首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
N-(Deoxyguanosin-8-yl)-1-aminopyrene (dG(AP)) is the predominant nitro polyaromatic hydrocarbon product generated from the air pollutant 1-nitropyrene reacting with DNA. Previous studies have shown that dG(AP) induces genetic mutations in bacterial and mammalian cells. One potential source of these mutations is the error-prone bypass of dG(AP) lesions catalyzed by the low-fidelity Y-family DNA polymerases. To provide a comparative analysis of the mutagenic potential of the translesion DNA synthesis (TLS) of dG(AP), we employed short oligonucleotide sequencing assays (SOSAs) with the model Y-family DNA polymerase from Sulfolobus solfataricus, DNA Polymerase IV (Dpo4), and the human Y-family DNA polymerases eta (hPolη), kappa (hPolκ), and iota (hPolι). Relative to undamaged DNA, all four enzymes generated far more mutations (base deletions, insertions, and substitutions) with a DNA template containing a site-specifically placed dG(AP). Opposite dG(AP) and at an immediate downstream template position, the most frequent mutations made by the three human enzymes were base deletions and the most frequent base substitutions were dAs for all enzymes. Based on the SOSA data, Dpo4 was the least error-prone Y-family DNA polymerase among the four enzymes during the TLS of dG(AP). Among the three human Y-family enzymes, hPolκ made the fewest mutations at all template positions except opposite the lesion site. hPolκ was significantly less error-prone than hPolι and hPolη during the extension of dG(AP) bypass products. Interestingly, the most frequent mutations created by hPolι at all template positions were base deletions. Although hRev1, the fourth human Y-family enzyme, could not extend dG(AP) bypass products in our standing start assays, it preferentially incorporated dCTP opposite the bulky lesion. Collectively, these mutagenic profiles suggest that hPolk and hRev1 are the most suitable human Y-family DNA polymerases to perform TLS of dG(AP) in humans.  相似文献   

2.
The DNA base excision repair pathway is responsible for removal of oxidative and endogenous DNA base damage in both prokaryotes and eukaryotes. This pathway involves formation of an apurinic/apyrimidinic (AP) site in the DNA, which is further processed to restore the integrity of the DNA. In Escherichia coli it has been suggested that the major mode of repair involves replacement of a single nucleotide at the AP site, based on repair synthesis studies using oligonucleotide substrates containing a unique uracil base. The mechanism of the post-incision steps of the bacterial base excision repair pathway was examined using a DNA plasmid substrate containing a single U:G base pair. Repair synthesis carried out by repair-proficient ung, recJ and xon E.coli cell extracts was analyzed by restriction endonuclease cleavage of the DNA containing the uracil lesion. It was found that replacement of the uracil base was always accompanied by replacement of several nucleotides ( approximately 15) 3' of the uracil and this process was absolutely dependent on initial removal of the uracil base by the action of uracil-DNA glycosylase. In contrast to findings with oligonucleotide substrates, replacement of just a single nucleotide at the lesion site was not detected. These results suggest that repair patch length may be substrate dependent and a re-evaluation of the post-incision steps of base excision repair is suggested.  相似文献   

3.
We have studied the kinetics of breakage of apurinic (AP) sites by the intercalating agent 9-aminoellipticine using fluorimetric methods with single (ss)- and double (ds)-stranded apurinic DNA. In order to understand the chemical process, high performance liquid chromatography was used to follow the reaction kinetics with the apurinic oligonucleotide model T(AP)T. The unstable intermediate, which is responsible for the beta-elimination step, is a Schiff base resulting from the interaction of the amino group of the aromatic amine with the aldehyde function of the deoxyribose moiety (AP site). Fluorescence occurs simultaneously with the breakage of both ss and ds DNA and of the oligonucleotide and arises from the formation of a conjugated double bond on the Schiff base through the beta-elimination reaction. In optimal conditions, the second order rate constant for the fluorescence build up is 15 x 10(3) min-1 M-1 for ds DNA and 0.105 x 10(3) min-1 M-1 for T(AP)T. The ability of 9-aminoellipticine to induce fluorescence and breakage of ss DNA and T(AP)T shows that intercalation is not essential for this reaction to occur. Nevertheless, the greater rate constant with DNA suggests that stacking is an important parameter for the reaction of the aromatic amine with the AP site.  相似文献   

4.
J P Quinn  A R Farina 《FEBS letters》1991,286(1-2):225-228
During purification of the AP1 complex from the T cell line MLA144 we enriched for a complex which bound to an oligonucleotide column containing the AP1 DNA consensus sequence and co-eluted with a fraction required for AP1 binding activity. This complex although co-eluting with AP1 binding activity had previously been determined to be non-specific in its DNA binding properties. Further investigation determined that the complex was a heterodimer of 85 and 70 kDa which was antigenically related to the autoimmune antigen Ku. It is important to be aware of the abundance and avidity of the Ku complex to bind oligonucleotide columns when purifying sequence specific binding proteins.  相似文献   

5.
DNA heptamers containing the mutagenic base analogue 2-aminopurine (AP) have been chemically synthesized and physically characterized. We report on the relative stabilities of base pairs between AP and each of the common DNA bases, as determined from heptamer duplex melts at 275 and 330 nm. Base pairs are ranked in order of decreasing stability: AP.T greater than AP.A greater than AP.C greater than AP.G. It is of interest that AP.A is more stable than AP.C even though DNA polymerase strongly favors the formation of AP.C over AP.A base pairs. Comparisons of melting profiles at 330 nm and 275 nm indicate that AP.T, AP.A, and AP.C base pairs are annealed in heptamer duplexes and melt 2-3 degrees prior to surrounding base pairs, whereas AP.G appears not to be annealed.  相似文献   

6.
Recognition of double-stranded DNA with a mixed nucleotide sequence by oligonucleotide is a long-term challenge. This aim can be achieved via formation of the recombination R-triplex, accommodating two identical DNA strands in parallel orientation, and antiparallel complementary strand. In the absence of proteins the R-triplex stability is low, however, so that intermolecular R-triplex is not formed by three DNA strands in a ligand-free system. Recently, recognition of DNA with mixed base sequence by single-stranded oligonucleotide in the presence of bis-intercalator YOYO was reported. Here, we describe thermodynamic characteristics of YOYO complexes with the model oligonucleotides 5'-GT-2AP-GACTGAG TTTT CTCAGTCTACGC GAA GCGTAGACTGAG-3' (R(2AP)CW) bearing a single reporting 2-aminopurine (2AP) in place of adenine and 5'-CTCAGTCTACGC GAA GCGTAGACTGAG-3' (CW). We found that each oligonucleotide is able to bind two YOYO molecules via intercalation mode in 0.5 M LiCl. Fluorescence intensity of YOYO intercalated in triplex R(2AP)CW and in CW hairpin increased 40-fold compared to the free YOYO. Remarkably, the melting temperature of the triplex (determined using temperature dependence of the 2AP fluorescence) increased from 19 degrees C to 33 degrees C upon binding two YOYO molecules. Further increase in the YOYO concentration resulted in binding of up to five YOYO molecules to R(2AP)CW triplex and up to six YOYO molecules to CW hairpin.  相似文献   

7.
We report the site-specific fluorescent labeling of DNA using Staudinger ligation with high efficiency and high selectivity. An oligonucleotide modified at its 5' end by an azido group was selectively reacted with 5-[(N-(3'-diphenylphosphinyl-4'-methoxycarbonyl)phenylcarbonyl)aminoacetamido]fluorescein (Fam) under aqueous conditions to produce a Fam-labeled oligonucleotide with a high yield (approximately 90%). The fluorescent oligonucleotide was characterized by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Because of the relatively high yield of the Staudinger ligation, simple purification of the product by size-exclusion chromatography and desalting is sufficient for the resulting fluorescent oligonucleotide to be used as a primer in a Sanger dideoxy sequencing reaction to produce fluorescent DNA extension fragments, which are analyzed by a fluorescent electrophoresis DNA sequencer. The results indicate that the Staudinger ligation can be used successfully and site-specifically to prepare fluorescent oligonucleotides to produce DNA sequencing products, which are detected with single base resolution in a capillary electrophoresis DNA sequencer using laser-induced fluorescence detection.  相似文献   

8.
The use of uniformly 13C,15N-labeled RNA has greatly facilitated structural studies of RNA oligonucleotides by NMR. Application of similar methodologies for the study of DNA has been limited, primarily due to the lack of adequate methods for sample preparation. Methods for both chemical and enzymatic synthesis of DNA oligonucleotides uniformly labeled with 13C and/or 15N have been published, but have not yet been widely used. We have developed a modified procedure for preparing uniformly 13C,15N-labeled DNA based on enzymatic synthesis using Taq DNA polymerase. The highly efficient protocol results in quantitative polymerization of the template and approximately 80% incorporation of the labeled dNTPs. Procedures for avoiding non-templated addition of nucleotides or for their removal are given. The method has been used to synthesize several DNA oligonucleotides, including two complementary 15 base strands, a 32 base DNA oligonucleotide that folds to form an intramolecular triplex and a 12 base oligonucleotide that dimerizes and folds to form a quadruplex. Heteronuclear NMR spectra of the samples illustrate the quality of the labeled DNA obtained by these procedures.  相似文献   

9.
The adenine base analogue 2-aminopurine (2AP) is a potent base substitution mutagen in prokaryotes because of its enhanceed ability to form a mutagenic base pair with an incoming dCTP. Despite more than 50 years of research, the structure of the 2AP-C base pair remains unclear. We report the structure of the 2AP-dCTP base pair formed within the polymerase active site of the RB69 Y567A-DNA polymerase. A modified wobble 2AP-C base pair was detected with one H-bond between N1 of 2AP and a proton from the C4 amino group of cytosine and an apparent bifurcated H-bond between a proton on the 2-amino group of 2-aminopurine and the ring N3 and O2 atoms of cytosine. Interestingly, a primer-terminal region rich in AT base pairs, compared to GC base pairs, facilitated dCTP binding opposite template 2AP. We propose that the increased flexibility of the nucleotide binding pocket formed in the Y567A-DNA polymerase and increased "breathing" at the primer-terminal junction of A+T-rich DNA facilitate dCTP binding opposite template 2AP. Thus, interactions between DNA polymerase residues with a dynamic primer-terminal junction play a role in determining base selectivity within the polymerase active site of RB69 DNA polymerase.  相似文献   

10.
This report presents the backbone assignments and the secondary structure determination of the A domain of the Escherichia coli mannitol transport protein, enzyme-IImtl. The backbone resonances were partially assigned using three-dimensional heteronuclear 1H NOE 1H-15N single-quantum coherence (15N NOESY-HSQC) spectroscopy and three-dimensional heteronuclear 1H total correlation 1H-15N single-quantum coherence (15N TOCSY-HSQC) spectroscopy on uniformly 15N enriched protein. Triple-resonance experiments on uniformly 15N/13C enriched protein were necessary to complete the backbone assignments, due to overlapping 1H and 15N frequencies. Data obtained from three-dimensional 1H-15N-13C alpha correlation experiments (HNCA and HN(CO)CA), a three-dimensional 1H-15N-13CO correlation experiment (HNCO), and a three-dimensional 1H alpha-13C alpha-13CO correlation experiment (COCAH) were combined using SNARF software, and yielded the assignments of virtually all observed backbone resonances. Determination of the secondary structure of IIAmtl is based upon NOE information from the 15N NOESY-HSQC and the 1H alpha and 13C alpha secondary chemical shifts. The resulting secondary structure is considerably different from that reported for IIAglc of E. coli and Bacillus subtilis determined by NMR and X-ray.  相似文献   

11.
A major DNA lesion induced by ionizing radiation and formed on removal of oxidized base lesions by various glycosylases is an apurinic/apyrimidinic site (AP site). The presence of an AP site within clustered DNA damage, induced following exposure to ionizing radiation or radiomimetic anticancer agents, may present a challenge to the repair machinery of the cell, if the major human AP endonuclease, HAP1, does not efficiently incise the AP site. In this study, specific oligonucleotide constructs containing an AP site located at several positions opposite to another damage [5,6-dihydrothymine (DHT), 8-oxoG, AP site, or various types of single strand breaks] on the complementary strand were used to determine the relative efficiency of the purified HAP1 protein in incising an AP site(s) from clustered DNA damage. A base damage (DHT and 8-oxoG) on the opposite strand has little or no influence on the rate of incision of an AP site by HAP1. In contrast, the presence of either a second AP site or various types of single strand breaks, when located one or three bases 3' to the base opposite to the AP site, has a strong inhibitory effect on the efficiency of incision of an AP site. The efficiency of binding of HAP1 to an AP site is reduced by approximately 1 order of magnitude if a single strand break (SSB) is located one or three bases 3' to the site opposite to the AP site on the complementary strand. If the AP site and either a SSB or a second AP site are located at any of the other positions relative to each other, a double strand break may result.  相似文献   

12.
DNA of all living organisms is constantly modified by exogenous and endogenous reagents. The mutagenic threat of modifications such as methylation, oxidation, and hydrolytic deamination of DNA bases is counteracted by base excision repair (BER). This process is initiated by the action of one of several DNA glycosylases, which removes the aberrant base and thus initiates a cascade of events that involves scission of the DNA backbone, removal of the baseless sugar-phosphate residue, filling in of the resulting single nucleotide gap, and ligation of the remaining nick. We were interested to find out how the BER process functions in hyperthermophiles, organisms growing at temperatures around 100 degrees C, where the rates of these spontaneous reactions are greatly accelerated. In our previous studies, we could show that the crenarchaeon Pyrobaculum aerophilum has at least three uracil-DNA glycosylases, Pa-UDGa, Pa-UDGb, and Pa-MIG, that can initiate the BER process by catalyzing the removal of uracil residues arising through the spontaneous deamination of cytosines. We now report that the genome of P. aerophilum encodes also the remaining functions necessary for BER and show that a system consisting of four P. aerophilum encoded enzymes, Pa-UDGb, AP endonuclease IV, DNA polymerase B2, and DNA ligase, can efficiently repair a G.U mispair in an oligonucleotide substrate to a G.C pair. Interestingly, the efficiency of the in vitro repair reaction was stimulated by Pa-PCNA1, the processivity clamp of DNA polymerases.  相似文献   

13.
The gene 5 protein (g5p) encoded by the Ff strains of Escherichia coli bacteriophages is a dimeric single‐stranded DNA‐binding protein (SSB) that consists of two identical OB‐fold (oligonucleotide/oligosaccharide‐binding) motifs. Ultrafast time‐resolved fluorescence measurements were carried out to investigate the effect of g5p binding on the conformation of 2‐aminopurine (2AP) labels positioned between adenines or cytosines in the 16‐nucleotide antiparallel tails of DNA hairpins. The measurements revealed significant changes in the conformational heterogeneity of the 2AP labels caused by g5p binding. The extent of the changes was dependent on sub‐binding‐site location, but generally resulted in base unstacking. When bound by g5p, the unstacked 2AP population increased from ~22% to 59–67% in C‐2AP‐C segments and from 39% to 77% in an A‐2AP‐A segment. The OB‐fold RPA70A domain of the human replication protein A also caused a significant amount of base unstacking at various locations within the DNA binding site as evidenced by steady‐state fluorescence titration measurements using 2AP‐labeled 5‐mer DNAs. These solution studies support the concept that base unstacking at most of a protein's multiple sub‐binding‐site loci may be a feature that allows non‐sequence specific OB‐fold proteins to bind to single‐stranded DNAs (ssDNAs) with minimal preference for particular sequences. © 2013 Wiley Periodicals, Inc. Biopolymers 99: 484–496, 2013.  相似文献   

14.
Free radical attack on the sugar-phosphate backbone generates oxidized apurinic/apyrimidinic (AP) residues in DNA. 2'-deoxyribonolactone (dL) is a C1'-oxidized AP site damage generated by UV and gamma-irradiation, and certain anticancer drugs. If not repaired dL produces G-->A transitions in Escherichia coli. In the base excision repair (BER) pathway, AP endonucleases are the major enzymes responsible for 5'-incision of the regular AP site (dR) and dL. DNA glycosylases with associated AP lyase activity can also efficiently cleave regular AP sites. Here, we report that dL is a substrate for AP endonucleases but not for DNA glycosylases/AP lyases. The kinetic parameters of the dL-incision were similar to those of the dR. DNA glycosylases such as E. coli formamidopyrimidine-DNA glycosylase, mismatch-specific uracil-DNA glycosylase, and human alkylpurine-DNA N-glycosylase bind strongly to dL without cleaving it. We show that dL cross-links with the human proteins 8-oxoguanine-DNA (hOGG1) and thymine glycol-DNA glycosylases (hNth1), and dR cross-links with Nth and hNth1. These results suggest that dL and dR induced genotoxicity might be strengthened by BER pathway in vivo.  相似文献   

15.
A non-Watson-Crick G-A/A-G base pair is found in SECIS (selenocysteine-insertion sequence) element in the 3'-untranslated region of Se-protein mRNAs and in the functional site of the hammerhead ribozyme. We studied the stability of G-A/A-G base pair (bold) in 17mer GT(U)GACGGAAACCGGAAC synthetic DNA and RNA oligonucleotides by thermal melting experiments and gel electrophoresis. The measured Tm value of DNA oligonucleotide having G-A/A-G pair showed an intermediate value (58 degrees C) between that of Watson-Crick G-C/C-G base pair (75 degrees C) and that of G-G/A-A of non-base-pair (40 degrees C). Similar thermal melting patterns were obtained with RNA oligonucleotides. This result indicates that the secondary structure of oligonucleotide having G-A/A-G base pair is looser than that of the G-C type Watson-Crick base pair. In the comparison between RNA and DNA having G-A/A-G base pair, the Tm value of the RNA oligonucleotide was 11 degrees C lower than that of DNA, indicating that DNA has a more rigid structure than RNA. The stained pattern of oligonucleotide on polyacrylamide gel clarified that the mobility of the DNA oligonucleotide G-A/A-G base pair changed according to the urea concentration from the rigid state (near the mobility of G-C/C-G oligonucleotide) in the absence of urea to the random state (near the mobility of G-G/A-A oligonucleotide) in 7 M urea. However, the RNA oligonucleotide with G-A/A-G pair moved at an intermediate mobility between that of oligonucleotide with G-C/C-G and of the oligonucleotide with G-G/A-A, and the mobility pattern did not depend on urea concentration. Thus, DNA and RNA oligonucleotides with the G-A/A-G base pair showed a pattern indicating an intermediate structure between the rigid Watson-Crick base pair and the random structure of non-base pair. RNA with G-A/A-G base pair has the intermediate structure not influenced by urea concentration. Finally, this study indicated that the intermediate rigidity imparted by Non-Watson-Crick base pair in SECIS element plays an important role in the selenocysteine expression by UGA codon.  相似文献   

16.
DNA hairpins have been investigated in which individual adenines were replaced by their fluorescent analog 2-aminopurine (2AP). The temperature dependence of the time evolution of polarized emission spectra was monitored with picosecond time resolution. Four isotropic decay components for each oligonucleotide indicated the coexistence of at least four conformations. The fluorescence for three of these was significantly quenched, which is explained by hole transfer from 2AP to guanine(s). An approximately 8-ps component is ascribed to direct hole transfer, the approximately 50-ps and approximately 500-ps components are ascribed to structural reorganization, preceding hole transfer. At room temperature, a fraction remains unquenched on a 10-ns timescale, in contrast to higher temperatures, where the flexibility increases. Besides quenching due to base stacking, a second quenching process was needed to describe the data. Evidence for both intrastrand and interstrand hole transfer was found. The extracted probability for stacking between neighboring bases in double-stranded regions was estimated to be approximately 75% at room temperature and approximately 25% at 80 degrees C, demonstrating structural disorder of the DNA. Fluorescence depolarization revealed both local dynamics of the DNA and overall dynamics of the entire oligonucleotide. Upon raising the temperature, the C-N terminus of the hairpin appears to melt first; the rest of the hairpin denatures above the average melting temperature.  相似文献   

17.
Huang J  Lu J  Barany F  Cao W 《Biochemistry》2001,40(30):8738-8748
Endonuclease V is a deoxyinosine 3'-endonuclease which initiates removal of inosine from damaged DNA. A thermostable endonuclease V from the hyperthermophilic bacterium Thermotoga maritima has been cloned and expressed in Escherichia coli. The DNA recognition and reaction mechanisms were probed with both double-stranded and single-stranded oligonucleotide substrates which contained inosine, abasic site (AP site), uracil, or mismatches. Gel mobility shift and kinetic analyses indicate that the enzyme remains bound to the cleaved inosine product. This slow product release may be required in vivo to ensure an orderly process of repairing deaminated DNA. When the enzyme is in excess, the primary nicked products experience a second nicking event on the complementary strand, leading to a double-stranded break. Cleavage at AP sites suggests that the enzyme may use a combination of base contacts and local distortion for recognition. The weak binding to uracil sites may preclude the enzyme from playing a significant role in repair of such sites, which may be occupied by uracil-specific DNA glycosylases. Analysis of cleavage patterns of all 12 natural mismatched base pairs suggests that purine bases are preferrentially cleaved, showing a general hierarchy of A = G > T > C. A model accounting for the recognition and strand nicking mechanism of endonuclease V is presented.  相似文献   

18.
AP endonucleases catalyse an important step in the base excision repair (BER) pathway by incising the phosphodiester backbone of damaged DNA immediately 5' to an abasic site. Here, we report the cloning and expression of the 774 bp Mth0212 gene from the thermophilic archaeon Methanothermobacter thermautotrophicus, which codes for a putative AP endonuclease. The 30.3 kDa protein shares 30% sequence identity with exonuclease III (ExoIII) of Escherichia coli and 40% sequence identity with the human AP endonuclease Ape1. The gene was amplified from a culture sample and cloned into an expression vector. Using an E. coli host, the thermophilic protein could be produced and purified. Characterization of the enzymatic activity revealed strong binding and Mg2+-dependent nicking activity on undamaged double-stranded (ds) DNA at low ionic strength, even at temperatures below the optimum growth temperature of M. thermautotrophicus (65 degrees C). Additionally, a much faster nicking activity on AP site containing DNA was demonstrated. Unspecific incision of undamaged ds DNA was nearly inhibited at KCl concentration of approximately 0.5 M, whereas incision at AP sites was still complete at such salt concentrations. Nicked DNA was further degraded at temperatures above 50 degrees C, probably by an exonucleolytic activity of the enzyme, which was also found on recessed 3' ends of linearized ds DNA. The enzyme was active at temperatures up to 70 degrees C and, using circular dichroism spectroscopy, shown to denature at temperatures approaching 80 degrees C. Considering the high intracellular potassium ion concentration in M. thermautotrophicus, our results suggest that the characterized thermophilic enzyme acts as an AP endonuclease in vivo with similar activities as Ape1.  相似文献   

19.
The benzetheno exocyclic adduct of the cytosine (C) base (pBQ-C) is a product of reaction between DNA and a stable metabolite of the human carcinogen benzene, p-benzoquinone (pBQ). We reported previously that the pBQ-C-containing duplex is a substrate for the human AP endonuclease (APE1), an enzyme that cleaves an apurinic/apyrimidinic (AP) site from double stranded DNA. In this work, using molecular dynamics simulation (MD), we provided a structural explanation for the recognition of the pBQ-C adduct by APE1. Molecular modeling of the DNA duplex containing pBQ-C revealed significant displacement of this adduct toward the major groove with pronounced kinking of the DNA at the lesion site, which could serve as a structural element recognized by the APE1 enzyme. Using 3 ns MD it was shown that the position of the pBQ-C adduct is stabilized by two hydrogen bonds formed between the adduct and the active site amino acids Asp 189 and Ala 175. The pBQ-C/APE1 complex, generated by MD, has a similar hydrogen bond network between target phosphodiester bond at the pBQ-C site and key amino acids at the active site, as in the crystallographically determined APE1 complexed with an AP site-containing DNA duplex. The position of the adduct at the enzyme active site, together with the hydrogen bond network, suggests a similar reaction mechanism for phosphodiester bond cleavage of oligonucleotide containing pBQ-C as reported for the AP site.  相似文献   

20.
Back JH  Chung JH  Park YI  Kim KS  Han YS 《DNA Repair》2003,2(5):455-470
Damaged DNA strands are repaired by base excision (BER) in organisms, a process initiated by repair enzymes, which include DNA glycosylases and endonucleases. We expressed and characterized two putative endonuclease genes from Methanobacterium thermoautotrophicum, Mt0764 and Mt1010, encoding homologues of endonuclease III (endo III) and endonuclease IV (endo IV) of Escherichia coli. The Mt0764 and Mt1010 proteins showed endo III activity by removing thymine glycol from DNA strand and AP endonuclease activity, respectively. The Mt0764 protein not only cleaved the oligonucleotide duplex, containing a thymine glycol/adenine pair efficiently, but also showed activity on the 8-oxoguanine-containing oligonucleotide duplex. In this study, we report upon the stimulation of endo III activity by endo IV using two recombinant proteins (Mt1010 and Mt0764) from M. thermoautotrophicum. Mt1010 stimulated the DNA glycosylase activity of Mt0764 for DNA substrates containing 8-oxoguanine residues and increasing the formation of the Mt0764 protein-DNA complex. The interaction between Mt1010 and Mt0764 was observed by using an in vitro binding assay. These results suggest that association between endo III and endo IV may occur in vivo, and this contributes to efficient base excision repair for the oxidative damage of DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号