首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To evaluate the potential contribution of circulating kynurenines to brain kynurenine pools, the rates of cerebral uptake and mechanisms of blood-brain barrier transport were determined for several kynurenine metabolites of tryptophan, including L-kynurenine (L-KYN), 3-hydroxykynurenine (3-HKYN), 3-hydroxyanthranilic acid (3-HANA), anthranilic acid (ANA), kynurenic acid (KYNA), and quinolinic acid (QUIN), in pentobarbital-anesthetized rats using an in situ brain perfusion technique. L-KYN was found to be taken up into brain at a significant rate [permeability-surface area product (PA) = 2-3 x 10(-3) ml/s/g] by the large neutral amino acid carrier (L-system) of the blood-brain barrier. Best-fit estimates of the Vmax and Km of saturable L-KYN transfer equalled 4.5 x 10(-4) mumol/s/g and 0.16 mumol/ml, respectively. The same carrier may also mediate the brain uptake of 3-HKYN as D,L-3-HKYN competitively inhibited the brain transfer of the large neutral amino acid L-leucine. For the other metabolites, uptake appeared mediated by passive diffusion. This occurred at a significant rate for ANA (PA, 0.7-1.6 x 10(-3) ml/s/g), and at far lower rates (PA, 2-7 x 10(-5) ml/s/g) for 3-HANA, KYNA, and QUIN. Transfer for KYNA, 3-HANA, and ANA also appeared to be limited by plasma protein binding. The results demonstrate the saturable transfer of L-KYN across the blood-brain barrier and suggest that circulating L-KYN, 3-HKYN, and ANA may each contribute significantly to respective cerebral pools. In contrast, QUIN, KYNA, and 3-HANA cross the blood-brain barrier poorly, and therefore are not expected to contribute significantly to brain pools under normal conditions.  相似文献   

2.
Several Na+-dependent carriers of amino acids exist on the abluminal membrane of the blood-brain barrier (BBB). These Na+-dependent carriers are in a position to transfer amino acids from the extracellular fluid of brain to the endothelial cells and thence to the circulation. To date, carriers have been found that may remove nonessential, nitrogen-rich, or acidic (excitatory) amino acids, all of which may be detrimental to brain function. We describe here Na+-dependent transport of large neutral amino acids across the abluminal membrane of the BBB that cannot be ascribed to currently known systems. Fresh brains, from cows killed for food, were used. Microvessels were isolated, and contaminating fragments of basement membranes, astrocyte fragments, and pericytes were removed. Abluminal-enriched membrane fractions from these microvessels were prepared. Transport was Na+ dependent, voltage sensitive, and inhibited by 2-aminobicyclo-(2,2,1)-heptane-2-carboxylic acid, a particular inhibitor of the facilitative large neutral amino acid transporter 1 (LAT1) system. The carrier has a high affinity for leucine (Km 21 +/- 7 microM) and is inhibited by other neutral amino acids, including glutamine, histidine, methionine, phenylalanine, serine, threonine, tryptophan, and tyrosine. Other established neutral amino acids may enter the brain by way of LAT1-type facilitative transport. The presence of a Na+-dependent carrier on the abluminal membrane capable of removing large neutral amino acids, most of which are essential, from brain indicates a more complex situation that has implications for the control of essential amino acid content of brain.  相似文献   

3.
Neutral amino acid transport at the human blood-brain barrier   总被引:9,自引:0,他引:9  
The kinetics of human blood-brain barrier neutral amino acid transport sites are described using isolated human brain capillaries as an in vitro model of the human blood-brain barrier. Kinetic parameters of transport (Km, Vmax, and KD) were determined for eight large neutral amino acids. Km values ranged from 0.30 +/- 0.08 microM for phenylalanine to 8.8 +/- 4.6 microM for valine. The amino acid analogs N-methylaminoisobutyric acid and 2-aminobicyclo[2.2.1]heptane-2-carboxylic acid were used as model substrates of the alanine- and leucine-preferring transport systems, respectively. Phenylalanine is transported solely by the L-system (which is sensitive to 2-aminobicyclo[2.2.1]heptane-2-carboxylic acid), and leucine is transported equally by the L- and ASC-system (which is sodium-dependent and N-methylaminoisobutyric acid-independent). Dose-dependent inhibition of the high affinity transport system by p-chloromercuribenzenesulfonic acid is demonstrated for phenylalanine, similar to the known sensitivity of blood-brain barrier transport in vivo. The Km values for the human brain capillary in vitro correlate significantly (r = 0.83, p less than 0.01) with the Km values for the rat brain capillary in vivo. The results show that the affinity of human blood-brain barrier neutral amino acid transport is very high, i.e. very low Km compared to plasma amino acid concentrations. This provides a physical basis for the selective vulnerability of the human brain to derangements in amino acid availability caused by a selective hyperaminoacidemia, e.g. hyperphenylalaninemia.  相似文献   

4.
Vasopressin receptors have been reported in the endothelium of brain capillaries. The function of these receptors is not known. To test the prediction that vasopressin receptors in brain capillary endothelium affect amino acid transport across the blood-brain barrier and to assess the role of vasopressin transport across the cerebral vascular endothelium, we measured (a) the endothelial permeability to the large neutral amino acid leucine in the absence and presence of arginine vasopressin (AVP) and (b) the permeability of the blood-brain barrier to AVP relative to manitol. In brain regions protected by the blood-brain barrier, after circulation for 20 s, coinjection of leucine and AVP intravenously led to a decrease of leucine transport unrelated to changes of blood flow. The decrease was most pronounced in hippocampus (42%) and least pronounced in olfactory bulb and colliculi (17 and 19%, respectively). In the latter regions, the endothelial permeability to AVP did not significantly exceed that of mannitol. In hippocampus and in regions with no blood-brain barrier (pituitary and pineal glands), AVP retention in excess of mannitol retention was blocked by unlabeled AVP. The findings do not contradict the hypothesis of a role for AVP in the regulation of large neutral amino acid transfer into brain tissue.  相似文献   

5.
The exquisite sensitivity of brain amino acid availability to changes in plasma amino acid composition arises from the uniquely high affinity (low Km) of blood-brain barrier transport sites as compared to cell membrane transport systems in nonbrain tissues. The extension of this paradigm from rats to man assumes that the Km of blood-brain barrier amino acid transport in the human is low as in the rat. This hypothesis is tested in the present studies wherein isolated human brain capillaries are used as a model system for the human blood-brain barrier. Capillaries were obtained from autopsy brain between 20 and 45 h after death and were isolated in high yield and free of adjoining brain tissue. [3H]Phenylalanine transport into the isolated human, rabbit, or rat brain capillary was characterized by two saturable transport systems and a nonsaturable component. The Km values of phenylalanine transport into brain capillaries via the two saturable systems averaged 0.26 +/- 0.08 and 22.3 +/- 7.1 microM for five human subjects. These studies provide the first evidence for a very high affinity (Km = 0.26 microM) neutral amino acid transport system at the blood-brain barrier, and it is hypothesized that this system is selectively localized to the brain side of the blood-brain barrier. The results also show that the transport Km values for phenylalanine transport are virtually identical at both the rat and human blood-brain barrier.  相似文献   

6.
Regional transport of 1-aminocyclohexanecarboxylic acid (ACHC), a nonmetabolizable amino acid, across the blood-brain barrier was studied in pentobarbital-anesthetized rats using an in situ brain perfusion technique. The concentration dependence of influx was best described by a model with a saturable and a nonsaturable component. Best-fit values for the kinetic constants of the frontal cortex equaled 9.7 X 10(-4) mumol/s/g for Vmax, 0.054 mumol/ml for Km, and 1.0 X 10(-4) ml/s/g for KD in the absence of competing amino acids. Saturable influx could be reduced by greater than 85% by either L-phenylalanine or 2-aminobicyclo[2.2.1]heptane-2-carboxylic acid, consistent with transport by the cerebrovascular neutral amino acid transport system. The transport Km for ACHC was one-fifth that for the more commonly used homologue, 1-aminocyclopentanecarboxylic acid, and was similar to values for several natural amino acids, such as L-methionine, L-isoleucine, and L-tyrosine. The results indicate that ACHC may be a useful probe for in vivo studies of amino acid transport into brain.  相似文献   

7.
The effects of pH (3.5-7.5) on the brain uptake of histidine by the blood-brain barrier (BBB) carriers for neutral and cationic amino acids were tested, in competition with unlabeled histidine, arginine, or phenylalanine, with the single-pass carotid injection technique. Cationic amino acid ( [14C]arginine) uptake was increasingly inhibited by unlabeled histidine as the pH of the injection solution decreased. In contrast, the inhibitory effect of unlabeled histidine on neutral amino acid ( [14C]phenylalanine) uptake decreased with decreasing pH. Brain uptake indices with varying histidine concentrations indicated that the neutral form of histidine inhibited phenylalanine uptake whereas the cationic form competed with arginine uptake. Since phenylalanine decreased [14C]histidine uptake at all pH values whereas arginine did not, it was concluded that the cationic form of histidine had an affinity for the cationic carrier, but was not transported by it. We propose that the saturable entry of histidine into brain is, under normal physiological circumstances, mediated solely by the carrier for neutral amino acids.  相似文献   

8.
Brain capillary endothelial cells form the blood-brain barrier. They are connected by extensive tight junctions, and are polarized into luminal (blood-facing) and abluminal (brain-facing) plasma membrane domains. The polar distribution of transport proteins allows for active regulation of brain extracellular fluid. Experiments on isolated membrane vesicles from capillary endothelial cells of bovine brain demonstrated the polar arrangement of amino acid and glucose transporters, and the utility of such arrangements have been proposed. For instance, passive carriers for glutamine and glutamate have been found only in the luminal membrane of blood-brain barrier cells, while Na-dependent secondary active transporters are at the abluminal membrane. This organization could promote the net removal of nitrogen-rich amino acids from brain, and account for the low level of glutamate penetration into the central nervous system. Furthermore, the presence of a gamma-glutamyl cycle at the luminal membrane and Na-dependent amino acid transporters at the abluminal membrane may serve to modulate movement of amino acids from blood-to-brain. Passive carriers facilitate amino acid transport into brain. However, activation of the gamma-glutamyl cycle by increased plasma amino acids is expected to generate oxoproline within the blood-brain barrier. Oxoproline stimulates secondary active amino acid transporters (Systems A and B(o)+) at the abluminal membrane, thereby reducing net influx of amino acids to brain. Finally, passive glucose transporters are present in both the luminal and abluminal membranes of the blood-brain barrier. Interestingly, a high affinity Na-dependent glucose carrier has been described only in the abluminal membrane. This raises the question whether glucose entry may be regulated to some extent. Immunoblotting studies suggest more than one type of passive glucose transporter exist in the blood-brain barrier, each with an asymmetrical distribution. In conclusion, it is now clear that the blood-brain barrier participates in the active regulation of brain extracellular fluid, and that the diverse functions of each plasma membrane domain contributes to these regulatory functions.  相似文献   

9.
The existence of the blood-brain barrier is due to tight junctions between endothelial cells preventing the passage of liquid and solute material at the capillary level. Substances can thus pass across the blood-brain barrier if they are lipophilic or if they have transport systems in the membranes of endothelial cells. The luminal membrane brings metabolites needed for the brain function, the abluminal one plays an important part in removing substances from brain, this can happen against a concentration gradient and thus needs energy. Ions are transported differently by the 2 membranes. Sodium and chloride have carriers and potassium is transported very actively by the sodium-potassium ATPase of the abluminal membrane. Blood-brain glucose influx is very important and happens by carrier transport at the 2 membranes. Efflux seems to use the same transport system as the influx. Transport of ketone bodies seems to happen only from blood to brain, the carriers being reversibly used for brain-blood transport of pyruvic and lactic acid. Amino-acid transport is very different on the luminal and abluminal membranes. On the luminal membrane there are 2 transport systems, one for basic amino acids, the other one, the L system, for neutral amino-acids. All neutral amino-acids are transported through the abluminal membrane by the L, A and ASC systems. There exists a system of transport for basic amino-acids, and a very active one for acid amino-acids. Some systems for the transport of hormones, vitamins and for some peptides exist also at the blood-brain barrier which thus plays a very important role in the regulation of brain metabolism.  相似文献   

10.
Abstract— The effects of high circulating concentrations of several amino acids on the free amino acids of rat brain were measured, to see whether or not the results followed any consistent pattern. High circulating concentrations of large, neutral amino acids (phenylalanine, valine or isoleucine) caused significantly decreased values only of other large, neutral amino acids in the brains. High circulating concentrations of the basic amino acids lysine or arginine caused significantly decreased values only of each other. The data suggest that there are separate systems for the transport of neutral and basic amino acids across the blood-brain barrier. The effects of valine and lysine on the uptake by brain and the con-vulsant action of allylglycine (a neutral amino acid) were consistent with the concept of separate systems for the transport of amino acids across the blood-brain barrier. Valine inhibited the uptake by brain and the convulsant action of allylglycine in mice, but lysine did not. The data suggest that allylglycine and valine are transported into the brain by a common mechanism that does not transport lysine.  相似文献   

11.
Biotin Transport Through the Blood-Brain Barrier   总被引:6,自引:4,他引:2  
The unidirectional influx of biotin across cerebral capillaries, the anatomical locus of the blood-brain barrier, was measured with an in situ rat brain perfusion technique employing [3H]biotin. Biotin was transported across the blood-brain barrier by a saturable system with a one-half saturation concentration of approximately 100 microM. The permeability-surface area products were 10(-4) s-1 with a biotin concentration of 0.02 microM in the perfusate. Probenecid, pantothenic acid, and nonanoic acid but not biocytin or biotin methylester (all 250 microM) inhibited biotin transfer through the blood-brain barrier. The isolated rabbit choroid plexus was unable to concentrate [3H]biotin from medium containing 1 nM [3H]biotin. These observations provide evidence that: biotin is transported through the blood-brain barrier by a saturable transport system that depends on a free carboxylic acid group, and the choroid plexus is probably not involved in the transfer of biotin between blood and cerebrospinal fluid.  相似文献   

12.
By derivatization at the N-terminus of amino acid-based anticancer agents (e.g. melphalan and acivicin) to form a drug delivery system (TDDS), we demonstrate a change in the mechanism of brain uptake from the large neutral amino acid transporter (LAT) pathway to passive. An in situ rat brain perfusion technique was used to determine the brain capillary permeability-surface area (PA) product for [(14)C]L-Leu as control (5.18 +/- 0.32 x 10(-2) mL/s/g), which was inhibited competitively (to 7-18% of control) by an excess concentration of the amino-acid-containing anticancer agents, acivicin and melphalan. However, TDDS did not compete for LAT-mediated brain uptake of the radiotracer [(14)C]L-Leu. Brain uptake of TDDS was determined after in situ brain perfusion followed by RP-HPLC along with LC-MS/MS detection of the analytes in brain samples. The PA product for CH(3)-TDDS containing melphalan (5.09 +/- 2.0 x 10(-2) mL/s/g) shows that these agents rapidly cross the blood-brain barrier. Furthermore, competition studies of CH(3)-TDDS with [(3)H]verapamil suggest that the TDDS interacts significantly with the multidrug resistant efflux system (P-glycoprotein) at the blood-brain barrier. Therefore, TDDS were shown to lack LAT-mediated brain uptake. The drug delivery systems, however, showed uptake predominantly via the passive route along with recognition by the multidrug resistant efflux protein at the cerebrovasculature.  相似文献   

13.
1. Portacaval shunting in rats results in several metabolic alterations similar to those seen in patients with hepatic encephalopathy. The characteristic changes include: (a) diminution of cerebral function; (b) raised plasma ammonia and brain glutamine levels; (c) increased neutral amino acid transport across the blood-brain barrier; (d) altered brain and plasma amino acid levels; and (e) changes in brain neurotransmitter content. The aetiology of these abnormalities remains unknown. 2. To study the degree to which ammonia could be responsible, rats were made hyperammonaemic by administering 40 units of urease/kg body weight every 12 h and killing the rats 48 h after the first injection. 3. The changes observed in the urease-treated rats were: (a) whole-brain glucose use was significantly depressed, whereas the levels of high-energy phosphates remained unchanged; (b) the permeability of the blood-brain to barrier to two large neutral amino acids, tryptophan and leucine, was increased; (c) blood-brain barrier integrity was maintained, as indicated by the unchanged permeability-to-surface-area product for acetate; (d) plasma and brain amino acid concentrations were altered; and (e) dopamine, 5-hydroxytryptamine (serotonin) and noradrenaline levels in brain were unchanged, but 5-hydroxyindoleacetic acid (5-HIAA), a metabolite of 5-hydroxytryptamine, was elevated. 4. The depressed brain glucose use, increased tryptophan permeability-to-surface-area product, elevated brain tryptophan content and rise in the level of cerebral 5-HIAA were closely correlated with the observed rise in brain glutamine content. 5. These results suggest that many of the metabolic alterations seen in rats with portacaval shunts could be due to elevated ammonia levels. Furthermore, the synthesis or accumulation of glutamine may be closely linked to cerebral dysfunction in hyperammonaemia.  相似文献   

14.
Postnatal changes in local permeability of the blood-brain barrier to an inert neutral amino acid (alpha-[14C]-aminoisobutyric acid) were investigated in 25 rabbits. The local transfer constant (K) for this tracer was measured with quantitative autoradiographic techniques at postnatal ages of 1, 3, 8, and 17 days, and adult. In adults, the amino acid penetrated the blood-brain barrier poorly in most regions examined (K less than 1 microliter.g-1.min-1) except within and in proximity to structures with a relatively leaky blood-brain barrier such as area postrema and choroid plexus. The rate of tracer entry into "impermeable" regions was seven- to 10-fold greater in 1-day-old rabbits than adults and not dependent on active transport. In young animals, there was a pronounced regional variation in K with the lowest values occurring in white matter and the highest in gray matter such as cerebral cortex, posterior thalamus, and hippocampus. During postnatal development, K decreased (p less than 0.01) with most regions having values near those of adults by 17 days of age. The results indicate that the blood-brain barrier of the newborn rabbit is relatively leaky to a small hydrophilic nonelectrolyte with a distribution that is heterogeneous regionally. Irrespective of age, such blood-borne substances can accumulate in certain brain areas considered to have impermeable vessels (e.g., nucleus tractus solitarii).  相似文献   

15.
Pantothenic Acid Transport Through the Blood-Brain Barrier   总被引:2,自引:2,他引:0  
The unidirectional influx of D-pantothenic acid (PA) across cerebral capillaries, the anatomical locus of the blood-brain barrier, was measured with an in situ rat brain perfusion technique using [3H]D-PA (1.1 Ci/mmol). PA was transported across the blood-brain barrier by a saturable system that could be described by a Michaelis-Menten transport model with a half-saturation concentration and maximal influx rate of 19 microM and 0.21 nmol/g of brain/min, respectively. PA (0.3 microM) transport through the blood-brain barrier was significantly inhibited by probenecid, nonanoic acid, and biotin (all less than or equal to 0.25 mM), but not by penicillin G, pyruvate, beta-hydroxybutyrate, L-leucine (all 1 mM), or poly-L-lysine HBr (1 mg/ml). Probenecid (0.25 mM), nonanoic acid (0.5 mM), and PA (1.0 mM) did not inhibit [3H]L-leucine transport through the blood-brain barrier, whereas 30 microM-L-leucine inhibited [3H]leucine transport to 23% of control values. Thus, PA is transported through the blood-brain barrier by a low-capacity, saturable transport system with a half-saturation concentration approximately 10 times the plasma PA concentration. Although involved in the transfer of PA from blood into brain, this system does not play an important regulatory role in the synthesis of CoA from PA in brain.  相似文献   

16.
To determine whether a previously reported effect of vasopressin on blood-brain transfer of leucine extends to other large neutral amino acids, we measured the regional blood-brain transfer of L-phenylalanine with the integral technique. Intravenous co-injection of L-phenylalanine and arginine vasopressin (30 nmol to 10 pmol) resulted in a decrease of the permeability-surface area (PaS) product of phenylalanine of between 11 and 39%. In addition, the peptide elicited a decrease of the cerebral blood flow of between 11 and 56% combined with a drastic decrease of the cardiac output (32-64%) and an elevation of the blood pressure to approximately 150% of control values. However, we found no changes of the cardiac output, the blood pressure, or the PaS product of phenylalanine after microdialysis (30 min, 5 microliters min-1) of arginine vasopressin (15 mumol L-1) into the dorsal hippocampus, but cerebral blood flow was decreased. The results support the hypothesis that arginine vasopressin receptors at the blood-brain barrier are involved in the regulation of large neutral amino acid transfer from blood to brain and indicate that these receptors are located at the luminal membrane of the endothelial cells.  相似文献   

17.
The possible effects of elevation of the plasma phenylalanine level secondary to the ingestion of aspartame on brain amino acid uptake in human subjects have been investigated by means of positron emission tomography (PET). 1-[11C]Aminocyclohexanecarboxylate [( 11C]ACHC) is a poorly metabolized synthetic amino acid that crosses the blood-brain barrier by the same carrier that transports naturally occurring large neutral amino acids. Quantitative test-retest PET studies were performed on 15 individuals. Seven received two identical baseline scans, whereas eight received a baseline scan followed by a scan performed approximately 40-45 min following ingestion of an orange-flavored beverage containing 34 mg/kg of body weight of the low-calorie sweetener aspartame, a dose equivalent to the amount in 5 L of diet soft drink consumed all at once by the study subjects, weighing an average of 76 kg. The 40-45-min interval was selected to maximize the detection of possible decreases in ACHC uptake resulting from increased competition for the carrier, because the plasma phenylalanine level is known to peak at this time. We observed an 11.5% decrease in the amino acid transport rate constant K1 and a smaller decrease in the tissue distribution volume of ACHC (6%). Under conditions of normal dietary use, aspartame is thus unlikely to cause changes in brain amino acid uptake that are measurable by PET.  相似文献   

18.
Portal-systemic shunting and hyperammonemia lead to an accumulation of the large neutral amino acids in brain and apparently alter transport of neutral amino acids across the blood-brain barrier. It has been proposed that portal-systemic shunting leads to a high brain concentration of glutamine, a product of cerebral ammonia detoxification, and thereby affects the transport of other neutral amino acids across the blood-brain barrier. To test this hypothesis, rats with a portacaval shunt were treated with L-methionine-dl-sulfoximine (MSO), an inhibitor of glutamine synthesis. Treatment with MSO resulted in lower concentrations of the neutral amino acids in brain of portacaval-shunted rats and a higher brain ammonia concentration, compared with untreated shunted rats. These results suggest that the accumulation of neutral amino acids in brain after portacaval shunt depends on the increased synthesis of glutamine in brain.  相似文献   

19.
Exposure to the herbicide paraquat causes selective nigrostriatal degeneration and aggregation of alpha-synuclein in the mouse brain. The purpose of this study was to assess mechanisms of paraquat entry into the CNS and, in particular, the effects of substrates of the blood-brain barrier (BBB) neutral amino acid transporter (System L carrier) on paraquat accumulation and neurotoxicity. Using a paraquat antibody, robust immunoreactivity was observed in the midbrain of mice injected with the herbicide. This immunoreactivity was abolished by administration of l-valine or l-phenylalanine, two System L substrates, immediately before paraquat exposure. Pre-treatment with these amino acids completely protected against paraquat-induced loss of nigrostriatal dopaminergic cells and formation of thioflavine S-positive intracellular deposits. Interestingly, the anti-parkinsonian drug l-dopa, which is transported across the BBB through the same neutral amino acid carrier, was also neuroprotective when administered 30 min prior to paraquat. In contrast, paraquat-induced toxicity was unaffected if animals (i) were pre-treated with d-valine, the biologically inactive d-isomer of l-valine, or with l-lysine, a substrate of the basic rather than the neutral amino acid carrier, or (ii) were injected with l-dopa 24 h after paraquat exposure. Data are consistent with a critical role of uptake across the BBB in paraquat neurotoxicity, and suggest that dietary elements (e.g. amino acids) or therapeutic agents (e.g. l-dopa) may modify the effects of toxicants targeting the nigrostriatal system.  相似文献   

20.
Abstract: The delivery of large neutral amino acids (LNAAs) to brain across the blood-brain barrier (BBB) is mediated by the L-type neutral amino acid transporter present in the membranes of the brain capillary endothelial cell. In experimental animals, the L-system transporter is saturated under normal conditions, and therefore an elevation in the plasma concentration of one LNAA will reduce brain uptake of others. In this study, we used positron emission tomography (PET) to determine the effect of elevated plasma phenylalanine concentrations on the uptake of an artificial neutral amino acid, [11C]-aminocyclohexanecarboxylate ([11C]ACHC), in human brain. PET scans were performed on six normal male subjects after an overnight fast and again 60 min after oral administration of 100 mg/kg of phenylalanine. The plasma phenylalanine concentration increased by an average of 11-fold between the first and second scans. This increase produced a reduction in [11C]ACHC uptake in all brain regions but not in scalp. The mean ± SD influx rate constant for whole brain decreased after phenylalanine ingestion from 0.036 ± 0.002 to 0.019 ± 0.004 ml/g/min. Kinetic analysis of the effect of plasma phenylalanine concentration on the rate of [11C]ACHC uptake is compatible with a model of competitive inhibition so that large increases in the concentration of one LNAA in plasma will reduce the brain uptake of other LNAAs across the human BBB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号