首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human and rabbit plasma contains a lipid transfer protein that transfers cholesteryl esters and triglycerides among the plasma lipoproteins and may also have a role in the movement of lipids into and out of cells. Little is known about the regulation of the activity of the lipid transfer protein, but in the rabbit, hypercholesterolemia is associated with increased plasma lipid transfer activity (LTA). Perfused rabbit livers secrete LTA, and hepatic cholesterol secretion is increased in rabbits with diet-induced hypercholesterolemia. Thus, experiments were performed with rabbits to determine if LTA is regulated by a concerted hepatic secretion of lipoprotein protein cholesterol and LTA. Rabbits were fed chow or chow plus coconut oil (14% wt/wt), and plasma lipids, LTA, and the rate of secretion of cholesterol into plasma were determined. Coconut oil feeding increased plasma cholesterol by 68%, LTA by 42%, and hepatic cholesterol secretion by 69%. Mevinolin (75 mg/day), an inhibitor of cholesterol biosynthesis, lowered LTA and plasma cholesterol without affecting the rate of secretion of cholesterol into plasma. These studies provide further evidence that, in the rabbit, plasma cholesterol and LTA are closely related, and the association is not likely to be caused by a concerted hepatic secretion of cholesterol and LTA.  相似文献   

2.
The relationship between the concentration of plasma cholesterol and the lipid transfer activity (LTA) of lipoprotein-deficient plasma (d greater than 1.21) was studied in two models of pregnancy in the rabbit. Plasma cholesterol and the protein-mediated transfer of cholesteryl ester and triglyceride were monitored throughout gestation, 48 hr after parturition, and during lactation in New Zealand white (NZW) and heterozygous WHHL rabbits. Lipoprotein cholesterol was determined prior to and 48 hr after parturition. For both NZW and heterozygous WHHL rabbits, the progressive hypocholesterolemia of gestation was associated with parallel changes in LTA. Similarly, the rapid postpartum increase in plasma cholesterol was paralleled by increased LTA for both strains. In relation to basal values, the relative changes in plasma cholesterol and LTA were virtually identical. These data provide further evidence that in the rabbit plasma cholesterol and LTA are closely related.  相似文献   

3.
Lipoteichoic acids (LTA) are amphiphilic polymers that are important constituents of the cell wall of many Gram-positive bacteria. The chemical structures of LTA vary among organisms, albeit in the majority of Gram-positive bacteria the LTAs feature a common poly-1,3-(glycerolphosphate) backbone. Previously, the specificity of opsonic antibodies for this backbone present in some Gram-positive bacteria has been demonstrated, suggesting that this minimal structure may be sufficient for vaccine development. In the present work, we studied a well-defined synthetic LTA-fragment, which is able to inhibit opsonic killing of polyclonal rabbit sera raised against native LTA from Enterococcus faecalis 12030. This promising compound was conjugated with BSA and used to raise rabbit polyclonal antibodies. Subsequently, the opsonic activity of this serum was tested in an opsonophagocytic assay and specificity was confirmed by an opsonophagocytic inhibition assay. The conjugated LTA-fragment was able to induce specific opsonic antibodies that mediate killing of the clinical strains E. faecalis 12030, Enterococcus faecium E1162, and community-acquired Staphylococcus aureus strain MW2 (USA400). Prophylactic immunization with the teichoic acid conjugate and with the rabbit serum raised against this compound was evaluated in active and passive immunization studies in mice, and in an enterococcal endocarditis rat model. In all animal models, a statistically significant reduction of colony counts was observed indicating that the novel synthetic LTA-fragment conjugate is a promising vaccine candidate for active or passive immunotherapy against E. faecalis and other Gram-positive bacteria.  相似文献   

4.
Experiments to investigate the fate of intravascularly administered leukotriene (LT) A4, an unstable intermediate of LT generation, were performed in isolated, ventilated, and blood-free perfused rabbit lungs. LT extracted from the lung effluent were separated by different reverse phase and straight phase HPLC procedures as methylated and nonmethylated compounds. Identity of eluting LT was confirmed by UV spectrum analysis and immunoreactivity. Pulmonary artery injection of 75 to 300 nmol of LTA4 resulted in the rapid appearance of cysteinyl-LT as well as LTB4 in the recirculating perfusate. The yield of these enzymatically generated LTA4 metabolites vs non-enzymatic hydrolysis products (6-trans-LTB4, 5-trans-epi-LTB4, 5,6-dihydroxyeicosatetraenoic acids) ranged above 90%. Experiments with application of tritiated LTA4 showed exclusive origin of the detected LT from the exogenously applied precursor. The time course of cysteinyl-LT appearance in the perfusate suggested metabolism of LTC4 via LTD4 to LTE4, whereas there was no evidence for LTB4 omega-oxidation. In the dose range of LTA4 used, the enzymatic conversion of this LT precursor did not approach saturation. Collectively, these data indicate that the intact pulmonary vasculature contains a hitherto not described capacity for enzymatic conversion of intravascularly offered LTA4 to both cysteinyl-LT and LTB4. This may be of biological significance for a putative transcellular biosynthesis of LT in the pulmonary microcirculation upon contact with LTA4 feeder cells, such as activated granulocytes.  相似文献   

5.
Leukotrienes can be produced by cooperative interactions between cells in which, for example, arachidonate derived from one cell is oxidized to leukotriene A(4) (LTA(4)) by another and this can then be exported for conversion to LTB(4) or cysteinyl leukotrienes (cys-LTs) by yet another. Neutrophils do not contain LTC(4) synthase but are known to cooperate with endothelial cells or platelets (which do have this enzyme) to generate cys-LTs. Stimulation of human neutrophils perfusing isolated rabbit hearts resulted in production of cys-LTs, whereas these were not seen with perfused hearts alone or isolated neutrophils. In addition, the stimulated, neutrophil-perfused hearts generated much greater amounts of total LTA(4) products, suggesting that the hearts were supplying arachidonate to the neutrophils and, in addition, that this externally derived arachidonate was preferentially used for exported LTA(4) that could be metabolized to cys-LTs by the coronary endothelium. Stable isotope-labeled arachidonate and electrospray tandem mass spectrometry were used to differentially follow metabolism of exogenous and endogenous arachidonate. Isolated, adherent neutrophils at low concentrations (to minimize transcellular metabolism between them) were shown to generate higher proportions of nonenzymatic LTA(4) products from exogenous arachidonate (deuterium-labeled) than from endogenous (unlabeled) sources. The endogenous arachidonate, on the other hand, was preferentially used for conversion to LTB(4) by the LTA(4) hydrolase. This result was not because of saturation of the LTA(4) hydrolase, because it occurred at widely differing concentrations of exogenous arachidonate. Finally, in the presence of platelets (which contain LTC(4) synthase), the LTA(4) synthesized from exogenous deuterium-labeled arachidonate was converted to cys-LTs to a greater degree than that from endogenous sources. These experiments suggest that exogenous arachidonate is preferentially converted to LTA(4) for export (not intracellular conversion) and raises the likelihood that there are different intracellular pathways for arachidonate metabolism.  相似文献   

6.
The unstable epoxide leukotriene (LT) A(4) is a key intermediate in leukotriene biosynthesis, but may also be transformed to lipoxins via a second lipoxygenation at C-15. The capacity of various 12- and 15-lipoxygenases, including porcine leukocyte 12-lipoxygenase, a human recombinant platelet 12-lipoxygenase preparation, human platelet cytosolic fraction, rabbit reticulocyte 15-lipoxygenase, soybean 15-lipoxygenase and human eosinophil cytosolic fraction, to catalyze conversion of LTA(4) to lipoxins was investigated and standardized against the ability of the enzymes to transform arachidonic acid to 12- or 15-hydroxyeicosatetraenoic acids (HETE), respectively. The highest ratio between the capacity to produce lipoxins and HETE (LX/HETE ratio) was obtained for porcine leukocyte 12-lipoxygenase with an LX/HETE ratio of 0.3. In addition, the human platelet 100000xg supernatant 12-lipoxygenase preparation and the human platelet recombinant 12-lipoxygenase and human eosinophil 100000xg supernatant 15-lipoxygenase preparation possessed considerable capacity to produce lipoxins (ratio 0.07, 0.01 and 0.02 respectively). In contrast, lipoxin formation by the rabbit reticulocyte and soybean 15-lipoxygenases was much less pronounced (LX/HETE ratios <0.002). Kinetic studies of the human lipoxygenases revealed lower apparent K(m) for LTA(4) (9-27 microM), as compared to the other lipoxygenases tested (58-83 microM). The recombinant human 12-lipoxygenase demonstrated the lowest K(m) value for LTA(4) (9 microM) whereas the porcine leukocyte 12-lipoxygenase had the highest V(max). The profile of products was identical, irrespective of the lipoxygenase used. Thus, LXA(4) and 6S-LXA(4) together with the all-trans LXA(4) and LXB(4) isomers were isolated. Production of LXB(4) was not observed with any of the lipoxygenases. The lipoxygenase inhibitor cinnamyl-3,4-dihydroxy-alpha-cyanocinnamate was considerably more efficient to inhibit conversion of LTA(4) to lipoxins, as compared to the inhibitory effect on 12-HETE formation from arachidonic acid (IC(50) 1 and 50 microM, respectively) in the human platelet cytosolic fraction.  相似文献   

7.
观察3株双歧杆菌对人O型、人B型、绵羊、兔、鸡和小鼠红细胞的凝集滴度,并对其血凝素进行了提取。结果表明,3株双歧杆菌均能凝集各种来源的红细胞,血凝滴度无明显差异;D-甘露糖不能抑制血凝。提取的脂磷壁酸(LTA)具有血凝活性。其血凝素受体为糖类。  相似文献   

8.
Lotus tetragonolobus lectin (LTA) is a fucose-specific legume lectin. Although several studies report a diverse combination of biological activities for LTA, little is known about the mechanisms involved in l-fucosyl oligosaccharide recognition. The crystal structure of LTA at 2.0A resolution reveals a different legume lectin tetramer. Its structure consists of a homotetramer composed of two back-to-back GS4-like dimers arranged in a new mode, resulting in a novel tetramer. The LTA N-linked carbohydrate at Asn4 and the unusual LTA dimer-dimer interaction are related to its particular mode of tetramerization. In addition, we used small angle X-ray scattering to investigate the quaternary structure of LTA in solution and to compare it to the crystalline structure. Although the crystal structure of LTA has revealed a conserved metal-binding site, its l-fucose-binding site presents some punctual differences. Our investigation of the new tetramer of LTA and its fucose-binding site is essential for further studies related to cross-linking between LTA and complex divalent l-fucosyl carbohydrates.  相似文献   

9.
Lipoteichoic acid (LTA) derived from Staphylococcus aureus is reported to be a ligand of TLR2. However, we previously demonstrated that LTA fraction prepared from bacterial cells contains lipoproteins, which activate cells via TLR2. In this study, we investigated the immunobiological activity of LTA fraction obtained from S. aureus wild-type strain, lipoprotein diacylglycerol transferase deletion (delta lgt) mutant, which lacks palmitate-labeled lipoproteins, and its complemented strain and evaluated the activity of LTA molecule. LTA fraction was prepared by butanol extraction of the bacteria followed by hydrophobic interaction chromatography. Although all LTA fractions activated cells through TLR2, the LTA from delta lgt mutant was 100-fold less potent than those of wild-type and complemented strains. However, no significant structural difference in LTA was observed in NMR spectra. Further, alanylation of LTA molecule showed no effect in immunobiological activity. These results showed that not LTA molecule but lipoproteins are dominant immunobiologically active TLR2 ligand in S. aureus.  相似文献   

10.
Lipoteichoic acid (LTA) is thought to play a role in the interactions between Streptococcus pyogenes and host cells. We have examined the effect of exogenous LTA on the adherence and entry of S. pyogenes JRS4 strain into HEp-2 epithelial cells. LTA markedly inhibited bacterial entry in a concentration-dependent manner, up to 250 microg ml(-1). In contrast, LTA had only a slight inhibitory effect on adherence. LTA also inhibited the entry but not adherence of Salmonella typhimurium strain into HEp-2 cells. Binding experiments showed a dose-dependent binding of LTA to cells up to 10 microg ml(-1). Confocal laser microscopy imaging and analysis revealed that LTA was internalized by the epithelial cells and colocalized with F-actin. These results might imply that, following binding, exogenous LTA enters HEp-2 cells and exerts a cytotoxic effect that interferes with bacterial internalization. A possible target for LTA activity might be the actin cytoskeleton, which is known to be essential for bacterial uptake.  相似文献   

11.
12.
Many Gram-positive bacteria produce lipoteichoic acid (LTA) polymers whose physiological roles have remained a matter of debate because of the lack of LTA-deficient mutants. The ypfP gene responsible for biosynthesis of a glycolipid found in LTA was deleted in Staphylococcus aureus SA113, causing 87% reduction of the LTA content. Mass spectrometry and nuclear magnetic resonance spectroscopy revealed that the mutant LTA contained a diacylglycerol anchor instead of the glycolipid, whereas the remaining part was similar to the wild-type polymer except that it was shorter. The LTA mutant strain revealed no major changes in patterns of cell wall proteins or autolytic enzymes compared with the parental strain indicating that LTA may be less important in S. aureus protein attachment than previously thought. However, the autolytic activity of the mutant was strongly reduced demonstrating a role of LTA in controlling autolysin activity. Moreover, the hydrophobicity of the LTA mutant was altered and its ability to form biofilms on plastic was completely abrogated indicating a profound impact of LTA on physicochemical properties of bacterial surfaces. We propose to consider LTA and its biosynthetic enzymes as targets for new antibiofilm strategies.  相似文献   

13.
We previously reported that lipoteichoic acid (LTA) of group A streptococci binds spontaneously to mammaliam cell membranes via lipid moieties ester-linked to the LTA molecule. We now describe biochemical and immunologic evidence that LTA binds to human and murine lymphocytes as an early event in the induction of mitogenesis in T lymphocytes. The biochemical studies showed that binding of radiolabeled LTA to lymphocytes was lymphocyte-concentration, and temperature dependent, and it reached a maximum in 15 min. Binding was reversible and specific with a dissociation constant of 89 micrometer for adult lymphocytes and 57 micrometer for cord blood lymphocytes. Immunologic studies showed that the LTA was mitogenic only for T lymphocytes. Dose response curves of lymphocyte mitogenesis induced by LTA and the binding of LTA to intact lymphocytes were shown to be related. The results suggest that LTA binds to specific receptor sites on T lymphocytes to trigger the mitogenic response.  相似文献   

14.
J F Evans  S Kargman 《FEBS letters》1992,297(1-2):139-142
The covalent coupling of [3H]LTA4 to human leukocyte LTA4 hydrolase is inhibited in a concentration-dependent fashion by pre-incubation with bestatin. This inhibition correlated with the concentration-dependent inhibition by bestatin of LTB4 and LTB5 synthesis by LTA4 hydrolase. Epibestatin, a diastereomer of bestatin, neither inhibited LTB4 or LTB5 production by LTA4 hydrolase nor prevented the covalent coupling of [3H]LTA4 to the enzyme. In contrast, captopril inhibited both LTB4 synthesis by LTA4 hydrolase and covalent coupling of [3H]LTA4 to the enzyme.  相似文献   

15.
The orientation of lipoteichoic acid (LTA) molecules on the surface of bacterial cells undoubtedly is determined by the ability of the LTA, during its transit through the cell wall, to bind via its polyglycerophosphate backbone or its glycolipid moieties to other constituents of the cytoplasmic membrane and the cell wall. We have investigated the possibility that LTA may become anchored to the cell surface by binding through its polyanionic backbone to positively charged regions of cell wall proteins. LTA was found to prevent the precipitation of partially purified HCl extracts of several strains of streptococci as well as a structurally defined streptococcal M protein molecule (pep M24) in 83% solutions of ethanol. The formation of complexes between LTA and M protein was demonstrated further by immunoelectrophoresis of pep M24 protein with increasing concentrations of radiolabeled LTA and by using antiserum against pep M24 to develop precipitin arcs. Pep M24 electrophoresed alone produced a single precipitin arc close to the origin. In contrast, when electrophoresed as a mixture with LTA or deacylated LTA, the M protein produced a second precipitin arc toward the anode coinciding with the area of migration of the radioactive LTA. Increasing concentrations of LTA or deacylated LTA shifted increasing amounts of the pep M24 antigen to the region of the second arc. Maleylation of M protein to block the positively charged free amino groups before mixing it with LTA prevented the formation of complexes. The complexes formed by the M protein with LTA, but not with deacylated LTA, showed the capacity to bind bovine serum albumin; LTA had been shown previously to bind to the fatty acid binding sites on bovine serum albumin. These results indicate that the LTA molecule is able to bind via its polyanionic backbone to positively charged residues of surface proteins of cells of S. pyogenes. The implications of such interaction as to the orientation of LTA molecules on the surface of cells of S. pyogenes are discussed.  相似文献   

16.
Leukotriene A4 (LTA4) hydrolase catalyzes the final step in leukotriene B4 (LTB4) synthesis. In addition to its role in LTB4 synthesis, the enzyme possesses aminopeptidase activity. In this study, we sought to define the subcellular distribution of LTA4 hydrolase in alveolar epithelial cells, which lack 5-lipoxygenase and do not synthesize LTA4. Immunohistochemical staining localized LTA4 hydrolase in the nucleus of type II but not type I alveolar epithelial cells of normal mouse, human, and rat lungs. Nuclear localization of LTA4 hydrolase was also demonstrated in proliferating type II-like A549 cells. The apparent redistribution of LTA4 hydrolase from the nucleus to the cytoplasm during type II-to-type I cell differentiation in vivo was recapitulated in vitro. Surprisingly, this change in localization of LTA4 hydrolase did not affect the capacity of isolated cells to convert LTA4 to LTB4. However, proliferation of A549 cells was inhibited by the aminopeptidase inhibitor bestatin. Nuclear accumulation of LTA4 hydrolase was also conspicuous in epithelial cells during alveolar repair following bleomycin-induced acute lung injury in mice, as well as in hyperplastic type II cells associated with fibrotic lung tissues from patients with idiopathic pulmonary fibrosis. These results show for the first time that LTA4 hydrolase can be accumulated in the nucleus of type II alveolar epithelial cells and that redistribution of the enzyme to the cytoplasm occurs with differentiation to the type I phenotype. Furthermore, the aminopeptidase activity of LTA4 hydrolase within the nucleus may play a role in promoting epithelial cell growth.  相似文献   

17.
High-molecular-weight, micellar lipoteichoic acid (LTA) was converted to a lower-molecular-weight, apparently deacylated polymer when the former was incubated in the presence of growing protoplasts of Streptococcus faecium (S. faecalis ATCC 9790), but not when incubated in fresh or spent protoplast medium. The mobility of the low-molecular-weight polymer upon agarose gel electrophoresis was indistinguishable from that of native extracellular lipoteichoic acid LTA(X) from this organism or from chemically deacylated LTA. Native LTA(X) was shown to contain less than one fatty acid equivalent per 18 LTA(X) molecules, in contrast to the 4:1 ratio of fatty acids to polyglycerolphosphate chains in micellar LTA.  相似文献   

18.
Tumor necrosis factor (TNF)-related genes are thought to play a role in human malaria. TNF polymorphisms have been associated with severe malaria, mild malaria, and parasitemia. Lymphotoxin-alpha gene (LTA) that belongs to the TNF family is one such candidate gene. Here we report the family-based association analysis of a cis-regulatory lymphotoxin-alpha polymorphism with parasitemia in two independent populations living in Burkina Faso. Analysis of 199 subjects (34 families) living in an urban endemic area revealed the association of the low producing LTA+80A allele with reduced parasitemia. Furthermore, there was evidence of significant LTA+80-by-age and LTA+80-by-gender interactions. In another set of 318 residents (55 families) in a rural endemic area, we found both the association of the low producing LTA+80A allele with reduced parasitemia and LTA+80-by-age and LTA+80-by-gender interactions. This study suggests that LTA+80 polymorphism influences parasitemia and acts in an age- and gender-dependent manner.  相似文献   

19.
Lipoteichoic acid from Listeria monocytogenes.   总被引:4,自引:1,他引:3  
A lipoteichoic acid (LTA) was extracted from Listeria monocytogenes (serotype 1) by phenol-water partition and isolated by gel-filtration chromatography. The LTA exhibited amphiphilic properties by changes in gel-filtration mobility in the presence of detergent buffers and after mild base hydrolysis. In a hemagglutination assay, Listeria LTA bound antibody prepared against a known LTA from Streptococcus spp. Listeria LTA inhibited the binding of anti-LTA antibody to a Lactobacillus LTA in a hemagglutination inhibition assay. The Listeria LTA contained glucose, galactose, fatty acids, glycerol, and phosphate with molar ratios of 0.05, 0.07, 0.21, 0.94, and 1.0 to phosphate, respectively. Adjacent glycerols were linked between the C-1 and C-3 positions by phosphodiesters (structural type 1). The average chain length was 19 +/- 2 (standard deviation) glycerol-phosphate repeating units. Approximately one glycosyl side chain was present per LTA molecule. The side chain was a galactose-containing disaccharide. The lipid portion of the LTA was a galactose- and glucose-containing glycolipid which may have been a phosphoglycolipid, but the structure was not confirmed. Major fatty acids of LTA and the glycolipid were 17:anteiso, 15:anteiso, 16:iso, 16:n, and 18:n. L. monocytogenes contained cell wall products typical of gram-positive bacteria which is in contrast to the reports by others of the presence of lipopolysaccharides from L. monocytogenes.  相似文献   

20.
Group B Streptococcus (GBS) cell walls potently activate phagocytes by a largely TLR2-independent mechanism. In contrast, the cell wall component lipoteichoic acid (LTA) from diverse Gram-positive bacterial species has been shown to engage TLR2. In this study we examined the role of LTA from GBS in phagocyte activation and the requirements for TLR-LTA interaction. Using cells from knockout mice and genetic complementation in epithelial cells we found that highly pure LTA from both GBS and Staphylococcus aureus interact with TLR2 and TLR6, but not TLR1, in contrast to previous reports. Furthermore, NF-kappaB activation by LTA required the integrity of two putative PI3K binding domains within TLR2 and was inhibited by wortmannin, indicating an essential role for PI3K in cellular activation by LTA. However, LTA from GBS proved to be a relatively weak stimulus of phagocytes containing approximately 20% of the activity observed with LTA from Staphylococcus aureus. Structural analysis by nuclear magnetic resonance spectrometry revealed important differences between LTA from GBS and S. aureus, specifically differences in glycosyl linkage, in the glycolipid anchor and a lack of N-acetylglucosamine substituents of the glycerophosphate backbone. Furthermore, GBS expressing LTA devoid of d-alanine residues, that are essential within immune activation by LTA, exhibited similar inflammatory potency as GBS with alanylated LTA. In conclusion, LTA from GBS is a TLR2/TLR6 ligand that might contribute to secreted GBS activity, but does not contribute significantly to GBS cell wall mediated macrophage activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号