exogenous DNA insults. In the absence or impairment of such repair or checkpoint mechanisms, the genomic integrity of the organism is often compromised. This review will focus on the functional consequences of impaired DNA-repair pathways. Although each pathway is addressed individually, it is essential to note that cross talk exists between repair pathways, and that there are instances in which a DNA-repair protein is involved in more than one pathway. It is also important to integrate DNA-repair process with DNA-damage checkpoints and cell survival, to gain a better understanding of the consequences of compromised DNA repair at both cellular and organismic levels. Functional consequences associated with impaired DNA repair include embryonic lethality, shortened life span, rapid ageing, impaired growth, and a variety of syndromes, including a pronounced manifestation of cancer.  相似文献   

19.
将DNA错配修复基因mutS(2.56kb)克隆于分泌型原核表达载体pET32a( )上,以N端融合6个组氨酸的形式在E.col AD494(DE3)中进行了IPTG诱导表达。SDS-PAGE分析证实有一与预期分子量相应的诱导表达条带,其表达量占全菌蛋白质的35%左右,且表达蛋白以可溶形式存在。利用固定化金属离子(Ni^2 )配体亲和层析柱纯化目的蛋白,其纯度为90%以上。与含有错配碱基DNA双链的结合反应证明该蛋白具有特异性识别,结合含有错配碱基DNA双链的生物活性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号