首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In an attempt to gain deeper understanding of the mechanism or mechanisms responsible for the protective effect of serum albumin against Cu2+-induced peroxidation of low density lipoprotein (LDL), we have examined the influence of the concentrations of bovine serum albumin (BSA), Cu2+ and LDL on the kinetics of peroxidation. Since the common method of monitoring the oxidation by continuous recording of the absorbance of conjugated dienes at 234 nm cannot be used at high BSA-concentrations because of the intensive absorption of BSA, we have monitored the time-dependent increase of absorbance at 245 nm. At this wavelength, conjugated dienes absorb intensely, whereas the background absorbance of BSA is low. Using this method, as well as the TBARS assay for determination of malondialdehyde, over a large range of BSA concentrations, we show that in many cases the influence of BSA on the kinetics of oxidation can be compensated for by increasing the concentration of copper. This reconciles the apparent contradiction between previously published data. Detailed studies of the kinetic profiles obtained under different conditions indicate that binding of Cu2+ to albumin plays the major role in its protective effect while other mechanisms contribute much less than copper binding. This conclusion is consistent with the less pronounced effect of BSA on the oxidation induced by the free radical generator AAPH. It is also shown that the copper-albumin complex is capable of inducing LDL oxidation, although the kinetics of the latter process is very different from that of copper-induced oxidation. Nevertheless, when compared to copper induced oxidation at similar concentration of the oxidation-promotor, the kinetics of oxidation induced by copper-albumin complex is very different and is consistent with a tocopherol mediated peroxidation, characteristic under low radical flux. Similar kinetics was observed for copper-induced oxidation only at much lower copper concentrations.  相似文献   

2.
The binding reactions of lomefloxacin-copper(II) complex (LMF-Cu) or LMF to bovine serum albumin (BSA) in physiological solution were investigated by multi-spectroscopy. The binding constant, the number of binding sites and the binding distance between LMF-Cu or LMF and BSA were obtained by a fluorescence quenching method and according to the mechanism of Forster-type dipole-dipole non-radioactive energy-transfer, respectively. Enthalpy and entropy changes for two systems were calculated to be -7.970 kJ mol(-1) and 47.438 J mol(-1)K(-1) for LMF-BSA, -12.469 kJ mol(-1) and 33.542 J mol(-1)K(-1) for LMF-Cu-BSA, respectively. The highly positive values observed for the entropy give evidence for a strong interaction. The values of DeltaH and DeltaS in two systems are similar, indicating that electrostatic interactions in two systems play major role. The effect of LMF-Cu or LMF on the conformation of BSA was also analyzed by synchronous fluorescence, three-dimensional fluorescence and circular dichroism spectra. The results showed that the presence of Cu ion in LMF-Cu can affect the conformation of BSA to some degree. All the results revealed that the addition of copper ion promotes the interaction of lomefloxacin with bovine serum albumin.  相似文献   

3.
Previous studies have shown that both αA- and αB-crystallins bind Cu2+, suppress the formation of Cu2+-mediated active oxygen species, and protect ascorbic acid from oxidation by Cu2+. αA- and αB-crystallins are small heat shock proteins with molecular chaperone activity. In this study we show that the mini-αA-crystallin, a peptide consisting of residues 71-88 of αA-crystallin, prevents copper-induced oxidation of ascorbic acid. Evaluation of binding of copper to mini-αA-crystallin showed that each molecule of mini-αA-crystallin binds one copper molecule. Isothermal titration calorimetry and nanospray mass spectrometry revealed dissociation constants of 10.72 and 9.9 μM, respectively. 1,1'-Bis(4-anilino)naphthalene-5,5'-disulfonic acid interaction with mini-αA-crystallin was reduced after binding of Cu2+, suggesting that the same amino acids interact with these two ligands. Circular dichroism spectrometry showed that copper binding to mini-αA-crystallin peptide affects its secondary structure. Substitution of the His residue in mini-αA-crystallin with Ala abolished the redox-suppression activity of the peptide. During the Cu2+-induced ascorbic acid oxidation assay, a deletion mutant, αAΔ70-77, showed about 75% loss of ascorbic acid protection compared to the wild-type αA-crystallin. This difference indicates that the 70-77 region is the primary Cu2+-binding site(s) in human native full-size αA-crystallin. The role of the chaperone site in Cu2+ binding in native αA-crystallin was confirmed by the significant loss of chaperone activity by the peptide after Cu2+ binding.  相似文献   

4.
In this work, the interaction between ${\text{Cu}}\left( {{\text{phen}}} \right)_3^{\,\,2 + } In this work, the interaction between Cu(phen)(2+)(3) and bovine serum albumin (BSA) was investigated by fluorescence spectroscopy combined with UV-vis absorption and circular dichroism (CD) spectroscopic techniques under physiological conditions. The fluorescence data proved that the fluorescence quenching of BSA by Cu(phen)(2+)(3) was the result of the Cu(phen)(2+)(3) -BSA complex formation. The binding constants (K (a)) between Cu(phen)(2+)(3) and BSA at four different temperatures were calculated according to the modified Stern-Volmer equation. The enthalpy change (DeltaH) and entropy change (DeltaS) were calculated to be 10.74 kJ mol(-1) and 54.35 J mol(-1) K(-1), respectively, which indicated that electrostatic interactions played a major role in the formation of Cu(phen)(2+)(3) -BSA complex. The distance r between the donor (BSA) and acceptor[Cu(phen)(2+)(3)] was obtained to be 3.55 nm based on F?rster's energy transfer theory. The synchronous fluorescence and CD spectroscopy results showed that the polarity of the residues increased and the lost of the alpha-helix content of BSA (from 59.84 to 53.70%). These indicated that the microenvironment and conformation of BSA were changed in the presence of Cu(phen)(2+)(3).  相似文献   

5.
研究不同浓度(10^-6-10^-4mol/L)硫酸铜(CuSO4,5H2O)溶液对大蒜(Allium satiuwn L.)根,叶和蒜瓣生影响及其这些器官对Cu^2 的积累能力,研究结果指出:在106-5-10^-4mol/L,Cu的处理下,Cu严重影响大蒜根和叶生长,大蒜具有较强吸收和积累Cu^2 的能力,随着Cu^2 处理浓度的增加,大蒜根中的Cu^2 含量递增,大蒜经10^-4mol/L,Cu处理,根部积累了大量的Cu,其含量是对照的52倍,在10^-5和10^-6mol/L Cu处理中,根中Cu的含量分别是对照的13倍和1.4倍,Cu主要积累在极中(10^-5-10^-4mol/L Cu处理),只有少量的转移到叶子和蒜瓣中。  相似文献   

6.
Creatine kinase (CK) is a key enzyme to maintain the energy homeostasis in vertebrate excitable tissues. Due to its importance in cellular energetics, the activity and level of CK are crucial to cellular and body functions. CK is sensitive to oxidative stresses and is thought to be one of the main targets of oxidative modification in neurodegenerative diseases. In this research, we investigated the effect of copper, an essential trace element for all organisms and an inducer of the reactive oxygen species, on CK refolding. It was found that trace amounts of Cu(2+) (3mol eq of Cu(2+)) could efficiently block the refolding of CK. The Cu(2+)-trapped CK could not be reactivated by the addition of EDTA, but could be reactivated by DTT. Spectroscopic experiments suggested that copper ions blocked CK refolding by specifically binding with the monomeric refolding intermediate, which further retarded CK refolding and promoted the formation of off-pathway aggregates. The results herein suggested that Cu(2+)-induced CK dysfunction might be caused not only by the post-translational oxidation, but also by the direct binding of copper ions with the newly-synthesized polypeptides.  相似文献   

7.
Ju P  Fan H  Liu T  Cui L  Ai S  Wu X 《Biological trace element research》2011,144(1-3):1405-1418
The interaction between cuprous oxide (Cu(2)O) nanocubes and bovine serum albumin (BSA) was investigated from a spectroscopic angle under simulative physiological conditions. Under pH 7.4, Cu(2)O could effectively quench the intrinsic fluorescence of BSA via static quenching. The apparent binding constant (K(A)) was 3.23, 1.91, and 1.20?×?10(4) M(-1) at 298, 304, and 310 K, respectively, and the number of binding sites was 1.05. According to the Van't Hoff equation, the thermodynamic parameters (ΔH° = -63.39 kJ mol(-1), ΔS° = -126.45 J?mol(-1) K(-1)) indicated that hydrogen bonds and van der Waals forces played a major role in stabilizing the BSA-Cu(2)O complex. Besides, the average binding distance (r(0)?= 2.76 nm) and the critical energy transfer distance (R(0) = 2.35 nm) between Cu(2)O and BSA were also evaluated according to F?rster's non-radioactive energy transfer theory. Furthermore, UV-visible and circular dichroism results showed that the addition of Cu(2)O changed the secondary structure of BSA and led to a decrease in α-helix. All results showed that BSA underwent substantial conformational changes induced by Cu(2)O, which can be very helpful in the study of nanomaterials in the application of biomaterials.  相似文献   

8.
A comparative study of the Cu2+ effects, binding and reduction, has been performed on rat liver mitochondria. In the first minutes, Cu2+ (less than or equal to 50 micron) is massively bound and reduced to the extent of 70%-80% while a simultaneous activation of respiration takes place. Then the remaining 20% or so of Cu2+ are progressively bound and reduced while respiratory inhibition, Ca2+ and Mg2+ effluxes, and swelling are observed. EDTA, used as a copper chelator, prevents or reduces the copper effects and removes part of the bound copper, according to the time of introduction in the incubation medium after Cu2+. The results suggest that the two steps of the copper binding and the effects following involve mainly first the outer (cytosol side) proteins of the inner membrane and then those of the inner membrane. 100 microM dithiothreitol and 100 microM glutathione used as antioxidant thiol reagents prevent, as does EDTA, but do not reverse the 25 microM copper effects. They also decrease the copper binding; however, no relationship between binding and preventive action is observed. It is shown that glutathione and dithiothreitol have a specific potent ability to reduce Cu2+, which explains that in presence of these reagents copper may react with mitochondria partly or entirely in the form of Cu+. These findings suggest that Cu2+ in its Cu+ form has no mitochondrial effect. A mechanism of copper action involving oxidation of some membrane thiol groups is discussed.  相似文献   

9.
The question of the stoichiometry of copper bound to dopamine beta-hydroxylase and the number of copper atoms required for maximal activity was addressed in this study. Incubation of tetrameric enzyme from bovine adrenal medulla with 64Cu2+ followed by rapid gel filtration yielded an enzyme containing 8.3-8.9 mol of Cu/mol of tetramer. An identical stoichiometry was obtained by analysis of bound copper by atomic absorption methods. NMR and EPR were used to monitor titrations of the enzyme with Cu2+ and showed that the longitudinal relaxation rate of solvent water protons and the amplitude of the signal at g approximately 2 increased linearly up to a copper to protein ratio of approximately 8. Additional titrations also indicate that an enzyme-Cu2+-tyramine-CN- inhibitory complex was formed when 8 mol of Cu2+ are bound per mol of enzyme. The rate of inactivation of dopamine beta-hydroxylase by the mechanism-based inhibitor 2-Br-3-(p-hydroxyphenyl)-1-propene was measured and used as a method to follow enzymatic catalysis. An increase in rate was observed with increasing Cu2+ up to a protein to Cu2+ ratio of 8 Cu/tetramer. The rate becomes constant after this ratio is achieved. These data indicate that dopamine beta-hydroxylase specifically binds 8 mol of Cu/tetramer and that this stoichiometry is required for maximal activity.  相似文献   

10.
The tau protein plays an important role in some neurodegenerative diseases including Alzheimer's disease (AD). Neurofibrillary tangles (NFTs), a biological marker for AD, are aggregates of bundles of paired helical filaments (PHFs). In general, the alpha-sheet structure favors aberrant protein aggregates. However, some reports have shown that the alpha-helix structure is capable of triggering the formation of aberrant tau protein aggregates and PHFs have a high alpha-helix content. In addition, the third repeat fragment in the four-repeat microtubule-binding domain of the tau protein (residues 306-336: VQIVYKPVDLSKVTSKCGSLGNIHHKPGGGQ, according to the longest tau protein) adopts a helical structure in trifluoroethanol (TFE) and may be a self-assembly model in the tau protein. In the human brain, there is a very small quantity of copper, which performs an important function. In our study, by means of matrix assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS), circular dichroism (CD), and nuclear magnetic resonance (NMR) spectroscopy, the binding properties of copper (II) ion to the R3 peptide derived from the third repeat fragment (residues 318-335: VTSKCGSLGNIHHKPGGG) have been investigated. The results show that copper ions bind to the R3 peptide. CD spectra, ultraviolet (UV)-visible absorption spectra, and MALDI-TOF MS show pH dependence and stoichiometry of Cu2+ binding. Furthermore, CD spectra and NMR spectroscopy elucidate the copper binding sites located in the R3 peptide. Finally, CD spectra reveal that the R3 peptide adopts a mixture structure of random structures, alpha-helices, and beta-turns in aqueous solutions at physiological pH. At pH 7.5, the addition of 0.25 mol eq of Cu2+ induces the conformational change from the mixture mentioned above to a monomeric helical structure, and a beta-sheet structure forms in the presence of 1 mol eq of Cu2+. As alpha-helix and beta-sheet structures are responsible for the formation of PHFs, it is hypothesized that Cu2+ is an inducer of self-assembly of the R3 peptide and makes the R3 peptide form a structure like PHF. Hence, it is postulated that Cu2+ plays an important role in the aggregation of the R3 peptide and tau protein and that copper (II) binding may be another possible involvement in AD.  相似文献   

11.
Abuja PM  Lohner K  Prassl R 《Biochemistry》1999,38(11):3401-3408
The interactions of the lipid and protein moiety of human low-density lipoprotein (LDL) and their influence on the oxidation behavior of LDL were modified using an amphipathic peptide, melittin, as a probe. The interaction of melittin with the LDL phospholipid surface resulted in a destabilization of apolipoprotein B-100 (apoB-100) as monitored by differential scanning calorimetry, while the characteristics of lipid core melting remained nearly unchanged. Binding of melittin caused a restriction of lipid chain mobility near the glycerol backbone, but not in the middle or near the methyl terminus of the fatty acyl chains as observed by electron paramagnetic resonance. Also, upon melittin addition, the level of copper binding to apoB-100 and the oxidizability of LDL by Cu2+ ions were greatly reduced, as indicated by abolished tryptophan fluorescence quenching upon Cu2+ binding and, during oxidation, prolongation of the lag phase of oxidation, attenuated consumption of alpha-tocopherol, and a lowered maximal rate of conjugated diene formation. This reduction of oxidizability could not be reversed by increasing the Cu2+ concentration. It is deduced that interaction of Cu2+ and alpha-tocopherol is required for reductive activation of the metal. It can be abolished by interfering with the interactions between apoB-100 and the lipid moiety of LDL which modifies the conformation of LDL and, as a consequence, hinders copper binding to apoB-100.  相似文献   

12.
Oxidized low density lipoprotein (LDL) plays an important role in atherogenesis. It is generally thought that LDL is mainly oxidized in the intima of vessel walls, surrounded by hydrophilic antioxidants and proteins such as albumin. The aim of this study was to investigate the possible interrelationships between oxidation resistance of LDL and its protein and lipid moieties. Proteins and to a lesser extent lipids, appeared to be the major determinants in the LDL Cu2+-oxidation resistance, which in turn depend on the ultracentrifugation (UC) procedure used. Comparing high speed/short time (HS/ST, 4 h), high speed/long time (HS/LT, 6-16h) and low speed/long time (LS/LT, 24h) conditions of UC, HS with the shortest time (4h) led to prepare LDL (named LDL.HS-4 h) with higher total protein and triglyceride contents, unchanged total cholesterol, phospholipids and Vitamin E, and higher Cu2+-oxidation resistance. Among proteins, only albumin allows to explain changes. PAF acetyl hydrolase appeared to be unaffected, whereas its pro-oxidant role was established and found only in the absence of albumin. In contrast the pro-oxidant role of caeruloplasmin took place regardless of the albumin content of LDL. The antioxidant effect of albumin (the oxidation lag time was doubled for 20mol/mol albumin per LDL) is assumed to be due to its capacity at decreasing LDL affinity for Cu2+. Interestingly, the LDL.HS-4 h albumin content mirrored the intrinsic characteristics of LDL in the plasma and was not affected by added free albumin. Moreover, it has been verified that in 121 healthy subjects albumin was the best resistance predictor of the Cu2+-oxidation of LDL.HS-4 h, with a multiple regression equation: lag time (min) = 62.1 + 0.67(HSA/apoB) + 0.02(TG/apoB)-0.01(TC/apoB); r = 0.54, P < 0.0001. Accounted for by lag time, the oxidation resistance did not correlate with alpha-tocopherol and ubiquinol contents of LDL. The mean albumin content was about 10mol/mol, and highly variable (0-58 mol/mol) with subjects. The LDL.HS-4h may account for the status of LDL in its natural environment more adequately than LDL resulting from other conditions of UC.  相似文献   

13.
Ma Q  Li Y  Du J  Liu H  Kanazawa K  Nemoto T  Nakanishi H  Zhao Y 《Peptides》2006,27(4):841-849
We have previously reported the copper binding properties of R3 peptide (residues 318-335: VTSKCGSLGNIHHKPGGG, according to the longest tau protein) derived from the third repeat microtubule-binding domain of water-soluble tau protein. In this work, we have investigated copper binding properties of R2 peptide (residues 287-304: VQSKCGSKDNIKHVPGGG) derived from the second repeat region of tau protein. Similar to R3 peptide, R2 peptide also plays an important role in the formation of neurofibrillary tangles (NFTs) which is one of the two main biological characteristics of Alzheimer's disease (AD). Based on the copper binding properties of R2 peptide, the possible influences of the binding on the formation of NFTs were investigated. Results from circular dichroism (CD) spectra, nuclear magnetic resonance (NMR) spectroscopy, and matrix assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) suggest that the binding is pH-dependent and stoichiometry-determined. In addition, these results also reveal that R2 peptide adopts a monomeric alpha-helical structure in aqueous solutions at physiological pH after the addition of 1 mol equiv. of Cu2+. Since alpha-helix structure is responsible for the formation of paired helical filaments (PHFs) which aggregate into NFTs, it is hypothesized that Cu2+ induces R2 peptide to self-assemble into a PHFs-like structure. Hence, it is postulated that Cu2+ plays an important role in the aggregation of R2 peptide and tau protein and that copper binding to R2 peptide may be another possible involvement in AD.  相似文献   

14.
Faure P  Oziol L  Artur Y  Chomard P 《Biochimie》2004,86(6):411-418
Triiodothyronine (T3) and triiodothyroacetic acid (TA3) are thyroid compounds that similarly protect low-density lipoprotein (LDL) against oxidation induced by the free radical generator 2,2'-azobis-[2-amidinopropane] dihydrochloride (AAPH). However, TA3 is more antioxidant than T3 on LDL oxidation induced by copper ions (Cu2+), suggesting that these compounds act by different mechanisms. Here we measured conjugated diene production kinetics during in vitro human LDL (50 mg LDL-protein per l) oxidation induced by various Cu2+ (0.5-4 microM) or AAPH (0.25-2 mM) concentrations in the presence of T3, TA3, butylated hydroxytoluene (BHT) (a free radical scavenger) or ethylenediaminetetracetic acid (EDTA) (a metal chelator). From the kinetics were estimated: length of the lag phase (Tlag), maximum velocity of conjugated diene production (Vmax), and maximum amount of generated dienes (Dmax). Thyroid compound effects on these oxidation parameters were compared to those of the controls BHT and EDTA. In addition we measured by atomic absorption spectrometry copper remaining in LDL after a 30 min incubation of LDL with Cu2+ and the compounds followed by extensive dialysis, i.e. copper bound to LDL. As expected, LDL-copper was decreased by EDTA in a concentration-dependent manner, whereas it was not affected by BHT. T3 increased LDL-copper whereas TA3 slightly decreased it. The whole data suggest that T3 and TA3 are free radical scavengers that also differently disturb LDL-copper binding, an essential step for LDL lipid peroxidation. The most likely mechanisms are that T3 induces new copper binding sites inside the LDL particle, increasing the LDL-copper amount but in a redox-inactive form, whereas TA3 blocks some redox-active copper binding sites highly implicated in the initiation and the propagation of lipid peroxidation. Alternatively, we also found that a little amount of copper is tightly bound in LDL, which may be essential for the propagation of lipid peroxidation induced by free radical generators.  相似文献   

15.
Samples of superoxide dismutase containing less than stoicheiometric amounts of Cu2+ were obtained by either partial re-addition of Cu2+ to the Cu2+-free protein or partial removal of Cu2+ by controlled CN-treatment. In these samples the distribution of the metal between the two identical sites on the two subunits was studied by quantitative gel electrophoresis and found to be statistical only in the process of copper removal by CN-. In the other case the distribution fits a model of co-operative interaction between the two sites, where the sites are equivalent for the binding of the first Cu2+ ion, but the occupation of the first site lowers the activation energy of the binding of the second Cu2+ ion. This indicates that binding of Cu2+ ion at its site on one subunit brings about conformational changes that facilitate Cu2+ binding on the other subunit. These results may relate to possible intersubunit interactions during the catalytic activity.  相似文献   

16.
To examine the potential role of methanobactin (mb) as the extracellular component of a copper acquisition system in Methylosinus trichosporium OB3b, the metal binding properties of mb were examined. Spectral (UV-visible, fluorescence, and circular dichroism), kinetic, and thermodynamic data suggested copper coordination changes at different Cu(II):mb ratios. Mb appeared to initially bind Cu(II) as a homodimer with a comparatively high copper affinity at Cu(II):mb ratios below 0.2, with a binding constant (K) greater than that of EDTA (log K = 18.8) and an approximate DeltaG degrees of -47 kcal/mol. At Cu(II):mb ratios between 0.2 and 0.45, the K dropped to (2.6 +/- 0.46) x 10(8) with a DeltaG degrees of -11.46 kcal/mol followed by another K of (1.40 +/- 0.21) x 10(6) and a DeltaG degrees of -8.38 kcal/mol at Cu(II):mb ratios of 0.45-0.85. The kinetic and spectral changes also suggested Cu(II) was initially coordinated to the 4-thiocarbonyl-5-hydroxy imidazolate (THI) and possibly Tyr, followed by reduction to Cu(I), and then coordination of Cu(I) to 4-hydroxy-5-thiocarbonyl imidazolate (HTI) resulting in the final coordination of Cu(I) by THI and HTI. The rate constant (k(obsI)) of binding of Cu(II) to THI exceeded that of the stopped flow apparatus that was used, i.e., >640 s(-)(1), whereas the coordination of copper to HTI showed a 6-8 ms lag time followed by a k(obsII) of 121 +/- 9 s(-)(1). Mb also solubilized and bound Cu(I) with a k(obsI) to THI of >640 s(-)(1), but with a slower rate constant to HTI (k(obsII) = 8.27 +/- 0.16 s(-)(1)), and appeared to initially bind Cu(I) as a monomer.  相似文献   

17.
 本文应用~23Na-NMR波谱技术,研究了Na~(+)、Ca~(2+)、Cu~(2+)和Zn~(2+)与人体血清白蛋白(HSA)的相互作用。在实验基础上,通过引入两位快交换模型,拟合计算获得了Na~(+)与HSA相互作用的结合常数和处于结合状态Na~(+)的相关时间;实验表明Ca~(2+)能与Na~(+)竞争同HSA结合,拟合计算获得了两者与HSA相互作用结合常数的比值,棕榈酸钠能增强Ca~(2+)同Na~(+)竞争与HSA结合的能力;从实验上未能观察到Cu~(2+)、Zn~(2+)能同Na~(+)竞争与HSA相互作用的证据。  相似文献   

18.
The thermodynamics of Cu(II) and Ni(II) binding to bovine serum albumin (BSA) have been studied by isothermal titration calorimetry (ITC). The Cu(II) binding affinity of the N-terminal protein site is quantitatively higher when the single free thiol, Cys-34, is reduced (mercaptalbumin), compared to when it is oxidized or derivatized with N-ethylmaleimide. This increased affinity is due predominantly to entropic factors. At higher pH (approximately 9), when the protein is in the basic (B) form, a second Cu(II) binds with high affinity to albumin with reduced Cys-34. The Cu(II) coordination has been characterized by UV-vis absorption, CD, and EPR spectroscopy, and the spectral data are consistent with thiolate coordination to a tetragonal Cu(II), indicating this is a type 2 copper site with thiolate ligation. Nickel(II) binding to the N-terminal site of BSA is also modulated by the redox/ligation state of Cys-34, with higher Ni(II) affinity for mercaptalbumin, the predominant circulating form of the protein.  相似文献   

19.
We reported earlier that urate may behave as a pro-oxidant in Cu2+-induced oxidation of diluted plasma. Thus, its effect on Cu2+-induced oxidation of isolated low-density lipoprotein (LDL) was investigated by monitoring the formation of malondialdehyde and conjugated dienes and the consumption of urate and carotenoids. We show that urate is antioxidant at high concentration but pro-oxidant at low concentration. Depending on Cu2+ concentration, the switch between the pro- and antioxidant behavior of urate occurs at different urate concentrations. At high Cu2+ concentration, in the presence of urate, superoxide dismutase and ferricytochrome c protect LDL from oxidation but no protection is observed at low Cu2+ concentration. The use of Cu2+ or Cu+ chelators demonstrates that both copper redox states are required. We suggest that two mechanisms occur depending on the Cu2+ concentration. Urate may reduce Cu2+ to Cu+, which in turn contributes to formation. The Cu2+ reduction is likely to produce the urate radical (UH.-). It is proposed that at high Cu2+ concentration, the reaction of UH.- radical with generates products or intermediates, which trigger LDL oxidation. At low Cu2+ concentration, we suggest that the Cu+ ions formed reduce lipid hydroperoxides to alkoxyl radicals, thereby facilitating the peroxidizing chain reaction. It is anticipated that these two mechanisms are the consequence of complex LDL-urate-Cu2+ interactions. It is also shown that urate is pro-oxidant towards slightly preoxidized LDL, whatever its concentration. We reiterate the conclusion that the use of antioxidants may be a two-edged sword.  相似文献   

20.
The water-soluble complex, [Cu(Val)(2)(NO(3))(2)]; in which Val = valacyclovir, an antiviral drug, has been synthesized and characterized by elemental analysis, furier transfer-infrared, hydrogen nuclear magnetic resonance (H NMR), and UV-Vis techniques. The binding of this Cu (II) complex to calf thymus DNA was investigated using fluorimetry, spectrophotometry, circular dichroism, and viscosimetry. In fluorimetric studies, the enthalpy and entropy of the reaction between the complex and calf-thymus DNA (CT-DNA) showed that the reaction is endothermic (ΔH = 208.22 kJ mol(-1); ΔS = 851.35 J mol(-1)K(-1)). The complex showed the absorption hyperchromism in its ultra violet-visible (UV-Vis) spectrum with DNA. The calculated binding constant, K(b), obtained from UV-Vis absorption studies was 2 × 10(5) M(-1). Moreover, the complex induced detectable changes in the circular dichroism spectrum of CT-DNA, as well as changes in its viscosity. The results suggest that this copper (II) complex interacts with CT-DNA via a groove-binding mode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号