首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The study was performed to investigate the effect of combination therapy with aminoguanidine (AG) and dexamethasone (DEX) on the compression spinal cord injury (SCI) in rat. Compared to the control group, the combination therapy group with AG (75 mg/kg) and DEX (0.025 mg/kg) significantly reduced the degree of (1) spinal cord edema, (2) the permeability of blood spinal cord barrier (measured by 99mTc-Albumin), (3) infiltration of neutrophils (MPO evaluation), (4) cytokines expression (tumor necrosis factor-α and interleukin-1β), and (5) apoptosis (measured by Bax and Bcl-2 expression). In addition, we have also clearly demonstrated that the combination therapy significantly ameliorated the recovery of limb function (evaluated by motor recovery score). Taken together, our results clearly indicated for the first time that strategies targeting multiple proinflammatory pathways may be more effective than a single effector molecule for the treatment of SCI.  相似文献   

2.
Spinal cord injury (SCI) results in rapid and significant oxidative stress. This study was aimed to investigate the possible beneficial effects of Ebselen in comparison with Methylprednisolone in experimental SCI. Thirty six Wistar albino rats (200–250 g) were divided in to six groups; A (control), B (only laminectomy), C (Trauma; laminectomy + spinal trauma), D (Placebo group; laminectomy + spinal trauma + serum physiologic), E (Methylprednisolone group; laminectomy + spinal trauma + Methylprednisolone treated), F (Ebselen group; laminectomy + spinal trauma + Ebselen treated), containing 6 rats each. Spinal cord injury (SCI) was performed by placement of an aneurysm clip, extradurally at the level of T11–12. After this application, group A, B and C were not treated with any drug. Group D received 1 ml serum physiologic. Group E received 30 mg/kg Methylprednisolone and, Group F received 10 mg/kg Ebselen intraperitoneally (i.p.). Rats were neurologically examined 24 h after trauma and spinal cord tissue samples had been harvested for both biochemical and histopathological evaluation. All rats were paraplegic after SCI except the ones in group A and B. Neurological scores were not different in traumatized rats than that of non-traumatized ones. SCI significantly increased spinal cord tissue malondialdehyde (MDA) and protein carbonyl (PC) levels and also decreased superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) enzyme activities compared to control. Methylprednisolone and Ebselen treatment decreased tissue MDA and PC levels and prevented inhibition of the enzymes SOD, GSH-Px and CAT in the tissues. However, the best results were obtained with Ebselen. In groups C and D, the neurons of the spinal cord tissue became extensively dark and degenerated with picnotic nuclei. The morphology of neurons in groups E and F were very well protected, but not as good as the control group. The number of neurons in the spinal cord tissues of the groups C and D were significantly less than the groups A, B, E and F. We concluded that the use of Ebselen treatment might have potential benefits in spinal cord tissue damage on clinical grounds.  相似文献   

3.
目的:研究局灶性脑缺血再灌注后细胞凋亡、HSP70蛋白表达时空规律以及外源VEGF及VEGF抗体对它们的影响,探讨VEGF对缺血再灌注损伤的保护作用及其机制.方法:采用原位末端标记(TUNEL)、免疫组化方法,研究局灶性脑缺血再灌注后细胞凋亡数及HSP70蛋白表达时空分布,采用脑表面使用VEGF及侧脑室注射VEGF抗体,观察内外源VEGF对它们的影响.结果:VEGF抗体能显著增加缺血侧脑组织凋亡细胞数(再灌注12h-7d)及HSP70表达量(再灌注1-3d),而外源VEGF因子能显著减少同侧脑组织凋亡细胞(再灌注全程)及HSP70表达量(再灌注1-3d).结论:VEGF因子可抑制缺血脑组织细胞凋亡及HSP70表达量,提示VEGF参与保护缺血性脑损伤.  相似文献   

4.
5.
摘要 目的:探讨香草醛对新生大鼠缺氧缺血性脑损伤(HIBI)的神经保护作用及机制。方法:参考Rice-Vannucci方法建立HIBI大鼠模型。HIBI大鼠建模后立即腹腔注射20 mg/kg(HIBI+20Van组)或40 mg/kg(HIBI+40Van组)的香草醛,每隔12 h给药,连续7 d。然后评估大鼠的神经行为及脑组织中IL-1β、IL-6和TNF-α的水平。对BV2小胶质细胞进行氧糖剥夺/复氧(OGD/R)处理,并用20 μM香草醛培养。通过Western blot及免疫荧光检测HMGB1、NF-κB p65、SIRT1、MyD88和TLR4的表达水平。通过乳酸脱氢酶(LDH)释放测定试剂盒测定用不同BV2细胞培养基处理的原代神经元的LDH释放。结果:与HIBI组比较,HIBI+20Van组和HIBI+50Van组新生大鼠的前肢悬吊时间和旷场得分均升高,脑组织中的IL-1β、IL-6和TNF-α的水平均降低。香草醛均升高了HIBI大鼠和OGD/R处理的BV2细胞质中的SIRT1的表达水平,降低了TLR4、MyD88和HMGB1的表达水平及细胞核中NF-κB p65的表达水平(P<0.05)。香草醛降低了原代神经元的LDH释放量(P<0.05)。结论:香草醛通过调节SIRT1/HMGB1/TLR4/MyD88/NF-κB信号通路抑制HIBI引起的神经炎症,从而提高HIBI大鼠的神经功能。  相似文献   

6.
7.
Periventricular leukomalacia (PVL) is a common ischemic brain injury in premature infants for which there is no effective treatment. The objective of this study was to determine whether transplanted mouse oligodendrocyte progenitor cells (OPCs) have neuroprotective effects in a rat model of PVL. Hypoxia-ischemia (HI) was induced in 3-day-old rat pups by left carotid artery ligation, followed by exposure to 6% oxygen for 2.5 h. Animals were assigned to OPC transplantation or sham control groups and injected with OPCs or PBS, respectively, and sacrificed up to 6 weeks later for immunohistochemical analysis to investigate the survival and differentiation of transplanted OPCs. Apoptosis was evaluated by double immunolabeling of brain sections for caspase-3 and neuronal nuclei (NeuN), while proliferation was assessed using a combination of anti-Nestin and -bromodeoxyuridine antibodies. The expression of brain-derived neurotrophic factor (BDNF) and Bcl-2 was examined 7 days after OPC transplantation. The Morris water maze was used to test spatial learning and memory. The results showed that transplanted OPCs survived and formed a myelin sheath, and stimulated BDNF and Bcl-2 expression and the proliferation of neural stem cells (NSC), while inhibiting HI-induced neuronal apoptosis relative to control animals. Moreover, deficits in spatial learning and memory resulting from HI were improved by OPC transplantation. These results demonstrate an important neuroprotective role for OPCs that can potentially be exploited in cell-based therapeutic approaches to minimize HI-induced brain injury.  相似文献   

8.
目的 探讨两种吲哚美辛制剂在口腔溃疡愈合中的作用.方法 大鼠右颊用铁钉烫烧造模,分为吲哚美辛凝胶给药组(YN)、复方苯佐卡因凝胶阳性对照组(NP)、吲哚美辛喷雾给药组(YP)、口腔炎喷雾阳性对照组(PP)、正常对照组(N)和阴性对照组(M).采用HE染色、组织学标准定量评价溃疡面再上皮化及肉芽组织形成情况,比色法检测溃...  相似文献   

9.
Previous studies have shown that brain tissue hypoxia results in increased N-methyl-D-aspartate (NMDA) receptor activation and receptor-mediated increase in intracellular calcium which may activate Ca++-dependent nitric oxide synthase (NOS). The present study tested the hypothesis that tissue hypoxia will induce generation of nitric oxide (NO) free radicals in cerebral cortex of newborn guinea pigs. Nitric oxide free radical generation was assayed by electron spin resonance (ESR) spectroscopy. Ten newborn guinea pigs were assigned to either normoxic (FiO2 = 21%, n = 5) or hypoxic (FiO2 = 7%, n = 5) groups. Prior to exposure, animals were injected subcutaneously with the spin trapping agents diethyldithiocarbamate (DETC, 400 mg/kg), FeSO4.7H2O (40 mg/kg) and sodium citrate (200mg/kg). Pretreated animals were exposed to either 21% or 7% oxygen for 60 min. Cortical tissue was obtained, homogenized and the spin adducts extracted. The difference of spectra between 2.047 and 2.027 gauss represents production of NO free radical. In hypoxic animals, there was a difference (16.75 ± 1.70 mm/g dry brain tissue) between the spectra of NO spin adducts identifying a significant increase in NO free radical production. In the normoxic animals, however, there was no difference between the two spectra. We conclude that hypoxia results in Ca2+- dependent NOS mediated increase in NO free radical production in the cerebral cortex of newborn guinea pigs. Since NO free radicals produce peroxynitrite in presence of superoxide radicals that are abundant in the hypoxic tissue, we speculate that hypoxia-induced generation of NO free radical will lead to nitration of a number of cerebral proteins including the NMDA receptor, a potential mechanism of hypoxia-induced modification of the NMDA receptor resulting in neuronal injury.  相似文献   

10.
11.
Neurochemical Research - In neonates supraphysiological oxygen therapy has been demonstrated to cause neuronal death in hippocampus, prefrontal cortex, parietal cortex, and retrosplenial cortex....  相似文献   

12.
Birth asphyxia, which causes hypoxic-ischemic encephalopathy (HIE), accounts for 0.66 million deaths worldwide each year, about a quarter of the world’s 2.9 million neonatal deaths. Animal models of HIE have contributed to the understanding of the pathophysiology in HIE, and have highlighted the dynamic process that occur in brain injury due to perinatal asphyxia. Thus, animal studies have suggested a time-window for post-insult treatment strategies. Hypothermia has been tested as a treatment for HIE in pdiglet models and subsequently proven effective in clinical trials. Variations of the model have been applied in the study of adjunctive neuroprotective methods and piglet studies of xenon and melatonin have led to clinical phase I and II trials1,2. The piglet HIE model is further used for neonatal resuscitation- and hemodynamic studies as well as in investigations of cerebral hypoxia on a cellular level. However, it is a technically challenging model and variations in the protocol may result in either too mild or too severe brain injury. In this article, we demonstrate the technical procedures necessary for establishing a stable piglet model of neonatal HIE. First, the newborn piglet (< 24 hr old, median weight 1500 g) is anesthetized, intubated, and monitored in a setup comparable to that found in a neonatal intensive care unit. Global hypoxia-ischemia is induced by lowering the inspiratory oxygen fraction to achieve global hypoxia, ischemia through hypotension and a flat trace amplitude integrated EEG (aEEG) indicative of cerebral hypoxia. Survival is promoted by adjusting oxygenation according to the aEEG response and blood pressure. Brain injury is quantified by histopathology and magnetic resonance imaging after 72 hr.  相似文献   

13.
目的:探讨梓醇对缺血再灌注大鼠脑损伤后的保护作用.方法:采用传统大脑中动脉阻塞(MCAO)方法制备大鼠局灶性缺血模型,根据随机数字表法将SD大鼠分为MCAO组、对照组(vehicle组)及梓醇处理组(catalpol组),缺血再灌注48 h后观察各组大鼠神经功能学评分和脑梗死容积.分别于术前、术后6h、24 h、48 h取大鼠脑组织样本,检测匀浆中谷胱甘肽过氧化物酶(GSH-PX)和丙二醛(MDA)的变化情况.结果:与vehicle组和MCAO组相比,catalpol处理组神经功能学评分降低(P<0.05);其梗死容积较小(P<0.05).组织匀浆结果显示catalpol处理组脑匀浆中GSH-PX活力升高,MDA含量下降(P<0.05).结论:梓醇可能通过降低脑内自由基水平、控制脂质过氧化程度,对缺血再灌注引起的大鼠脑损伤产生神经保护作用.  相似文献   

14.
The appearance of presumptive NO-ergic nerve cells and their differentiation in the rat neocortex were studied. For this purpose, a comparative analysis of the development and differentiation of NADPH-D-positive neurons in the neocortex transplants taken from the embryos of different ages and transplanted in the occipital cortex of adult rats and in the normally developing cerebral cortex was undertaken. The nervous tissue was stained histochemically for NADPH-D. The results we obtained suggest that no NADPH-D-containing neurons were found in the transplants from 15-day embryos, while they developed in those from 18-day embryos. Hence, precursors of NO-ergic neurons were still absent in the presumptive neocortex of 15-day embryos and appeared only on day 16–18 of embryogenesis. Expression of NADPH-D begins in them only within four to five days, but the neurons are differentiated during a relatively short period of time. Most NADPH-D-positive neurons reach their structural–functional maturity already by the end of the first week of postnatal development, while their complete maturation takes place by the end of the second week of postnatal development.  相似文献   

15.
16.
It was shown previously that focal cortical freezing lesions in rats cause widespread depression of local cerebral glucose utilization (LCGU) in cortical areas of the lesioned hemisphere. This was interpreted as reflecting functional depression. The underlying mechanisms were postulated to involve alterations of biogenic amine systems. Accordingly, levels of serotonin (5-HT), its metabolite 5-hydroxyindoleacetic acid (5-HIAA), and its precursor tryptophan were determined by an HPLC method with electrochemical detection in frontoparietal cortical areas of both hemispheres at 4 h and 1, 3, 6, 8, and 10 days after a unilateral cortical freezing lesion. The 5-HT content was significantly lower than normal in the lesioned hemisphere only at 24 h, whereas the 5-HIAA level peaked at 24 h but was significantly elevated above normal values between 4 h and 6 days after lesioning. No changes were noted in 5-HT and 5-HIAA contents in the hemisphere contralateral to the lesion. These results indicate that cortical 5-HT metabolism is increased throughout the lesioned hemisphere of a focally injured brain. The increase in tryptophan content of the lesioned brain appeared to have a time course more closely related to previously demonstrated changes in cortical LCGU than to the increase in 5-HIAA content.  相似文献   

17.
目的:探讨大鼠脑创伤后海马神经组织中casepase-3表达及其在细胞凋亡中的机制。方法:雄性Wistar大鼠72只随机分成对照组和创伤组。用Marmarou方法造成大鼠重型弥漫性颅脑创伤,采用免疫组织化学检测海马CA1区神经细胞casepase-3蛋白表达情况,原位细胞DNA断裂检测末端标记(TUNEL)法观察大鼠海马CA1区神经细胞凋亡动态变化。同时行TUNEL与caspase-3双标染色。结果:对照组海马区神经细胞casepase-3未见明显表达,创伤组海马CA1区神经细胞casepase-3表达在伤后3小时开始升高,伤后3天达高峰(P〈0.01),伤后7天下降明显。对照组海马区未见TUNEL阳性细胞,创伤组海马区TUNEL阳性细胞伤后3小时开始增多,伤后3天达高峰(P〈0.01),伤后7天下降。可见创伤组TUNEL染色与caspase-3免疫染色双标阳性的细胞伤后6小时细胞数量逐渐增多,于伤后3天达高峰(P〈0.01),伤后7天双标阳性细胞数量下降。Casepase-3表达与TUNEL阳性细胞明显相关(P〈0.01)。结论:大鼠脑创伤后casepase-3的过度表达是影响大鼠脑创伤后神经细胞凋亡原因之一,抑制casepase-3活性表达对神经组织起保护作用。  相似文献   

18.
目的:探讨大鼠脑创伤后海马神经组织中casepase-3表达及其在细胞凋亡中的机制。方法:雄性Wistar大鼠72只随机分成对照组和创伤组,用Marmarou方法造成大鼠重型弥漫性颅脑创伤,采用免疫组织化学检测海马CA1区神经细胞casepase-3蛋白表达情况,原位细胞DNA断裂检测末端标记(TUNEL)法观察大鼠海马CA1区神经细胞凋亡动态变化。同时行TUNEL与caspase-3双标染色。结果:对照组海马区神经细胞casepase-3未见明显表达,创伤组海马CA1区神经细胞casepase-3表达在伤后3小时开始升高,伤后3天达高峰(P0.01),伤后7天下降明显。对照组海马区未见TUNEL阳性细胞,创伤组海马区TUNEL阳性细胞伤后3小时开始增多,伤后3天达高峰(P0.01),伤后7天下降。可见创伤组TUNEL染色与caspase-3免疫染色双标阳性的细胞伤后6小时细胞数量逐渐增多,于伤后3天达高峰(P0.01),伤后7天双标阳性细胞数量下降。Casepase-3表达与TUNEL阳性细胞明显相关(P0.01)。结论:大鼠脑创伤后casepase-3的过度表达是影响大鼠脑创伤后神经细胞凋亡原因之一,抑制casepase-3活性表达对神经组织起保护作用。  相似文献   

19.
目的探讨吸氧预处理对大鼠脑缺血再灌注损伤的保护作用。方法通过大鼠局灶脑缺血再灌注损伤模型,采用SOD、MDA测定、电镜及神经行为学检查的方法,观察吸氧预处理对大鼠脑缺血再灌注损伤后SOD、MDA、神经行为学评分及脑组织病理变化。结果吸氧预处理组SOD活力高于对照组(P<0.05),MDA含量、神经行为学评分均低于对照组(P<0.05),脑组织超微结构损伤均减轻。结论吸氧预处理对大鼠脑缺血再灌注损伤有保护作用。  相似文献   

20.
目的:研究芸香苷对慢性脑低灌注导致大鼠认知功能障碍和脑损伤的影响。方法:采用双侧颈总动脉结扎法(bilateral common carotid artery occlusion,BCCAO)建立慢性脑低灌注大鼠模型,随机分为4组(n=10):生理盐水治疗模型组、芸香苷治疗模型组、生理盐水治疗假手术组、芸香苷治疗假手术组;连续腹腔注射芸香苷和生理盐水共12周。采用Morris水迷宫评定大鼠学习和记忆能力。采用分光光度法检测脑组织中枢胆碱能相关指标和氧化应激指标。应用免疫组织化学和El ISA方法检测脑组织炎症反应。采用Nissl染色法检测脑组织神经元缺失。结果:芸香苷治疗模型组大鼠的逃脱潜伏期较生理盐水治疗模型组明显减少(P0.01)。与生理盐水治疗模型组相比,芸香苷治疗后显著提高了BCCAO大鼠脑组织中ACh水平(P0.01)和Ch AT活性(P0.01),并降低了ACh E活性(P0.01)。与生理盐水治疗模型组相比,芸香苷治疗模型组显著增加了大鼠脑组织中SOD活性(P0.01)和GPX活性(P0.01),降低了MDA水平(P0.01)和蛋白质羰基化合物水平(P0.01)。芸香苷治疗模型组大鼠海马区GFAP-免疫阳性星型胶质细胞(P0.01)和Iba1-免疫阳性小胶质细胞(P0.01)面积百分比较生理盐水治疗模型组显著减少。芸香苷治疗模型组大鼠海马区正常神经元的数量较生理盐水治疗模型组大鼠显著增加(P0.01)。结论:芸香苷可改善慢性脑低灌注引起的大鼠认知功能障碍和脑损伤。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号