首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kalacheva  G. S.  Zhila  N. O.  Volova  T. G.  Gladyshev  M. I. 《Microbiology》2002,71(3):286-293
The lipid composition of the green alga Botryococcus was studied at three different cultivation temperatures: suboptimal (18°C), optimal (25°C), and supraoptimal (32°C). Cultivation at the supraoptimal temperature was found to considerably inhibit the synthesis of nearly all intracellular lipids, except for triacylglycerides, and to influence their fatty acid composition. In particular, the content of trienoic fatty acids was significantly lower at the supraoptimal than at the optimal cultivation temperature. At the same time, the fatty acid composition of the extracellular lipids of the alga virtually did not depend on cultivation temperature.  相似文献   

2.
The paper describes the composition of extracellular free fatty acids (FFAs) and intracellular fatty acids (FAs) in the enrichment cultures of the prokaryotic alga Spirulina platensis and the eukaryotic alga Chlorella vulgaris grown at optimal, supraoptimal, and suboptimal growth temperatures. With increasing growth temperature, the degree of unsaturation of the intracellular FAs of both algae decreased, while that of the extracellular FFAs of S. platensis increased. The composition of the extracellular FFAs of C. vulgaris practically did not depend on the growth temperature.  相似文献   

3.
The temperature of C. japonica cultivation influences the lipid content and composition of acyl chains, especially the content of such polyunsaturated acids as linoleic and linolenic. Thermal adaptation is accompanied by the modulation of fatty acid isomeric composition and acyl chain length and, at low temperatures, promotes the appearance of fatty acids uncommon to the fungus, in particular, arachidonic acid. The changes occur on a background of significant alterations in the fungus metabolism (in glucose uptake, ATP content, economic coefficient value, etc.). In experiments on the inhibition of translation with cycloheximide, abrupt temperature change (supraoptimal to cold) did not lead to desaturase de novo synthesis, but rather stimulated the activity of the named enzymes, except for palmitoleoyl-CoA desaturase. In the process of temperature adaptation, polar lipid microviscosity modulating compounds influenced fatty acid acyl chain composition. Microviscosity differences between polar and neutral lipids and correlation to the degree of fatty acid unsaturation during temperature fluctuation were established.  相似文献   

4.
Sushchik  N. N.  Kalacheva  G. S.  Gladyshev  M. I. 《Microbiology》2001,70(5):542-547
The paper describes the composition of extracellular free fatty acids (FFAs) and intracellular fatty acids (FAs) in the enrichment cultures of the prokaryotic alga Spirulina platensisand the eukaryotic alga Chlorella vulgarisgrown at optimal, supraoptimal, and suboptimal growth temperatures. With increasing growth temperature, the degree of unsaturation of the intracellular FAs of both algae decreased, while that of the extracellular FFAs of S. platensisincreased. The composition of the extracellular FFAs of C. vulgarispractically did not depend on the growth temperature.  相似文献   

5.
Cell suspension cultures of Catharanthus roseus were used to study the effect of temperature on plant cell lipids and indole alkaloid accumulation. Lowering the cultivation temperature increased the total fatty acid content per cell dry weight relative to that at higher temperatures, mainly because of increased accumulation of unsaturated C18 acids. In addition, an increase in the relative proportion of phosphatidylcholine and phosphatidylethanolamine was observed. Within individual lipids, the degree of unsaturation was increased and the mean fatty acid chain length decreased with reducing temperature. These changes may be interpreted as modifying the cell membrane fluidity to keep it optimal for growth and metabolism at each temperature. In spite of membrane modifications, the indole alkaloid content of the cells or the medium was not affected by temperature change.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - PC phosphatidylcholine - PE phosphatidylethanolamine - PI phosphatidylinositol - PS phosphatidylserine - PG phosphatidylglycerol - CL cardiolipin - DGD digalactosyldiglyceride - MGD monogalactosyldiglyceride - NL neutral lipids - DU degree of fatty acid unsaturation - TLC thin-layer chromatography - FID-GC flame ionisation detector-gas chromatography - dw dry weight  相似文献   

6.
This work was aimed at studying the effect of different carbon sources in the composition of mineral media on the growth of fungi belonging to the Aspergillus genus and on the fatty acid composition of their lipids. A chemically-defined medium with glucose was shown to be optimal for the growth of 18 Aspergillus strains and for the synthesis of lipids by them. The fatty acid composition of lipids was studied when the fungi grew in media with different carbon sources. The lipids were shown to contain saturated and unsaturated fatty acids with the prevalence of oleic, linoleic and linolenic acids.  相似文献   

7.
A study has been carried out to investigate the influence of nitrogen deficiency on intracellular lipid composition, including total fatty acid composition of lipids, polar lipids, and triacylglycerols, of the alga Botryococcus braunii Kütz IPPAS H-252 in batch culture. Under nitrogen limitation, the alga accumulates lipids as triacylglycerols and the total fatty acid (FA) composition changes: trienoic acids decrease (from 52.8–57.2 to 19.5–24.7% of the total FAs) and the oleic acid increases (from 1.1–1.2 to 17.1–24.4%) as does the saturated acids (from 23.7–26 to 32.9–46.1%). A similar rearrangement in the FA spectrum occurs at later times in the control culture, but it is less pronounced. Under nitrogen limitation, considerable changes in the polar lipid FAs are registered at day 13: saturated acids increase (from 28.6–35.5 to 76.8%) and all polyenoic acids markedly decrease (from 56.9–64.1 to 6.8%). Changes in the triacylglycerol fatty acid spectrum are seen on day 7: the oleic acid increases (from 14.7 to 34.2%) and remains at a high level till the end of the culture. In the control, triacylglycerols with large contents of oleic acid are detected at day 13, the total lipids and triacylglycerols still remaining unchanged.  相似文献   

8.
Effect of growth temperature on lipid composition of Streptococcus faecium   总被引:2,自引:0,他引:2  
The effect of growth temperature on the lipid and fatty acid composition of Streptococcus faecium has been studied. No differences in the qualitative composition of S. faecium lipids were observed. In all isolated fractions (neutral lipids, glycolipids, and phospholipids plus other polar lipids), the major fatty acids were palmitic (C-16:0), palmitoleic (C-16:1), octadecenoic (C-18:1), and cyclopropane (C-19:0). Changes in the fatty acid composition of the different fractions were observed which depended on growth temperature; the most significant one was the decrease of octadecenoic acid and the increase of palmitic acid in glycolipids and polar lipids as the temperature increased. The level of cyclopropane C-19:0 was approximately eightfold lower at 8 degrees C than at the other temperatures tested (20, 30, and 45 degrees C).  相似文献   

9.
The comparative study of the synthesis lipids in Y. pseudotuberculosis, depending on the conditions of their cultivation (at different temperatures in mineral media and in media, containing organic compounds), has been carried out. As demonstrated in this study, temperature in the main inducing factor, affecting the synthesis of lipids of definite classes and fatty acids, incorporated into these lipids. During the cultivation of Y. pseudotuberculosis in mineral and organic media under the conditions of low temperature their lipid composition remains unchanged, but at 6 degrees C the synthesis of unsaturated fatty acids prevails, while at 37 degrees C saturated fatty acids are mainly synthesized. On mineral media at 37 degrees C bacteria synthesize mostly nonpolar lipids in the form of reserve substances, represented by triglycerides and free fatty acids.  相似文献   

10.
The maximum growth temperature, the optimal growth temperature, and the estimated normal physiological range for growth of Shewanella gelidimarina are functions of water activity (a(w)), which can be manipulated by changing the concentration of sodium chloride. The growth temperatures at the boundaries of the normal physiological range for growth were characterized by increased variability in fatty acid composition. Under hyper- and hypoosmotic stress conditions at an a(w) of 0.993 (1.0% [wt/vol] NaCl) and at an a(w) of 0.977 (4.0% [wt/vol] NaCl) the proportion of certain fatty acids (monounsaturated and branched-chain fatty acids) was highly regulated and was inversely related to the growth rate over the entire temperature range. The physical states of lipids extracted from samples grown at stressful a(w) values at the boundaries of the normal physiological range exhibited no abrupt gel-liquid phase transitions when the lipids were analyzed as liposomes. Lipid packing and adaptational fatty acid composition responses are clearly influenced by differences in the temperature-salinity regime, which are reflected in overall cell function characteristics, such as the growth rate and the normal physiological range for growth.  相似文献   

11.
Effects of nitrogen source, temperature and pH onl(+)-lactic acid production and γ-linolenic acid (GLA) accumulation byRhizopus arrhizus were examined. The nitrogen source had a minor effect on lactate synthesis but influenced the total lipid content and the fatty acid composition in fungus. Higher temperature favorably influenced the rate of both lactic acid production and lipid formation in the biomass and caused a decrease in the yields of oligounsaturated fatty acids. At higher temperature and after glucose exhaustion, degradation of lactate increased. A low pH value negatively affected the formation of lipids and lactate synthesis. The highest value of GLA in the lipid (25.5%,W/W) was reached at the end of lactate synthesis, but maximum yields of total lipids were achieved when the cultivation continued in the presence of lactate until polyols were exhausted.  相似文献   

12.
The fatty acid composition of the blue-green bacterium Agmenellum quadruplicatum was examined under a wide variety of growth conditions. The fatty acid composition was found to undergo significant changes with variations in temperature, media composition, and growth phase (log versus stationary). With increasing growth temperature (20 to 43 C) log-phase cells exhibited an increase in saturated fatty acids (38.4% at 20 C to 63.6% at 43 C). Striking changes were seen with some of the individual fatty acids such as 18.3, which made up 16.0% of the total fatty acid at 20 C but was not neasurable at 43 C. Fatty acid 12:0 was not measurable at 20 C but made up 16.3% of the total fatty acids at 43 C. Cell lipids were separated into neutral lipid, glycolipid, and very polar liquid fractions. The neutral lipid fraction was composed almost entirely of 12 carbon fatty acids (12:0, 12:1). Glycolipid and very polar lipids were more similar in their fatty acid composition when compared to the total cellular fatty acids, although they did lack 12 carbon fatty acids. The total of 12 carbon fatty acids in the cell can be used as an indicator of the amount of neutral lipid present.  相似文献   

13.
The Chlorarachniophyceae are unicellular eukaryotic algae characterized by an amoeboid morphology that may be the result of secondary endosymbiosis of a green alga by a nonphotosynthetic amoeba or amoeboflagellate. Whereas much is known about the phylogeny of chlorarachniophytes, little is known about their physiology, particularly that of their lipids. In an initial effort to characterize the lipids of this algal class, four organisms from three genera were examined for their fatty acid and sterol composition. Fatty acids from lipid fractions containing chloroplast‐associated glycolipids, storage triglycerides, and cytoplasmic membrane‐associated polar lipids were characterized. Glycolipid‐associated fatty acids were of limited composition, principally eicosapentaenoic acid [20:5(n‐3)] and hexadecanoic acid (16:0). Triglyceride‐associated fatty acids, although minor, were found to be similar in composition. The polar lipid fraction was dominated by lipids that did not contain phosphorus and had a more variable fatty acid composition with 16:0 and docosapentaenoic acid [22:5(n‐3)] dominant along with a number of minor C18 and C20 fatty acids. Crinosterol and one of the epimeric pair poriferasterol/stigmasterol were the sole sterols. Several genes required for synthesis of these sterols were computationally identified in Bigelowiella natans Moestrup. One sterol biosynthesis gene showed the greatest similarity to SMT1 of the green alga, Chlamydomonas reinhardtii. However, homologues to other species, mostly green plant species, were also found. Further, the method used for identification suggested that the sequences were transferred to a genetic compartment other than the likely original location, the nucleomorph nucleus.  相似文献   

14.
Biological (antimicrobial, cytotoxic, embryotoxic, and hemolytic) activity of total lipids, individual fractions and classes of lipids, and photosynthetic pigments of Saccharina cichorioides (Miyabe) were studied, together with the effect of season of the alga harvesting and changes in fatty acid composition of lipids on their activity. Antimicrobial activity was more pronounced in total lipids, individual fractions of lipids, and photosynthetic pigments of S. cichorioides collected in March. High antimicrobial activity was also demonstrated by total lipids of alga samples collected in September and November and hemolytic activity, in those collected in March and November. Pronounced hemolytic activity was demonstrated by some classes of glyceroglycolipids of laminaria samples collected in November. Cytotoxic activity toward mouse splenocytes was demonstrated only by total lipids of alga collected in March. Toxic effects toward embryos of sea urchin were demonstrated by lipids of S. cichorioides collected in June and September. None of the lipids or pigments was active against Ehrlich ascites carcinoma.  相似文献   

15.
Cultivation of Candida tropicalis IBEM 303 without thermostatic regulation on n-alkanes results in an increase of the temperature in the fermenter to supraoptimal values and to the linear growth of the culture without distinct differentiation according to the growth phases. The cells grown at supraoptimal temperature differ from the cells cultivated at optimal temperature by the amount of some amino acids and oligopeptides liberated by the yeast into the cultural broth, by the chemical composition of the cells and their morphology.  相似文献   

16.
Yersinia enterocolitica is capable of growing in a broad range of temperatures from 4 to 45 C. How this organism alters its membrane lipids in response to the change of growth temperature is very interesting. The fatty acids of membrane lipids of cells cultured at 5, 15, 25 and 37 C were analyzed and the physical states of these membrane lipids were characterized. The major phospholipids of this bacterium were phosphatidylethanolamine, phosphatidylglycerol, cardiolipin, lysophosphatidylglycerol and lysophosphatidylethanolamine. No significant difference in phospholipid composition in response to culture temperatures was observed. It was reported in our previous paper that the major fatty acids of membrane phospholipids of Y. enterocolitica were C15:0, C16:0, C16:1, cyclopropane C17:0 and C18:0. Some differences in the fatty acid composition were, however, observed with the change of culture temperature. When the culture temperature was raised, the saturated and cyclopropane fatty acids substantially increased and the unsaturated ones decreased. A reverse phenomenon was observed when culture temperature was lowered. From the viewpoints of membrane physical state, adaptational changes were analyzed using a nylon microcapsule method. Phase transition in membrane lipids of cells grown at each culture temperature took place in the range of about 5 C below and about 10 C above the culture temperature. It is, therefore, considered that Y. enterocolitica maintains its membrane rigidity and fluidity in response to growth temperature by changing the membrane fatty acid composition.  相似文献   

17.
研究温度、光照、盐度对2株曼氏骨条藻(Skeletonema munzelii)SM-1、SM-2生长、总脂含量及脂肪酸组成的影响,以确定其生长及油脂、多不饱和脂肪酸积累的最适生态条件。在实验室智能光照培养箱内不充气培养控制条件下,采用单因子试验分别研究了不同温度(10、15、20、25和30℃)、光照强度(20、40、60、80、100和120μmol/m2·s)、盐度(10、15、20、25、30、35和40)对2株藻的生长、总脂含量及脂肪酸组成的影响。结果表明:不同温度、光照强度及盐度对2株藻的生长、总脂及脂肪酸含量影响均有显著影响(P〈0.05)。藻株SM-1生长的最适温度为25℃,最适光强60μmol/m2·s,最适盐度30,而低温(10~15℃),低光照(20μmol/m2·s),低盐度(盐度15)更有利于总脂及PUFA的积累。SM-2生长的最适温度为20℃,最适光强60μmol/m2·s,最适盐度30,而低温(10~15℃),低光照(20μmol/m2·s)更有利于其总脂及PUFA的积累,低盐(盐度15)则更有利于PUFA的积累。因此在实际生产中,2株藻可先在最适条件下培养以增加生物量,后转至利于PUFA积累的条件下提高PUFA产量。  相似文献   

18.
Experiments were carried out to examine the growth and metabolism of thermotolerant yeast Candida tropicalis K-41 and bacteria Micrococcus freudenreichii that do not have a single temperature point but instead have an optimal temperature plateau at which the growth rate and biosynthetic activity remain unaltered or change insignificantly. Upon transition from the carbohydrate to the hydrocarbon pattern of nutrition these microorganisms show significant changes in metabolic processes: optimal concentration of biotin in the medium decreases significantly; the synthesis of riboflavin, nicotinic and pantothenic acids increases in yeast; the synthesis of nicotinic acid, biotin and vitamin B12 increases in bacteria. During microbial cultivation on hydrocarbons the content of cell lipids grows; yeast accumulate actively phospholipids and free fatty acids; bacteria build up intensively waxes and phospholipids. With the near-maximal growth rate the total synthesis of lipids decreases on carbohydrates and increases drastically on hydrocarbons, primarily at the expense of the above fractions.  相似文献   

19.
The physical state of the membrane lipids, as determined by fatty acid composition and environmental temperature, has a marked effect on both the temperature range within which Acholeplasma laidlawii B cells can grow and on growth rates within the permissible temperature ranges. The minimum growth temperature of 8 °C is not defined by the fatty acid composition of the membrane lipids when cells are enriched in fatty acids giving rise to gel to liquid-crystalline membrane lipid phase transitions occurring below this temperature. The elevated minimum growth temperatures of cells enriched in fatty acids giving rise to lipid phase transitions occurring at higher temperatures, however, are clearly defined by the fatty acid composition of the membrane lipids. The optimum and maximum growth temperatures are also influenced indirectly by the physical state of the membrane lipids, being significantly reduced for cells supplemented with lower melting, unsaturated fatty acids. The temperature coefficient of growth at temperatures near or above the midpoint of the lipid phase transition is 16 to 18 kcalmol, but this value increases abruptly to 40 to 45 kcalmol at temperatures below the phase transition midpoint. Both the absolute rates and temperature coefficients of cell growth are similar for cells whose membrane lipids exist entirely or predominantly in the liquid-crystalline state, but absolute growth rates decline rapidly and temperature coefficients increase at temperatures where more than half of the membrane lipids become solidified. Cell growth ceases when the conversion of the membrane lipid to the gel state approaches completion, but growth and replication can continue at temperatures where less than one tenth of the total lipid remains in the fluid state. An appreciable heterogeneity in the physical state of the membrane lipids can apparently be tolerated by this organism without a detectable loss of membrane function.  相似文献   

20.
The effects of temperature and growth rate on the fatty acid composition of the extractable lipids of four mesophilic and three psychotrophic bacteria were examined. Two of the mesophiles (Escherichia coli and Pseudomonas aeruginosa) increased the proportion of unsaturated fatty acids in their lipids with decreasing temperature over their whole growth temperature range. The other mesophiles (Enterobacter aerogenes and Lactobacillus casei) increased the proportion of unsaturated fatty acids with decreasing temperature only over the lower half of their growth temperature ranges. The psychrotrophs Pseudomonas fluorescens and Enterobacter sp. had a constant proportion of unsaturated acids over the lower half of their growth temperature range, while the psychotrophic Lactobacillus sp. showed no consistent change in its unsaturated fatty acid composition with temperature. All species showed some variation of unsaturated fatty acid composition with growth rate at the highest and lowest growth temperatures, although such variations were small in some species (Ent. aerogenes and Lactobacillus sp.).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号