首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phagocytosis through Fcgamma receptor (FcgammaR) or complement receptor 3 (CR) requires Arp2/3 complex-mediated actin polymerization, although each receptor uses a distinct signaling pathway. Rac and Cdc42 are required for actin and Arp2/3 complex recruitment during FcgammaR phagocytosis, while Rho controls actin assembly at CR phagosomes. To better understand the role of Rho in CR phagocytosis, we tested the idea that a known target of Rho, Rho-kinase (ROK), might control phagocytic cup formation and/or engulfment of particles. Inhibitors of ROK (dominant-negative ROK and Y-27632) and of the downstream target of ROK, myosin-II (ML7, BDM, and dominant-negative myosin-II), were used to test this idea. We found that inhibition of the Rho --> ROK --> myosin-II pathway caused a decreased accumulation of Arp2/3 complex and F-actin around bound particles, which led to a reduction in CR-mediated phagocytic engulfment. FcgammaR-mediated phagocytosis, in contrast, was independent of Rho or ROK activity and was only dependent on myosin-II for particle internalization, not for actin cup formation. While myosins have been previously implicated in FcgammaR phagocytosis, to our knowledge, this is the first demonstration of a role for myosin-II in CR phagocytosis.  相似文献   

2.
The Yersinia outer surface protein invasin binds to β1 integrins on target cells and has been shown to trigger phagocytic uptake by macrophages. Here, we investigated the role of the actin regulator Wiskott–Aldrich syndrome protein (WASp), its effector the Arp2/3 complex and the Rho-GTPases CDC42Hs, Rac and Rho in invasin/β1 integrin-triggered phagocytosis. During uptake of invasin-coated latex beads, the α5β1 integrin, WASp and the Arp2/3 complex were recruited to the developing actin-rich phagocytic cups in primary human macrophages. Blockage of β1 integrins by specific antibodies, inhibition of Arp2/3 function by microinjection of inhibitors or the use of WASp knockout macrophages inhibited phagocytic cup formation and uptake. Furthermore, microinjection of the dominant negative GTPase mutants N17CDC42Hs, N17Rac or the Rho-specific inhibitor C3-transferase into macrophages greatly attenuated invasin-induced formation of cups. These data suggest that during invasin-triggered phagocytosis β1 integrins activate actin polymerization via CDC42Hs, its effector WASp and the Arp2/3 complex. The contribution of Rac and Rho to phagocytic cup formation also suggests a complex interplay between different Rho GTPases during phagocytosis of pathogens.  相似文献   

3.
BACKGROUND: beta2 integrins mediate many aspects of the inflammatory and immune responses, including adhesion of leukocytes to the endothelium, complement-mediated phagocytosis in macrophages and neutrophils, and antigen-specific conjugate formation between cytotoxic T cells and their targets. A variety of inflammatory mediators, such as tumor necrosis factor-alpha (TNF-alpha), platelet-activating factor (PAF), and lipopolysaccharide (LPS) and other bacterial products induce the functional activation of beta2 integrins, but the signaling events that link membrane receptors to integrin activation are poorly understood. RESULTS: We report here that expression of the constitutively active small GTPases Rap1 or R-ras, but not Ras or RalA, is sufficient for functional activation of alphaMbeta2, the complement receptor 3 (CR3), in macrophages, allowing phagocytosis of C3bi-opsonized targets. Inhibition of Rap1, but not other Ras-like or Rho-like small GTPases, abolishes activation of alphaMbeta2 induced by phorbol esters, LPS, TNF-alpha or PAF. Finally, Rap1 activation specifically controls the binding properties of alphaMbeta2 towards its physiological ligand, namely the complement-opsonized phagocytic targets. CONCLUSIONS: In macrophages, the Rap1 GTPase regulates activation of the alphaMbeta2 integrin in response to a wide variety of inflammatory mediators.  相似文献   

4.
Integrin-mediated cell adhesion often results in cell spreading and the formation of focal adhesions. We exploited the capacity of recombinant human alpha IIb beta 3 integrin to endow heterologous cells with the ability to adhere and spread on fibrinogen to study the role of integrin cytoplasmic domains in initiation of cell spreading and focal adhesions. The same constructs were also used to analyze the role of the cytoplasmic domains in maintenance of the fidelity of the integrin repertoire at focal adhesions. Truncation mutants of the cytoplasmic domain of alpha IIb did not interfere with the ability of alpha IIb beta 3 to initiate cell spreading and form focal adhesions. Nevertheless, deletion of the alpha IIb cytoplasmic domain allowed indiscriminate recruitment of alpha IIb beta 3 to focal adhesions formed by other integrins. Truncation of the beta 3 subunit cytoplasmic domain abolished cell spreading mediated by alpha IIb beta 3 and also abrogated recruitment of alpha IIb beta 3 to focal adhesions. This truncation also dramatically impaired the ability of alpha IIb beta 3 to mediate the contraction of fibrin gels. In contrast, the beta 3 subunit cytoplasmic truncation did not reduce the fibrinogen binding affinity of alpha IIb beta 3. Thus, the integrin beta 3 subunit cytoplasmic domain is necessary and sufficient for initiation of cell spreading and focal adhesion formation. Further, the beta 3 cytoplasmic domain is required for the transmission of intracellular contractile forces to fibrin gels. The alpha subunit cytoplasmic domain maintains the fidelity of recruitment of the integrins to focal adhesions and thus regulates their repertoire of integrins.  相似文献   

5.
The bacterial pathogen Salmonella penetrates the intestinal epithelium by inducing its own phagocytosis into epithelial cells. The dramatic reorganization of the actin cytoskeleton required for internalization is driven by bacterial manipulation of host signaling pathways, including activation of the Rho family GTPase Rac1 and subsequent activation of the Arp2/3 complex. However, the mechanisms linking these two events remain poorly understood. Rac1 is thought to promote activation of the Arp2/3 complex through its interaction with suppressor of cAMP receptor/WASP family verprolin-homologous (SCAR/WAVE) family proteins, but this interaction is apparently indirect. Two different Rac1 effectors have been shown to bind WAVE2: IRSp53, the SH3 domain of which binds the WAVE2 proline-rich domain, and PIR121/Sra-1, which forms a pentameric complex containing WAVE, Abi1, Nap1, and HSPC300. However, the extent to which each of these complexes contributes to Arp2/3 complex activation in the context of Salmonella infection is unclear. Here, we show that WAVE2 is necessary for efficient invasion of epithelial cells by Salmonella typhimurium. We found that although Salmonella infection strongly promotes the formation of an IRSp53/WAVE2 complex, IRSp53 is not necessary for bacterial internalization. In contrast, disruption of the PIR121/Nap1/Abi1/WAVE2/HSPC300 complex potently inhibits bacterial uptake. These results indicate that WAVE2 is an important component in signaling pathways leading to Salmonella invasion. Although infection leads to the formation of an IRSp53/WAVE2 complex, it is the association of WAVE2 with the Abi1/Nap1/PIR121/HSPC300 complex that regulates bacterial internalization.  相似文献   

6.
Internalisation of the human pathogen Yersinia pseudotuberculosis via interaction of bacterial invasin with host beta1 integrins depends on the actin cytoskeleton and involves Src family kinases, focal adhesion kinase, p130Crk-associated substrate, proline-rich tyrosine kinase 2, Rac, Arp 2/3 complex and WASP family members. We show here that Rho GTPases are regulated by the microtubule system during bacterial uptake. Interfering with microtubule organisation using nocodazole or paclitaxel suppressed uptake by HeLa cells. The nocodazole effect on microtubule depolymerisation was partially inhibited through overexpression of Rac, Cdc42, RhoG or RhoA and completely prevented by expression of Vav2. This suggests that microtubules influence Rho GTPases during invasin-mediated phagocytosis and in the absence of functional microtubules Vav2 can mimic their effect on one, or more, of the Rho family GTPases. Lastly, overexpression of p50 dynamitin partially inhibited bacterial uptake and this effect was also blocked by co-expression of Vav2, thus further implicating this guanine nucleotide exchange factor in activating Rho GTPases for internalisation during loss of microtubule function.  相似文献   

7.
Diurnal phagocytosis of shed photoreceptor outer-segment particles by retinal pigment epithelial (RPE) cells belongs to a group of conserved clearance mechanisms employing αv integrins upstream of tyrosine kinases and Rho GTPases. In this study, we tested the interdependence of the tyrosine kinases focal adhesion kinase (FAK) and Mer tyrosine kinase (MerTK) and Rho GTPases during engulfment. RPE cells activated and redistributed Rac1, but not RhoA or Cdc42, during phagocytosis. Toxin B, overexpression of dominant-negative Rac1, or decreasing Rac1 expression prevented particle engulfment. Fluorescence microscopy showed that Rac1 inhibition had no obvious effect on F-actin arrangement in resting RPE but prevented recruitment of F-actin to surface-bound phagocytic particles. Quantification of active GTP-Rac1 in wild-type and mutant RPE in culture and in vivo revealed that Rac1 activation during phagocytosis requires αvβ5 integrin and its ligand milk fat globule EGF factor-8 (MFG-E8) but not the receptor tyrosine kinase MerTK. Abolishing tyrosine kinase signaling downstream of αvβ5 toward MerTK by inhibiting FAK specifically or tyrosine kinases generally neither prevented Rac1 activation nor F-actin recruitment during phagocytosis. Likewise, inhibiting Rac1 had no effect on FAK or MerTK activation. We conclude that MerTK activation via FAK and F-actin recruitment via Rac1 both require MFG-E8-ligated αvβ5 integrin. Both pathways are independently activated and required for clearance phagocytosis.  相似文献   

8.
The activation of integrin adhesion receptors from low to high affinity in response to intracellular cues controls cell adhesion and signaling. Binding of the cytoskeletal protein talin to the beta3 integrin cytoplasmic tail is required for beta3 activation, and the integrin-binding PTB-like F3 domain of talin is sufficient to activate beta3 integrins. Here we report that, whereas the conserved talin-integrin interaction is also required for beta1 activation, and talin F3 binds beta1 and beta3 integrins with comparable affinity, expression of the talin F3 domain is not sufficient to activate beta1 integrins. beta1 integrin activation could, however, be detected following expression of larger talin fragments that included the N-terminal and F1 domains, and mutagenesis indicates that these domains cooperate with talin F3 to mediate beta1 activation. This effect is not due to increased affinity for the integrin beta tail and we hypothesize that the N-terminal domains function by targeting or orienting talin in such a way as to optimize the interaction with the integrin tail. Analysis of beta3 integrin activation indicates that inclusion of the N-terminal and F1 domains also enhances F3-mediated beta3 activation. Our results therefore reveal a role for the N-terminal and F1 domains of talin during integrin activation and highlight differences in talin-mediated activation of beta1 and beta3 integrins.  相似文献   

9.
10.
Syk and ZAP-70 form a subfamily of nonreceptor tyrosine kinases that contain tandem SH2 domains at their N termini. Engagement of these SH2 domains by tyrosine-phosphorylated immunoreceptor tyrosine-based activation motifs leads to kinase activation and downstream signaling. These kinases are also regulated by beta3 integrin-dependent cell adhesion via a phosphorylation-independent interaction with the beta3 integrin cytoplasmic domain. Here, we report that the interaction of integrins with Syk and ZAP-70 depends on the N-terminal SH2 domain and the interdomain A region of the kinase. The N-terminal SH2 domain alone is sufficient for weak binding, and this interaction is independent of tyrosine phosphorylation of the integrin tail. Indeed, phosphorylation of tyrosines within the two conserved NXXY motifs in the integrin beta3 cytoplasmic domain blocks Syk binding. The tandem SH2 domains of these kinases bind to multiple integrin beta cytoplasmic domains with varying affinities (beta3 (Kd = 24 nm) > beta2 (Kd = 38 nm) > beta1 (Kd = 71 nm)) as judged by both affinity chromatography and surface plasmon resonance. Thus, the binding of Syk and ZAP-70 to integrin beta cytoplasmic domains represents a novel phosphotyrosine-independent interaction mediated by their N-terminal SH2 domains.  相似文献   

11.
Enteropathogenic Yersinia species encode invasin, which promotes uptake into host cells by binding beta1 integrins. Invasin may cluster integrin heterodimers extracellularly and cause the integrin alpha and beta chains to splay apart in the cytoplasm. Cdc42 signaling is not essential for Yersinia uptake, whereas invasin crucially triggers Rac1-mediated signals that enable internalization. The signals linking invasin-mediated adhesion to Rac1 activation are not clear, but a novel kinase may release it from RhoGDI so that Rac1 can be activated, for example by Dock180. Rac1 may act via Arp2/3, phosphatidylinositol 4,5-bisphosphate and capping-proteins in the formation of nascent phagosomes during Yersinia uptake.  相似文献   

12.
The phosphotyrosine binding-like domain of talin activates integrins   总被引:1,自引:0,他引:1  
Cellular regulation of the ligand binding affinity of integrin adhesion receptors (integrin activation) depends on the integrin beta cytoplasmic domains (tails). The head domain of talin binds to several integrin beta tails and activates integrins. This head domain contains a predicted FERM domain composed of three subdomains (F1, F2, and F3). An integrin-activating talin fragment was predicted to contain the F2 and F3 subdomains. Both isolated subdomains bound specifically to the integrin beta3 tail. However, talin F3 bound the beta3 tail with a 4-fold higher affinity than talin F2. Furthermore, expression of talin F3 (but not F2) in cells led to activation of integrin alpha(IIb)beta3. A molecular model of talin F3 indicated that it resembles a phosphotyrosine-binding (PTB) domain. PTB domains recognize peptide ligands containing beta turns, often formed by NPXY motifs. NPX(Y/F) motifs are highly conserved in integrin beta tails, and mutations that disrupt this motif interfere with both integrin activation and talin binding. Thus, integrin binding to talin resembles the interactions of PTB domains with peptide ligands. These resemblances suggest that the activation of integrins requires the presence of a beta turn at NPX(Y/F) motifs conserved in integrin beta cytoplasmic domains.  相似文献   

13.
Rho-family proteins play a central role in most actin-dependent processes, including the control and maintenance of cell shape, adhesion, motility, and phagocytosis. Activation of these GTP-binding proteins is tightly regulated spatially and temporally; however, very little is known of the mechanisms involved in their recruitment and activation in vivo. Because of its inducible, restricted signaling, phagocytosis offers an ideal physiological system to delineate the pathways linking surface receptors to actin remodeling via Rho GTPases. In this study, we investigated the involvement of early regulators of Fcgamma receptor signaling in Rac recruitment and activation. Using a combination of receptor mutagenesis, cellular, molecular, and pharmacological approaches, we show that Src family and Syk kinases control Rac and Vav function during phagocytosis. Importantly, both the immunoreceptor tyrosine-based activation motif within Fcgamma receptor cytoplasmic domain and Src kinase control the recruitment of Vav and Rac. However, Syk activity is dispensable for Vav and Rac recruitment. Moreover, we show that Rac and Cdc42 activities coordinate F-actin accumulation at nascent phagosomes. Our results provide new insights in the understanding of the spatiotemporal regulation of Rho-family GTPase function, and of Rac in particular, during phagocytosis. We believe they will contribute to a better understanding of more complex cellular processes, such as cell adhesion and migration.  相似文献   

14.
The cytoskeletal, actin-binding protein talin has been previously implicated in phagocytosis in Dictyostelium discoideum and mammalian phagocytes. However, its mechanism of action during internalization is not understood. Our data confirm that endogenous talin can occasionally be found at phagosomes forming around IgG- and C3bi-opsonized red blood cells in macrophages. Remarkably, talin knockdown specifically abrogates uptake through complement receptor 3 (CR3, CD11b/CD18, alpha(M)beta(2) integrin) and not through the Fc gamma receptor. We show that talin physically interacts with CR3/alpha(M)beta(2) and that this interaction involves the talin head domain and residues W747 and F754 in the beta(2) integrin cytoplasmic domain. The CR3/alpha(M)beta(2)-talin head interaction controls not only talin recruitment to forming phagosomes but also CR3/alpha(M)beta(2) binding activity, both in macrophages and transfected fibroblasts. However, the talin head domain alone cannot support phagocytosis. Our results establish for the first time at least two distinct roles for talin during CR3/alpha(M)beta(2)-mediated phagocytosis, most noticeably activation of the CR3/alpha(M)beta(2) receptor and phagocytic uptake.  相似文献   

15.
The beta3 integrin cytoplasmic domain, and specifically S752, is critical for integrin localization and osteoclast (OC) function. Because growth factors such as macrophage colony-stimulating factor and hepatocyte growth factor affect integrin activation and function via inside-out signaling, a process requiring the beta integrin cytoplasmic tail, we examined the effect of these growth factors on OC precursors. To this end, we retrovirally expressed various beta3 integrins with cytoplasmic tail mutations in beta3-deficient OC precursors. We find that S752 in the beta3 cytoplasmic tail is required for growth factor-induced integrin activation, cytoskeletal reorganization, and membrane protrusion, thereby affecting OC adhesion, migration, and bone resorption. The small GTPases Rho and Rac mediate cytoskeletal reorganization, and activation of each is defective in OC precursors lacking a functional beta3 subunit. Activation of the upstream mediators c-Src and c-Cbl is also dependent on beta3. Interestingly, although the FAK-related kinase Pyk2 interacts with c-Src and c-Cbl, its activation is not disrupted in the absence of functional beta3. Instead, its activation is dependent upon intracellular calcium, and on the beta2 integrin. Thus, the beta3 cytoplasmic domain is responsible for activation of specific intracellular signals leading to cytoskeletal reorganization critical for OC function.  相似文献   

16.
We show that CC chemokines induced a sustained increase in monocyte adhesion to intercellular adhesion molecule-1 that was mediated by Mac-1 (alphaMbeta2) but not lymphocyte function-associated antigen-1 (LFA-1; alphaLbeta2). In contrast, staining for an activation epitope revealed a rapid and transient up-regulation of LFA-1 activity by monocyte chemotactic protein-1 (MCP-1) in monocytes and Jurkat CCR2 chemokine receptor transfectants or by stromal-derived factor-1alpha in Jurkat cells. Differential kinetics for activation of Mac-1 (sustained) and LFA-1 (transient) avidity in response to stromal-derived factor-1alpha were confirmed by expression of alphaM or alphaL in alphaL-deficient Jurkat cells. Moreover, expression of chimeras containing alphaL and alphaM cytoplasmic domain exchanges indicated that alpha cytoplasmic tails conferred the specific mode of regulation. Coexpressing alphaM or chimeras in mutant Jurkat cells with a "gain of function" phenotype that results in constitutively active LFA-1 demonstrated that Mac-1 was not constitutively active, whereas constitutive activity was mediated via the alphaL cytoplasmic tail, implying the presence of distinct signaling pathways for LFA-1 and Mac-1. Transendothelial chemotaxis of monocytes in response to MCP-1 was dependent on LFA-1; however, Mac-1 was involved at MCP-1 concentrations stimulating its avidity, showing differential contributions of beta2 integrins. Our data suggest that a specific regulation of beta2 integrin avidity by chemokines may be important in leukocyte extravasation and may be triggered by distinct activation pathways transduced via the alpha subunit cytoplasmic domains.  相似文献   

17.
Salmonella stimulates host cell invasion using virulence effectors translocated by the pathogen's type-three secretion system (T3SS). These factors manipulate host signaling pathways, primarily driven by Rho family GTPases, which culminates in Arp2/3 complex-dependent activation of host actin nucleation to mediate the uptake of Salmonella into host cells. However, recent data argue for the existence of additional mechanisms that cooperate in T3SS-dependent Salmonella invasion. We identify a myosin II-mediated mechanism, operating independent of but complementary to the Arp2/3-dependent pathway, as contributing to Salmonella invasion into nonphagocytic cells. We also establish that the T3SS effector SopB constitutes an important regulator of this Rho/Rho kinase and myosin II-dependent invasion pathway. Thus, Salmonella enters nonphagocytic cells by manipulating the two core machineries of actin-based motility in the host: Arp2/3 complex-driven actin polymerization and actomyosin-mediated contractility.  相似文献   

18.
《The Journal of cell biology》1995,130(5):1181-1187
The integrins have recently been implicated in signal transduction. A likely mediator of integrin signaling is focal adhesion kinase (pp125FAK or FAK), a structurally distinct protein tyrosine kinase that becomes enzymatically activated upon engagement of integrins with their ligands. A second candidate signaling molecule is paxillin, a focal adhesion associated, cytoskeletal protein that coordinately becomes phosphorylated on tyrosine upon activation of pp125FAK. Paxillin physically complexes with two protein tyrosine kinases, pp60src and Csk (COOH-terminal src kinase), and the oncoprotein p47gag-crk, each of which could function as part of a paxillin signaling complex. Using an in vitro assay we have established that the cytoplasmic domain of the beta 1 integrin can bind to paxillin and pp125FAK from chicken embryo cell lysates. The NH2-terminal, noncatalytic domain of pp125FAK can bind directly to the cytoplasmic tail of beta 1 and recognizes integrin sequences distinct from those involved in binding to alpha-actinin. Paxillin binding is independent of pp125FAK binding despite the fact that both bind to the same region of beta 1. These results demonstrate that the cytoplasmic domain of the beta subunits of integrins contain binding sites for both signaling molecules and structural proteins suggesting that integrins can coordinate the generation of cytoplasmic signals in addition to their role in anchoring components of the cytoskeleton.  相似文献   

19.
Trans-dominant inhibition of integrin function.   总被引:9,自引:1,他引:8       下载免费PDF全文
Occupancy of integrin adhesion receptors can alter the functions of other integrins and cause partition of the ligand-occupied integrin into focal adhesions. Ligand binding also changes the conformation of integrin extracellular domains. To explore the relationship between ligand-induced conformational change and integrin signaling, we examined the effect of ligands specific for integrin alpha IIb beta 3 on the functions of target integrins alpha 5 beta 1 and alpha 2 beta 1. We report that binding of integrin-specific ligands to a suppressive integrin can inhibit the function of other target integrins (trans-dominant inhibition). Trans-dominant inhibition is due to a blockade of integrin signaling. Furthermore, this inhibition involves both a conformational change in the extracellular domain and the presence of the beta cytoplasmic tail in the suppressive integrin. Similarly, ligand-induced recruitment of alpha IIb beta 3 to focal adhesions also involves a conformational rearrangement of its extracellular domain. These findings imply that the ligand-induced conformational changes can propagate from an integrin's extracellular to its intracellular face. Trans-dominant inhibition by integrin ligands may coordinate integrin signaling and can lead to unexpected biological effects of integrin-specific inhibitors.  相似文献   

20.
Using a K562 cell transfection model, we have previously described a novel relationship between the integrins alpha v beta 3 and alpha 5 beta 1. alpha v beta 3 ligation was able to inhibit alpha 5 beta 1- mediated phagocytosis without effect on alpha 5 beta 1-mediated adhesion. The alpha v beta 3-dependent inhibition apparently required a signal transduction cascade as it was reversed by inhibitors of serine/threonine kinases. Now, we have studied the mechanisms of signal transduction in this system and have found that the beta 3 cytoplasmic tail is both necessary and sufficient for initiation of the signal leading to inhibition of alpha 5 beta 1 phagocytosis. Ligation of integrin-associated protein (IAP), which has been implicated in alpha v beta 3 signal transduction, mimics the effects of alpha v beta 3 ligation only when the beta 3 integrin with an intact cytoplasmic tail is present. Although fibronectin-mediated phagocytosis requires the high affinity conformation of alpha 5 beta 1, ligation of alpha v beta 3/IAP does not prevent acquisition of this high affinity state. We conclude that alpha v beta 3/IAP ligation initates a signal transduction cascade, dependent upon the beta 3 cytoplasmic tail, which inhibits the phagocytic function of alpha 5 beta 1 at a step subsequent to modulation of integrin affinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号