首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Escherichia coli (E. coli) overexpression systems of Baeyer–Villiger monooxygenases (BVMOs), cyclohexanone monooxygenase (CHMO) and cyclopentanone monooxygenase (CPMO) and their mutants derived from directed evolution were used as catalysts in oxidations of six 4-substituted cyclohexanones. The biotransformations were carried out with growing cells (standard screening conditions) and with non-growing cells. The surprising result is that several substrates that give negative results (non-acceptance) under the screening conditions, afford excellent conversions in the transformations under non-growing conditions. The new bioreagents for Baeyer–Villiger oxidations with divergent, high enantioselectivities reported here can be used in scaled-up fermentation under non-growing conditions.  相似文献   

2.
Cyclopentanone monooxygenase, an NADPH- plus FAD-dependent enzyme induced by the growth ofPseudomonas sp. NCIMB 9872 on cyclopentanol, has been utilised as a biocatalyst in Baeyer-Villiger oxidations. Washed whole-cell preparations of the microorganism oxidised 3-hexylcyclopentanone in a regio- but not enantioselective manner to give predominantly the racemic γ-hexyl valerolactone. similar preparations biotransformed 5-hexylcyclopent-2-enone exclusively by regio- plus enantioselective oxidation to the equivalent , β-unsaturated (S)-(+)-δ-hexyl valerolactone (ee = 78%), with no reductive biotransformations catalysed by either EC 1.1.x.x- or EC 1.3.x.x-type dehydrogenases.

An equivalent biotransformation of 5-hexylcyclopent-2-enone was catalysed by highly-purified NADPH- plus FAD-dependent cyclopentanone monooxygenase from the bacterium. The regio- plus enantioselective biotransformation by the pure enzyme of 2-(2′-acetoxyethyl)cyclohexanone yielded optically-enriched (S)-(+ )-7-(2′-acetoxyethyl)-2-oxepanone (ee = 72%). The same biotransformation when scaled up again provided optically-enriched (S)-(+)-ε-caprolactone which was converted, using methoxide, to (S)-(−)-methyl 6,8-dihydroxyoctanoate (ee = 42%). thereby providing a two-step access from the substituted cyclohexanone to this important chiron for the subsequent synthesis of (R-(+)-lipoic acid.

Some characteristics of pure NADPH- plus FAD-dependent cyclopentanone monooxygenase were determined including the molecular weight of the monomeric subunit (50000) of this homotetrameric enzyme, and the N-terminal amino acid sequence up to residue 29, which includes a putative flavin nucleotide-binding site.  相似文献   


3.
While the number of available recombinant Baeyer-Villiger monooxygenases (BVMOs) has grown significantly over the last few years, there is still the demand for other BVMOs to expand the biocatalytic diversity. Most BVMOs that have been described are dedicated to convert efficiently cyclohexanone and related cyclic aliphatic ketones. To cover a broader range of substrate types and enantio- and/or regioselectivities, new BVMOs have to be discovered. The gene encoding a BVMO identified in Pseudomonas putida JD1 converting aromatic ketones (HAPMO; 4-hydroxyacetophenone monooxygenase) was amplified from genomic DNA using SiteFinding-PCR, cloned, and functionally expressed in Escherichia coli. Furthermore, four other open reading frames could be identified clustered around this HAPMO. It has been suggested that these proteins, including the HAPMO, might be involved in the degradation of 4-hydroxyacetophenone. Substrate specificity studies revealed that a large variety of other arylaliphatic ketones are also converted via Baeyer-Villiger oxidation into the corresponding esters, with preferences for para-substitutions at the aromatic ring. In addition, oxidation of aldehydes and some heteroaromatic compounds was observed. Cycloketones and open-chain ketones were not or poorly accepted, respectively. It was also found that this enzyme oxidizes aromatic ketones such as 3-phenyl-2-butanone with excellent enantioselectivity (E ≫100).Baeyer-Villiger monooxygenases (BVMOs; EC 1.14.13.x) belong to the class of oxidoreductases and convert aliphatic, cyclic, and/or aromatic ketones to esters or lactones, respectively, using molecular oxygen (29). Thus, they mimic the chemical Baeyer-Villiger oxidation, which is usually peracid catalyzed and was first described by Adolf Baeyer and Viktor Villiger in 1899 (2). All characterized BVMOs thus far are NAD(P)H dependent and require flavin adenine dinucleotide (FAD) or flavin mononucleotide (FMN) as prosthetic group, which is crucial for catalysis.Today, BVMOs are increasingly recognized as valuable catalysts for stereospecific oxidation reactions. These enzymes display a remarkably broad acceptance profile for nonnatural substrates. Besides conversion of a wide range of aliphatic open-chain, cyclic, and aromatic ketones, they are also able to oxygenate sulfides (16), selenides (27), amines (33), phosphines, olefins (5), aldehydes, and borone- and iodide-containing compounds (Fig. (Fig.1)1) (7).Open in a separate windowFIG. 1.Range of Baeyer-Villiger oxidations catalyzed by BVMOs.Therefore, recombinantly available BVMOs are powerful tools in organic chemistry and demonstrate a high potential as alternatives to existing chemical technologies, where some of these reactions are difficult to perform selectively using chemical catalysts.Except for this promiscuity in reactivity, high enantioselectivities, as well as regio- and stereoselectivities, make them interesting for the pharmaceutical, food, and cosmetic industries, where enantiomerically pure compounds are valuable building blocks. In addition, renunciation of peracids when applying enzymatic driven Baeyer-Villiger oxidations turns them into an ecofriendly alternative and led to a considerable interest for biotransformations using BVMOs on an industrial scale (1, 8, 13-15) during the past decades.Already in 1948 it was recognized that enzymes catalyzing the Baeyer-Villiger reaction exist in nature (39). This was concluded from the observation that a biological Baeyer-Villiger reaction occurred during the degradation of steroids by fungi. Still it took 20 years for the first BVMO to be isolated and characterized (10). Thus far, 22 BVMOs have been cloned, functionally expressed, and characterized. In Fig. Fig.22 their genetic relationships are illustrated, and all BVMOs are sorted into different classes on the basis of their substrate specificity. Only two BVMOs, the 4-hydroxyacetophenone monooxygenase (HAPMO) from Pseudomonas fluorescens ACB (19) and phenylacetone monooxygenase (PAMO) from Thermobifida fusca (11), converting arylaliphatic and aromatic ketones were described. The latter is the only thermostable BVMO and served as a model to elucidate the enzymatic mechanism (28).Open in a separate windowFIG. 2.Phylogenetic relationships within BVMOs. The sequences of 22 enzymes with confirmed BVMO activity were aligned, and an unrooted phylogenetic tree was generated using CLUSTAL W (v.1.81). Cycloketone-converting BVMO (solid lines), open-chain ketone-converting BVMO (dashed lines), and arylketone-converting BVMO (dash/dot lines). NCBI accession numbers of protein sequences: CHMO Acinetobacter, CHMO Acinetobacter calcoaceticus NCIMB 9871 (BAA86293); CHMO Xanthobacter, BVMO Xanthobacter sp. strain ZL5 (CAD10801); CHMO Brachymonas, CHMO Brachymonas petroleovorans (AAR99068); CHMO1 Arthrobacter, CHMO1 Arthrobacter sp. strain BP2 (AAN37479); CHMO2 Arthrobacter, CHMO2 Arthrobacter sp. strain L661 (ABQ10653); CHMO1 Rhodococcus, CHMO1 Rhodococcus Phi1 (AAN37494); CHMO2 Rhodococcus, CHMO2 Rhodococcus Phi2 (AAN37491); CHMO1 Brevibacterium, CHMO1 Brevibacterium sp. strain HCU (AAG01289); CHMO2 Brevibacterium, CHMO2 Brevibacterium sp. strain HCU (AAG01290); CPMO Comamonas, cyclopentanone monooxygenase Comamonas sp. strain NCIMB 9872 (BAC22652); CPDMO Pseudomonas, cyclopentadecanone monooxygenase Pseudomonas sp. strain HI-70 (BAE93346); CDMO R. ruber, cyclododecane monooxygenase Rhodococcus ruber SCI (AAL14233); BVMO Mycobacterium tuberculosis Rv3083, BVMO M. tuberculosis H37Rv (gene Rv3083) (CAA16141); BVMO M. tuberculosis Rv3049c, BVMO M. tuberculosis H37Rv (gene Rv3049c) (CAA16134); BVMO M. tuberculosis Rv3854c, BVMO M. tuberculosis H37Rv (gene Rv3854c) (CAB06212); BVMO P. putida KT2440, BVMO P. putida KT2440 (AAN68413); BVMO P. fluorescens DSM50106: BVMO P. fluorescens DSM50106 (AAC36351); BVMO Pseudomonas veronii MEK700, BVMO P. veronii MEK700 (ABI15711); STMO Rhodococcus rhodochrous, steroid monooxygenase R. rhodochrous (BAA24454); PAMO T. fusca, phenylacetone monooxygenase T. fusca (Q47PU3); HAPMO P. fluorescens ACB, 4-hydroxyacetophenone monooxygenase from P. fluorescens ACB (AAK54073); HAPMO P. putida JD1, 4-hydroxyacetophenone monooxygenase from P. putida JD1 (FJ010625 [the present study]).We report here the amplification, cloning, functional expression, and characterization of a HAPMO from Pseudomonas putida JD1 oxidizing a broad range of aromatic ketones and further substrates.  相似文献   

4.
Baeyer-Villiger monooxygenases (BVMOs) are biocatalysts that offer the prospect of high chemo-, regio-, and enantioselectivity in the organic synthesis of lactones or esters from a variety of ketones. In this study, we have cloned, sequenced, and overexpressed in Escherichia coli a new BVMO, cyclopentadecanone monooxygenase (CpdB or CPDMO), originally derived from Pseudomonas sp. strain HI-70. The 601-residue primary structure of CpdB revealed only 29% to 50% sequence identity to those of known BVMOs. A new sequence motif, characterized by a cluster of charged residues, was identified in a subset of BVMO sequences that contain an N-terminal extension of approximately 60 to 147 amino acids. The 64-kDa CPDMO enzyme was purified to apparent homogeneity, providing a specific activity of 3.94 micromol/min/mg protein and a 20% yield. CPDMO is monomeric and NADPH dependent and contains approximately 1 mol flavin adenine dinucleotide per mole of protein. A deletion mutant suggested the importance of the N-terminal 54 amino acids to CPDMO activity. In addition, a Ser261Ala substitution in a Rossmann fold motif resulted in an improved stability and increased affinity of the enzyme towards NADPH compared to the wild-type enzyme (K(m) = 8 microM versus K(m) = 24 microM). Substrate profiling indicated that CPDMO is unusual among known BVMOs in being able to accommodate and oxidize both large and small ring substrates that include C(11) to C(15) ketones, methyl-substituted C(5) and C(6) ketones, and bicyclic ketones, such as decalone and beta-tetralone. CPDMO has the highest affinity (K(m) = 5.8 microM) and the highest catalytic efficiency (k(cat)/K(m) ratio of 7.2 x 10(5) M(-1) s(-1)) toward cyclopentadecanone, hence the Cpd designation. A number of whole-cell biotransformations were carried out, and as a result, CPDMO was found to have an excellent enantioselectivity (E > 200) as well as 99% S-selectivity toward 2-methylcyclohexanone for the production of 7-methyl-2-oxepanone, a potentially valuable chiral building block. Although showing a modest selectivity (E = 5.8), macrolactone formation of 15-hexadecanolide from the kinetic resolution of 2-methylcyclopentadecanone using CPDMO was also demonstrated.  相似文献   

5.
In this study, the production of 9-(nonanoyloxy) nonanoic acid from oleic acid was investigated. The whole cell biotransformation of oleic acid includes OhyA (hydratase), ADH (alcohol dehydrdogenase), and BVMO (Baeyer-Villiger Monooxygenase) enzymes consecutively. BVMOs are known to catalyze oxidative cleavage of long chain aliphatic ketones (e.g., 2-decanone, 10-ketooctadecanoic acid). However, the enzymes are difficult to overexpress in a soluble form in microorganisms. Thereby, this study has focused on screening and functional expression of the BVMOs in Escherichia coli. Initially BVMOs were selected by protein sequence analysis and were examined for their ability to express in soluble and active form to generate 9-(nonanoyloxy)nonanoic acid from oleic acid. Secondly various optimization strategies of inducer concentrations, co-expression with molecular chaperones, and different media conditions were investigated. Among the 9 BVMOs screened, three BVMOs were found to produce the target product and among these, Di_BVMO3 isolated from Dietzia sp. D5 was found to be best. Further, the soluble expression of Di_BVMO3 was enhanced by adding phosphoglycerate kinase as N-terminal fusion tag. The whole cell biotransformation with fusion enzyme resulted in 3 ~ 5-fold enhancement in product formation compared with the non-fusion counterpart. Final productivity up to 105.3 mg/L was achieved. Besides Di-BVMO3, other two new BVMOs of Rh_BVMO4 from Rhodococcus sp. RHA1 and AFL838 from Aspergillus flavus NRRL3357 were screened for production of 9-(nonanoyloxy)nonanoic acid and could be used for whole cell biotransformation reaction of other long chain ketones.  相似文献   

6.
Whole cells of an Escherichia coli strain overexpressing Acinetobacter sp. NCIB 9871 cyclohexanone monooxygenase (CHMO; E.C. 1.14.13.22) have been used for the Baeyer-Villiger oxidation of representative heterocyclic six-membered ketones to probe the potential impact of nitrogen, sulfur and oxygen on the chemoselectivity of these reactions. The fact that all of these heterocyclic systems were accepted as substrates by the enzyme and gave normal Baeyer-Villiger products broadens the synthetic utility of the engineered E. coli strain and emphasizes the chemoselectivity achievable with enzymatic oxidation catalysts.  相似文献   

7.
Baeyer-Villiger monooxygenases (BVMOs) form a distinct class of flavoproteins that catalyze the insertion of an oxygen atom in a C-C bond using dioxygen and NAD(P)H. Using newly characterized BVMO sequences, we have uncovered a BVMO-identifying sequence motif: FXGXXXHXXXW(P/D). Studies with site-directed mutants of 4-hydroxyacetophenone monooxygenase from Pseudomonas fluorescens ACB suggest that this fingerprint sequence is critically involved in catalysis. Further sequence analysis showed that the BVMOs belong to a novel superfamily that comprises three known classes of FAD-dependent monooxygenases: the so-called flavin-containing monooxygenases (FMOs), the N-hydroxylating monooxygenases (NMOs), and the BVMOs. Interestingly, FMOs contain an almost identical sequence motif when compared to the BVMO sequences: FXGXXXHXXX(Y/F). Using these novel amino acid sequence fingerprints, BVMOs and FMOs can be readily identified in the protein sequence databank.  相似文献   

8.
The 4-hydroxyacetophenone monooxygenase (HAPMO) from Pseudomonas fluorescens ACB catalyzes NADPH- and oxygen-dependent Baeyer-Villiger oxidation of 4-hydroxyacetophenone to the corresponding acetate ester. Using the purified enzyme from recombinant Escherichia coli, we found that a broad range of carbonylic compounds that are structurally more or less similar to 4-hydroxyacetophenone are also substrates for this flavin-containing monooxygenase. On the other hand, several carbonyl compounds that are substrates for other Baeyer-Villiger monooxygenases (BVMOs) are not converted by HAPMO. In addition to performing Baeyer-Villiger reactions with aromatic ketones and aldehydes, the enzyme was also able to catalyze sulfoxidation reactions by using aromatic sulfides. Furthermore, several heterocyclic and aliphatic carbonyl compounds were also readily converted by this BVMO. To probe the enantioselectivity of HAPMO, the conversion of bicyclohept-2-en-6-one and two aryl alkyl sulfides was studied. The monooxygenase preferably converted (1R,5S)-bicyclohept-2-en-6-one, with an enantiomeric ratio (E) of 20, thus enabling kinetic resolution to obtain the (1S,5R) enantiomer. Complete conversion of both enantiomers resulted in the accumulation of two regioisomeric lactones with moderate enantiomeric excess (ee) for the two lactones obtained [77% ee for (1S,5R)-2 and 34% ee for (1R,5S)-3]. Using methyl 4-tolyl sulfide and methylphenyl sulfide, we found that HAPMO is efficient and highly selective in the asymmetric formation of the corresponding (S)-sulfoxides (ee > 99%). The biocatalytic properties of HAPMO described here show the potential of this enzyme for biotechnological applications.  相似文献   

9.
To clone novel type 1 Baeyer-Villiger monooxygenase (BVMO) genes, we isolated or collected 25 bacterial strains able to grow on alicyclic compounds. Twelve of the bacterial strains yielded polymerase chain reaction (PCR) fragments with highly degenerate primers based on the sequences of known and putative BVMOs. All these fragments were found to encode peptides homologous to published BVMO sequences. The complete BVMO genes and flanking DNA were cloned from a Comamonas, a Xanthobacter and a Rhodococcus strain using the PCR fragments as probes. BVMO genes cloned from the first two strains could be expressed to high levels in Escherichia coli using standard expression vectors, and the recombinants converted cyclopentanone and cyclohexanone to the corresponding lactones. The Rhodococcus BVMO, a putative steroid monooxygenase, could be expressed after modification of the N-terminal sequence. However, recombinants expressing this protein did not show activity towards progesterone. An esterase homologue located directly upstream of the Xanthobacter BVMO gene and a dehydrogenase homologue encoded directly downstream of the Comamonas sp. NCIMB 9872 BVMO gene were also expressed in E. coli and shown to specify lactone hydrolase and cyclohexanol dehydrogenase activity respectively.  相似文献   

10.
Baeyer-Villiger单加氧酶是一种重要的生物催化剂,可用于合成一系列有价值的酯和内酯化合物。通过序列比对和晶体结构分析推测连接NADPH结构域和FAD结构域的一段非保守Hinge可能在酶对底物识别和催化氧化过程中扮演着重要角色。在以环己酮单加氧酶为模型的研究中发现,对该Hinge结构进行同源序列替换得到的突变体几乎完全丧失了催化活性,证明了其整体水平的重要性。丙氨酸扫描突变揭示其中一些位点对酶的功能有显著影响:K153位点的改变使酶的活性下降,立体选择性却更优化;L143位点的改变对酶的活性影响较小,却降低了立体选择性;L144位点的改变则同时大幅度削弱酶的活性和立体选择性。将同样的方法运用在苯丙酮单加氧酶中,我们得到了相似的结论,证明这些位点的重要功能在Baeyer-Villiger单加氧酶家族中有一定的普遍性。这一研究增进了对Baeyer-Villiger单加氧酶的结构与功能关系的认识,有助于底物结合口袋的精确描述和Baeyer-Villiger单加氧酶催化图景的进一步细化,对未来相关的理性设计和定向改造研究提供了借鉴。  相似文献   

11.
Baeyer–Villiger monooxygenases represent useful biocatalytic tools, as they can catalyze reactions which are difficult to achieve using chemical means. However, only a limited number of these atypical monooxygenases are available in recombinant form. Using a recently described protein sequence motif, a putative Baeyer–Villiger monooxygenase (BVMO) was identified in the genome of the thermophilic actinomycete Thermobifida fusca. Heterologous expression of the respective protein in Escherichia coli and subsequent enzyme characterization showed that it indeed represents a BVMO. The NADPH-dependent and FAD-containing monooxygenase is active with a wide range of aromatic ketones, while aliphatic substrates are also converted. The best substrate discovered so far is phenylacetone (kcat = 1.9 s–1, KM = 59 M). The enzyme exhibits moderate enantioselectivity with -methylphenylacetone (enantiomeric ratio of 7). In addition to Baeyer–Villiger reactions, the enzyme is able to perform sulfur oxidations. Different from all known BVMOs, this newly identified biocatalyst is relatively thermostable, displaying an activity half-life of 1 day at 52°C. This study demonstrates that, using effective annotation tools, genomes can efficiently be exploited as a source of novel BVMOs.  相似文献   

12.
In this study, we have cloned and characterized a cycloalkanone monooxygenase (CAMO) from the ascomycete Cylindrocarpon radicicola ATCC 11011 (identical to Cylindrocarpon destructans DSM 837). The primary structure of this Baeyer–Villiger monooxygenase (BMVO) revealed 531 residues with around 45% sequence identity to known cyclohexanone monooxygenases. The enzyme was functionally overexpressed in Escherichia coli and investigated with respect to substrate spectrum and kinetic parameters. Substrate specificity studies revealed that a large variety of cycloaliphatic and bicycloaliphatic ketones are converted by this CAMO. A high catalytic efficiency against cyclobutanone was observed and seems to be a particular property of this BVMO. The thus produced butyrolactone derivatives are valuable building blocks for the synthesis of a variety of natural products and bioactive compounds. Furthermore, the enzyme revealed activity against open-chain ketones such as cyclobutyl, cyclopentyl and cyclohexyl methyl ketone which have not been reported to be accepted by typical cyclohexanone monooxygenases. These results suggest that the BVMO from C. radicicola indeed might be rather unique and since no BVMOs originating from eukaryotic organisms have been produced recombinantly so far, this study provides the first example for such an enzyme.  相似文献   

13.
The behaviour of cells of Rhodococcus erythropolis DCL14, Xanthobacter Py2, Arthrobacter simplex and Mycobacterium sp. NRRL B-3805, in biphasic systems containing different organic solvents was evaluated and compared. The data, obtained mainly by fluorescence microscopy and image analysis, was interpreted using principal components analysis (PCA). With this technique, the variability of the data could be summarised in 7 components, representing 75.8% of the variance of the data. Over a third of the variance could be explained by the first two principal components which represent solvent toxicity. Apparently this is the major factor influencing cell behaviour in an organic:aqueous system. However, factors such as substrate concentration, cell adaptation ability (resulting in morphological changes and aggregation or separation of cells) and membrane composition (specific to each strain) also play an important role in cell resistance to solvent toxicity. The results regarding cell shape indicate that loss of viability occurs, in the tested bacterial strains, after incorporation of molecules of solvent in the cellular membrane. This should result in an increase in membrane fluidity, and thus, in an alteration of cell shape. The ability to form “self-defence” clusters was observed to be different amongst the four strains. X. Py2 showed, in general, a low tendency to form aggregates under the tested conditions; A. simplex and R. erythropolis aggregated mainly in the presence of low log P solvents; and Mycobacterium. sp. cells showed a high ability to aggregate.  相似文献   

14.
The 4-hydroxyacetophenone monooxygenase (HAPMO) from Pseudomonas fluorescens ACB catalyzes NADPH- and oxygen-dependent Baeyer-Villiger oxidation of 4-hydroxyacetophenone to the corresponding acetate ester. Using the purified enzyme from recombinant Escherichia coli, we found that a broad range of carbonylic compounds that are structurally more or less similar to 4-hydroxyacetophenone are also substrates for this flavin-containing monooxygenase. On the other hand, several carbonyl compounds that are substrates for other Baeyer-Villiger monooxygenases (BVMOs) are not converted by HAPMO. In addition to performing Baeyer-Villiger reactions with aromatic ketones and aldehydes, the enzyme was also able to catalyze sulfoxidation reactions by using aromatic sulfides. Furthermore, several heterocyclic and aliphatic carbonyl compounds were also readily converted by this BVMO. To probe the enantioselectivity of HAPMO, the conversion of bicyclohept-2-en-6-one and two aryl alkyl sulfides was studied. The monooxygenase preferably converted (1R,5S)-bicyclohept-2-en-6-one, with an enantiomeric ratio (E) of 20, thus enabling kinetic resolution to obtain the (1S,5R) enantiomer. Complete conversion of both enantiomers resulted in the accumulation of two regioisomeric lactones with moderate enantiomeric excess (ee) for the two lactones obtained [77% ee for (1S,5R)-2 and 34% ee for (1R,5S)-3]. Using methyl 4-tolyl sulfide and methylphenyl sulfide, we found that HAPMO is efficient and highly selective in the asymmetric formation of the corresponding (S)-sulfoxides (ee >99%). The biocatalytic properties of HAPMO described here show the potential of this enzyme for biotechnological applications.  相似文献   

15.
Type I Baeyer–Villiger monooxygenases (BVMOs) strongly prefer NADPH over NADH as an electron donor. In order to elucidate the molecular basis for this coenzyme specificity, we have performed a site-directed mutagenesis study on phenylacetone monooxygenase (PAMO) from Thermobifida fusca. Using sequence alignments of type I BVMOs and crystal structures of PAMO and cyclohexanone monooxygenase in complex with NADP+, we identified four residues that could interact with the 2′-phosphate moiety of NADPH in PAMO. The mutagenesis study revealed that the conserved R217 is essential for binding the adenine moiety of the nicotinamide coenzyme while it also contributes to the recognition of the 2′-phosphate moiety of NADPH. The substitution of T218 did not have a strong effect on the coenzyme specificity. The H220N and H220Q mutants exhibited a ~3-fold improvement in the catalytic efficiency with NADH while the catalytic efficiency with NADPH was hardly affected. Mutating K336 did not increase the activity of PAMO with NADH, but it had a significant and beneficial effect on the enantioselectivity of Baeyer–Villiger oxidations and sulfoxidations. In conclusion, our results indicate that the function of NADPH in catalysis cannot be easily replaced by NADH. This finding is in line with the complex catalytic mechanism and the vital role of the coenzyme in BVMOs.  相似文献   

16.
An arylketone monooxygenase was purified from Pseudomonas putida JD1 by ion exchange and affinity chromatography. It had the characteristics of a Baeyer-Villiger-type monooxygenase and converted its substrate, 4-hydroxyacetophenone, into 4-hydroxyphenyl acetate with the consumption of one molecule of oxygen and oxidation of one molecule of NADPH per molecule of substrate. The enzyme was a monomer with an M(r) of about 70,000 and contained one molecule of flavin adenine dinucleotide (FAD). The enzyme was specific for NADPH as the electron donor, and spectral studies showed rapid reduction of the FAD by NADPH but not by NADH. Other arylketones were substrates, including acetophenone and 4-hydroxypropiophenone, which were converted into phenyl acetate and 4-hydroxyphenyl propionate, respectively. The enzyme displayed Michaelis-Menten kinetics with apparent K(m) values of 47 microM for 4-hydroxyacetophenone, 384 microM for acetophenone, and 23 microM for 4-hydroxypropiophenone. The apparent K(m) value for NADPH with 4-hydroxyacetophenone as substrate was 17.5 microM. The N-terminal sequence did not show any similarity to other proteins, but an internal sequence was very similar to part of the proposed NADPH binding site in the Baeyer-Villiger monooxygenase cyclohexanone monooxygenase from an Acinetobacter sp.  相似文献   

17.
Baeyer-Villiger monooxygenases (BVMOs) are presented as highly selective and efficient biocatalysts for the synthesis of aroma lactones via kinetic resolution of 2-substituted cycloketones, exemplified with two δ-valerolactones, the jasmine lactones and their ε-caprolactone homologs. Analytical scale screens of our BVMO library ensued by preparative whole-cell biotransformations led to the identification of two enzymes (cyclohexanone monooxygenase from Arthrobacter BP2 and cyclododecanone monooxygenase from Rhodococcus SC1) perfectly suited for the task at hand: easily accessible racemic starting materials were bio-oxidized to almost enantiopure ketones and lactones in good yields (48-74%) and optical purities (ee 93% to >99%, E>100).  相似文献   

18.
Nine hypostomine populations from Manso Reservoir (Rio Manso and Rio Cuiabá, upper Paraguay River basin, Brazil) were surveyed using allozyme electrophoresis. Three, sampled at the same sites, were not identified to the species level and were designated as Hypostomus sp. 1, Hypostomus sp. 2 and Hypostomus sp. 3. The survey resulted in 25 loci from 14 scored enzyme systems. Allozyme data allowed diagnostic marker recording for all species analyzed, including the undescribed taxa. Mean expected heterozygosity values were quite variable, ranging from 0.029 to 0.079. Hypotheses to explain this variation are discussed. The allelic frequencies and Nei's genetic identity values showed that Hypostomus sp. 1, Hypostomus sp. 2 and Hypostomus sp. 3 should be considered true biological species, and distinct from the other five Hypostomus species and Pterygoplichthys anisitsi.  相似文献   

19.
Baeyer-Villiger monooxygenases (BVMOs) are biocatalysts that offer the prospect of high chemo-, regio-, and enantioselectivity in the organic synthesis of lactones or esters from a variety of ketones. In this study, we have cloned, sequenced, and overexpressed in Escherichia coli a new BVMO, cyclopentadecanone monooxygenase (CpdB or CPDMO), originally derived from Pseudomonas sp. strain HI-70. The 601-residue primary structure of CpdB revealed only 29% to 50% sequence identity to those of known BVMOs. A new sequence motif, characterized by a cluster of charged residues, was identified in a subset of BVMO sequences that contain an N-terminal extension of ~60 to 147 amino acids. The 64-kDa CPDMO enzyme was purified to apparent homogeneity, providing a specific activity of 3.94 μmol/min/mg protein and a 20% yield. CPDMO is monomeric and NADPH dependent and contains ~1 mol flavin adenine dinucleotide per mole of protein. A deletion mutant suggested the importance of the N-terminal 54 amino acids to CPDMO activity. In addition, a Ser261Ala substitution in a Rossmann fold motif resulted in an improved stability and increased affinity of the enzyme towards NADPH compared to the wild-type enzyme (Km = 8 μM versus Km = 24 μM). Substrate profiling indicated that CPDMO is unusual among known BVMOs in being able to accommodate and oxidize both large and small ring substrates that include C11 to C15 ketones, methyl-substituted C5 and C6 ketones, and bicyclic ketones, such as decalone and β-tetralone. CPDMO has the highest affinity (Km = 5.8 μM) and the highest catalytic efficiency (kcat/Km ratio of 7.2 × 105 M−1 s−1) toward cyclopentadecanone, hence the Cpd designation. A number of whole-cell biotransformations were carried out, and as a result, CPDMO was found to have an excellent enantioselectivity (E > 200) as well as 99% S-selectivity toward 2-methylcyclohexanone for the production of 7-methyl-2-oxepanone, a potentially valuable chiral building block. Although showing a modest selectivity (E = 5.8), macrolactone formation of 15-hexadecanolide from the kinetic resolution of 2-methylcyclopentadecanone using CPDMO was also demonstrated.  相似文献   

20.
The assay for Baeyer-Villiger monooxygenase (BVMO) enzyme activity has relied to date on the spectrophotometric change observed on the oxidation of the nicotinamide cofactor during the enzymatic reaction. By analogy to the cyclohexanol catabolic pathway of Acinetobacter calcoaceticus NCIMB 9871, we have developed a specific colorimetric screening method that utilises an esterase to cleave the lactone that is formed in the BVMO reaction. When carried out in a non-buffered or weakly buffered system the resultant change in pH can be visually detected. This allows the rapid assaying and screening of BVMO enzymes. This has been demonstrated with cyclohexanone monooxygenase from A. calcoaceticus. The resultant colour change has been visualised with washed cell suspensions, individual bacterial colonies on Petri dishes and with semi-purified recombinant enzyme utilising Linbro dishes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号