首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The nematode Caenorhabditis elegans is proving to be an attractive model organism for investigating innate immune responses to infection. Among the known pathogens of C. elegans is the bacterium Microbacterium nematophilum, which adheres to the nematode rectum and postanal cuticle, inducing swelling of the underlying hypodermal tissue and causing mild constipation. We find that on infection by M. nematophilum, an extracellular signal-regulated kinase (ERK) mitogen-activated protein (MAP) kinase cascade mediates tail swelling and protects C. elegans from severe constipation, which would otherwise arrest development and cause sterility. Involvement in pathogen defense represents a new role for ERK MAP kinase signaling in this organism.  相似文献   

2.
The Dar (deformed anal region) phenotype, characterized by a distinctive swollen tail, was first detected in a variant strain of Caenorhabditis elegans which appeared spontaneously in 1986 during routine genetic crosses [1,2]. Dar isolates were initially analysed as morphological mutants, but we report here that two independent isolates carry an unusual bacterial infection different from those previously described [3], which is the cause of the Dar phenotype. The infectious agent is a new species of coryneform bacterium, named Microbacterium nematophilum n. sp., which fortuitously contaminated cultures of C. elegans. The bacteria adhere to the rectal and post-anal cuticle of susceptible nematodes, and induce substantial local swelling of the underlying hypodermal tissue. The swelling leads to constipation and slowed growth in the infected worms, but the infection is otherwise non-lethal. Certain mutants of C. elegans with altered surface antigenicity are resistant to infection. The induced deformation appears to be part of a survival strategy for the bacteria, as C. elegans are potentially their predators.  相似文献   

3.
We have identified Conserved Non-coding Elements (CNEs) in the regulatory region of Caenorhabditis elegans and Caenorhabditis briggsae mab-9, a T-box gene known to be important for cell fate specification in the developing C. elegans hindgut. Two adjacent CNEs (a region 78 bp in length) are both necessary and sufficient to drive reporter gene expression in posterior hypodermal cells. The failure of a genomic mab-9::gfp construct lacking this region to express in posterior hypodermis correlates with the inability of this construct to completely rescue the mab-9 mutant phenotype. Transgenic males carrying this construct in a mab-9 mutant background exhibit tail abnormalities including morphogenetic defects, altered tail autofluorescence and abnormal lectin-binding properties. Hermaphrodites display reduced susceptibility to the C. elegans pathogen Microbacterium nematophilum. This comparative genomics approach has therefore revealed a previously unknown role for mab-9 in hypodermal function and we suggest that MAB-9 is required for the secretion and/or modification of posterior cuticle.  相似文献   

4.
During the establishment of a bacterial infection, the surface molecules of the host organism are of particular importance, since they mediate the first contact with the pathogen. In Caenorhabditis elegans, mutations in the srf-3 locus confer resistance to infection by Microbacterium nematophilum, and they also prevent biofilm formation by Yersinia pseudotuberculosis, a close relative of the bubonic plague agent Yersinia pestis. We cloned srf-3 and found that it encodes a multitransmembrane hydrophobic protein resembling nucleotide sugar transporters of the Golgi apparatus membrane. srf-3 is exclusively expressed in secretory cells, consistent with its proposed function in cuticle/surface modification. We demonstrate that SRF-3 can function as a nucleotide sugar transporter in heterologous in vitro and in vivo systems. UDP-galactose and UDP-N-acetylglucosamine are substrates for SRF-3. We propose that the inability of Yersinia biofilms and M. nematophilum to adhere to the nematode cuticle is due to an altered glycoconjugate surface composition of the srf-3 mutant.  相似文献   

5.
Yook K  Hodgkin J 《Genetics》2007,175(2):681-697
A specific host-pathogen interaction exists between Caenorhabditis elegans and the gram-positive bacterium Microbacterium nematophilum. This bacterium is able to colonize the rectum of susceptible worms and induces a defensive tail-swelling response in the host. Previous mutant screens have identified multiple loci that affect this interaction. Some of these loci correspond to known genes, but many bus genes [those with a bacterially unswollen (Bus) mutant phenotype] have yet to be cloned. We employed Mos1 transposon mutagenesis as a means of more rapidly cloning bus genes and identifying new mutants with altered pathogen response. This approach revealed new infection-related roles for two well-characterized and much-studied genes, egl-8 and tax-4. It also allowed the cloning of a known bus gene, bus-17, which encodes a predicted galactosyltransferase, and of a new bus gene, bus-19, which encodes a novel, albeit ancient, protein. The results illustrate advantages and disadvantages of Mos1 transposon mutagenesis in this system.  相似文献   

6.
Recently, pathogenicity models that involve the killing of the genetically tractable nematode Caenorhabditis elegans by human pathogens have been developed. From the perspective of the pathogen, the advantage of these models is that thousands of mutagenized bacterial clones can be individually screened for avirulent mutants on separate petri plates seeded with C. elegans. The advantages of using C. elegans to study host responses to pathogen attack are the extensive genetic and genomic resources available and the relative ease of identifying C. elegans mutants that exhibit altered susceptibility to pathogen attack. The use of Caenorhabditis elegans as the host for a variety of human pathogens is discussed.  相似文献   

7.
The idea of using simple, genetically tractable host organisms to study the virulence mechanisms of pathogens dates back at least to the work of Darmon and Depraitère [1]. They proposed using the predatory amoeba Dictyostelium discoideum as a model host, an approach that has proved to be valid in the case of the intracellular pathogen Legionella pneumophila [2]. Research from the Ausubel laboratory has clearly established the nematode Caenorhabditis elegans as an attractive model host for the study of Pseudomonas aeruginosa pathogenesis [3]. P. aeruginosa is a bacterium that is capable of infecting plants, insects and mammals. Other pathogens with a similarly broad host range have also been shown to infect C. elegans [3,4]. Nevertheless, the need to determine the universality of C. elegans as a model host, especially with regards pathogens that have a naturally restricted host specificity, has rightly been expressed [5]. We report here that the enterobacterium Salmonella typhimurium, generally considered to be a highly adapted pathogen with a narrow range of target hosts [6], is capable of infecting and killing C. elegans. Furthermore, mutant strains that exhibit a reduced virulence in mammals were also attenuated for their virulence in C. elegans, showing that the nematode may constitute a useful model system for the study of this important human pathogen.  相似文献   

8.
srf-3 is a mutant of C. elegans that is resistant to infection by Microbacterium nematophilum and to binding of the biofilm produced by Yersinia pseudotuberculosis and Yersinia pestis. Recently, SRF-3 was characterized as a nucleotide sugar transporter of the Golgi apparatus occurring exclusively in hypodermal seam cells, pharyngeal cells, and spermatheca. Based on the above observations, we hypothesized that srf-3 may have altered glyconjugates that may enable the mutant nematode to grow unaffected in the presence of the above pathogenic bacteria. Following analyses of N- and O-linked glycoconjugates of srf-3 and wild type nematodes using a combination of enzymatic degradation, permethylation, and mass spectrometry, we found in srf-3 a 65% reduction of acidic O-linked glycoconjugates containing glucuronic acid and galactose as well as a reduction of N-linked glycoconjugates containing galactose and fucose. These results are consistent with the specificity of SRF-3 for UDP-galactose and strongly suggest that the above glycoconjugates play an important role in allowing adhesion of M. nematophilum or Y. pseudotuberculosis biofilm to wild type C. elegans. Furthermore, because seam cells as well as pharyngeal cells secrete their glycoconjugates to the cuticle and surrounding surfaces, the results also demonstrate the critical role of these cells and their secreted glycoproteins in nematode-bacteria interactions and offer a mechanistic basis for strategies to block such recognition processes.  相似文献   

9.
Il-Young Ahn  Carlos E Winter 《Génome》2006,49(8):1007-1015
This work describes the physicochemical characterization of the genome and telomere structure from the nematode Oscheius tipulae CEW1. Oscheius tipulae is a free-living nematode belonging to the family Rhabditidae and has been used as a model system for comparative genetic studies. A new protocol that combines fluorescent detection of double-stranded DNA and S1 nuclease was used to determine the genome size of O. tipulae as 100.8 Mb (approximately 0.1 pg DNA/haploid nucleus). The genome of this nematode is made up of 83.4% unique copy sequences, 9.4% intermediate repetitive sequences, and 7.2% highly repetitive sequences, suggesting that its structure is similar to those of other nematodes of the genus Caenorhabditis. We also showed that O. tipulae has the same telomere repeats already found in Caenorhabditis elegans at the ends and in internal regions of the chromosomes. Using a cassette-ligation-mediated PCR protocol we were able to obtain 5 different putative subtelomeric sequences of O. tipulae, which show no similarity to C. elegans or C. briggsae subtelomeric regions. DAPI staining of hermaphrodite gonad cells show that, as detected in C. elegans and other rhabditids, O. tipulae have a haploid complement of 6 chromosomes.  相似文献   

10.
Filarial nematode parasites, the causative agents of elephantiasis and river blindness, undermine the livelihoods of over one hundred million people in the developing world. Recently, the Filarial Genome Project reported the draft sequence of the ~95 Mb genome of the human filarial parasite Brugia malayi - the first parasitic nematode genome to be sequenced. Comparative genome analysis with the prevailing model nematode Caenorhabditis elegans revealed similarities and differences in genome structure and organization that will prove useful as additional nematode genomes are completed. The Brugia genome provides the first opportunity to comprehensively compare the full gene repertoire of a free-living nematode species and one that has evolved as a human pathogen. The Brugia genome also provides an opportunity to gain insight into genetic basis for mutualism, as Brugia, like a majority of filarial species, harbors an endosybiotic bacterium (Wolbachia). The goal of this review is to provide an overview of the results of genomic analysis and how these observations provide new insights into the biology of filarial species.  相似文献   

11.
The environmental saphrophyte Burkholderia pseudomallei is the causative agent of melioidosis, a systemic, potentially life-threatening condition endemic to many parts of south-east Asia and northern Australia. We have used the soil nematode Caenorhabditis elegans as a model host to characterize the mechanisms by which this bacterium mounts a successful infection. We find that C. elegans is susceptible to a broad range of Burkholderia species, and that the virulence mechanisms used by this pathogen to kill nematodes may be similar to those used to infect mammals. We also find that the specific dynamics of the C. elegans-B. pseudomallei host-pathogen interaction can be highly influenced by environmental factors, and that nematode killing results at least in part from the presence of a diffusible toxin. Finally, by screening for bacterial mutants attenuated in their ability to kill C. elegans, we genetically identify several new potential virulence factors in B. pseudomallei. The use of C. elegans as a model host should greatly facilitate future investigations into how B. pseudomallei can interact with host organisms.  相似文献   

12.
An important quest in modern biology is to identify genes involved in aging. Model organisms such as the nematode Caenorhabditis elegans are particularly useful in this regard. The C. elegans genome has been sequenced [1], and single gene mutations that extend adult life span have been identified [2]. Among these longevity-controlling loci are four apparently unrelated genes that belong to the clk family. In mammals, telomere length and structure can influence cellular, and possibly organismal, aging. Here, we show that clk-2 encodes a regulator of telomere length in C. elegans.  相似文献   

13.
14.
Defining the forces that sculpt genome organization is fundamental for understanding the origin, persistence, and diversification of species. The genomic sequences of the nematodes Caenorhabditis elegans and Caenorhabditis briggsae provide an excellent opportunity to explore the dynamics of chromosome evolution. Extensive chromosomal rearrangement has accompanied divergence from their common ancestor, an event occurring roughly 100 million years ago (Mya); yet, morphologically, these species are nearly indistinguishable and both reproduce primarily by self-fertilization. Here, we show that genes expressed during spermatogenesis (sperm genes) are nonrandomly distributed across the C. elegans genome into three large clusters located on two autosomes. In addition to sperm genes, these chromosomal regions are enriched for genes involved in the hermaphrodite sperm/oocyte switch and in the reception of sperm signals that control fertilization. Most loci are present in single copy, suggesting that cluster formation is largely due to gene aggregation and not to tandem duplication. Comparative mapping indicates that the C. briggsae genome differs dramatically from the C. elegans genome in clustering. Because clustered genes have a direct role in reproduction and thus fitness, their aggregated pattern might have been shaped by natural selection, perhaps as hermaphroditism evolved.  相似文献   

15.
The nematode worm Caenorhabditis elegans, for which the complete genome sequence is available, has several other advantages as an experimental system, and has already been widely used as a model for the study of vertebrate biology. Recent investigations have revealed that C. elegans could also be an extremely useful model system in the study of bacterial pathogenesis and have reinforced the notion that common virulence and host defence mechanisms exist.  相似文献   

16.
We describe the pathogenic interaction between a newly described gram-positive bacterium, Leucobacter chromiireducens subsp. solipictus strain TAN 31504, and the nematode Caenorhabditis elegans. TAN 31504 pathogenesis on C. elegans is exerted primarily through infection of the adult nematode uterus. TAN 31504 enters the uterus through the external vulval opening, and the ensuing uterine infection is strongly correlated with a significant reduction in host life span. Young worms can feed and develop on TAN 31504, but not preferably over the standard food source. C. elegans worms reared on TAN 31504 as the sole food source develop into thin adults with little intestinal fat stores, produce few progeny, and subsequently cannot persist on the pathogenic food source. Within 12 h of exposure, adult worms challenged with TAN 31504 alter the expression of a number of C. elegans innate immunity-related genes, including nlp-29, which encodes a neuropeptide-like protein. C. elegans worms exposed briefly to TAN 31504 develop lethal uterine infections analogous to worms exposed continuously to pathogen, suggesting that mere contact with the pathogen is sufficient for the host to become infected. TAN 31504 produces a robust biofilm, and this behavior is speculated to play a role in the virulence exerted on the nematode host. The interaction between TAN 31504 and C. elegans provides a convenient opportunity to study bacterial virulence on nematode tissues other than the intestine and may allow for the discovery of host innate immunity elicited specifically in response to vulva-uterus infection.  相似文献   

17.
18.
Pseudomonas sp. strain DF41 produces a lipopeptide, called sclerosin that inhibits the fungal pathogen Sclerotinia sclerotiorum . The aim of the current study was to deduce the chemical structure of this lipopeptide and further characterize its bioactivity. Mass spectrometry analysis determined the structure of sclerosin to be CH(3)-(CH(2))(6)-CH(OH)-CH(2)-CO-Dhb-Pro-Ala-Leu/Ile-Ala-Val-Val-Dhb-Thr-Val-Leu/Ile-Dhp-Ala-Ala-Ala-Val-Dhb-Dhb-Ala-Dab-Ser-Val-OH, similar to corpeptins A and B of the tolaasin group, differing by only 3 amino acids in the peptide chain. Subjecting sclerosin to various ring opening procedures revealed no new ions, suggesting that this molecule is linear. As such, sclerosin represents a new member of the tolaasin lipopeptide group. Incubation of S.?sclerotinia ascospores and sclerotia in the presence of sclerosin inhibited the germination of both cell types. Sclerosin also exhibited antimicrobial activity against Bacillus species. Conversely, this lipopeptide demonstrated no zoosporicidal activity against the oomycete pathogen Phytophthora infestans . Next, we assessed the effect of DF41 and a lipopeptide-deficient mutant on the growth and development of Caenorhabditis elegans larvae. We discovered that sclerosin did not protect DF41 from ingestion by and degradation in the C.?elegans digestive tract. However, another metabolite produced by this bacterium appeared to shorten the life-span of the nematode compared to C.?elegans growing on Escherichia coli OP50.  相似文献   

19.
In the past year, several new components involved in cell migration and axon guidance have been identified by genetic analysis in Caenorhabditis elegans, taking us a step closer to being able to trace the pathways which mediate these processes. The completion of the C. elegans genome sequencing project has provided us with the knowledge of the full spectrum of genes that might be involved in cell migration and axon guidance, and can facilitate the analysis of components that have been shown to be important for these processes in other systems.  相似文献   

20.
The detailed composition and structure of the Caenorhabditis elegans surface are unknown. Previous genetic studies used antibody or lectin binding to identify srf genes that play roles in surface determination. Infection by Microbacterium nematophilum identified bus (bacterially unswollen) genes that also affect surface characteristics. We report that biofilms produced by Yersinia pestis and Y. pseudotuberculosis, which bind the C. elegans surface predominantly on the head, can be used to identify additional surface-determining genes. A screen for C. elegans mutants with a biofilm absent on the head (Bah) phenotype identified three novel genes: bah-1, bah-2, and bah-3. The bah-1 and bah-2 mutants have slightly fragile cuticles but are neither Srf nor Bus, suggesting that they are specific for surface components involved in biofilm attachment. A bah-3 mutant has normal cuticle integrity, but shows a stage-specific Srf phenotype. The screen produced alleles of five known surface genes: srf-2, srf-3, bus-4, bus-12, and bus-17. For the X-linked bus-17, a paternal effect was observed in biofilm assays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号