首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Mechanical parameters of the respiratory system are often estimated from respiratory impedances using lumped-element inverse models. One such six-element model is composed of an airway branch [with a resistance (Raw) and inertance (Iaw)] separated from a tissue branch [with a resistance (Rt), inertance (It), and compliance (Ct)] by a shunt compliance representing alveolar gas compression (Cg). Even though the airways are known to have frequency-dependent resistance and inertance, these inverse models have been composed of linear frequency-independent elements. In this study we investigated the use of inverse models where the airway branch was represented by a frequency-independent Raw and Iaw, a Raw that is linearly related to frequency and an Iaw that is independent of frequency, and a system of identical parallel tubes the impedance of which was computed from the tube radius and length. These inverse models were used to analyze airway and respiratory impedances between 2 and 1,024 Hz that were predicted from an anatomically detailed forward model. The forward model represented the airways by an asymmetrically branched network with a terminal impedance representative of known Cg, Rt, It, and Ct. For respiratory impedances between 2 and 128 Hz, all models fit the data reasonably well, and reasonably accurate estimates of Cg, Rt, It, and Ct were extracted from these data. For data above 200 Hz, however, only the multiple-tube model accurately fitted respiratory impedances (Zrs). This model fitted the Zrs data best when composed of 27 tubes, each having a radius of 0.148 cm and a length of 16.5 cm.  相似文献   

2.
Total respiratory input (Zin) and transfer (Ztr) impedances were obtained from 4 to 30 Hz in 10 healthy subjects breathing air and He-O2. Zin was measured by applying pressure oscillations around the head to minimize the upper airway shunt and Ztr by applying pressure oscillations around the chest. Ztr was analyzed with a six-coefficient model featuring airways resistance (Raw) and inertance (Iaw), alveolar gas compressibility, and tissue resistance, inertance, and compliance. Breathing He-O2 significantly decreased Raw (1.35 +/- 0.32 vs. 1.74 +/- 0.49 cmH2O.l-1.s in air, P less than 0.01) and Iaw (0.59 +/- 0.33 vs. 1.90 +/- 0.44 x 10(-2) cmH2O.l-1.s2), but, as expected, it did not change the tissue coefficients significantly. Airways impedance was also separately computed by combining Zin and Ztr data. This approach demonstrated similar variations in Raw and Iaw with the lighter gas mixture. With both analyses, however, the changes in Iaw were more than what was expected from the change in density. This indicates that factors other than gas inertance are included in Iaw and reveals the short-comings of the six-coefficient model to interpret impedance data.  相似文献   

3.
Short-term intraindividual variability of the parameters derived from respiratory transfer impedance (Ztr) measured from 4 to 32 Hz was studied in 10 healthy subjects. The corresponding 95% confidence intervals (CIo) were compared with those computed from a single set of data (CIL) according to Lutchen and Jackson (J. Appl. Physiol. 62: 403-413, 1987). Ztr was analyzed with the six-coefficient model of DuBois et al. (J. Appl. Physiol. 8: 587-594, 1956), which includes airway resistance (Raw) and inertance (Iaw), tissue resistance (Rti), inertance (Iti), and compliance (Cti), and alveolar gas compressibility (Cg). The lowest variability was seen for Iaw (CIo = 11.1%), closely followed by Raw (14.3%) and Cti (14.8%), and the largest for Rti and Iti (24.6 and 93.6%, respectively). Using a simpler model, where Iti was excluded, significantly decreased the variability of Iaw (P less than 0.01) and Rti (P less than 0.05) but was responsible for a systematic decrease of Raw and Iaw and increase of Rti. Except for Raw with both models and Iaw with the simpler model, CIL was greater than CIo. Whatever the model, a high correlation between both sets of confidence intervals was found for Rti and Iaw, whereas no correlation was seen for Raw. This suggests that the variability of the former coefficients mainly reflects experimental noise, whereas that of the latter is largely due to biological variability.  相似文献   

4.
The influence of inspiratory and expiratory flow magnitude, lung volume, and lung volume history on respiratory system properties was studied by measuring transfer impedances (4-30 Hz) in seven normal subjects during various constant flow maneuvers. The measured impedances were analyzed with a six-coefficient model including airway resistance (Raw) and inertance (Iaw), tissue resistance (Rti), inertance (Iti), and compliance (Cti), and alveolar gas compressibility. Increasing respiratory flow from 0.1 to 0.4 1/s was found to increase inspiratory and expiratory Raw by 63% and 32%, respectively, and to decrease Iaw, but did not change tissue properties. Raw, Iti, and Cti were larger and Rti was lower during expiration than during inspiration. Decreasing lung volume from 70 to 30% of vital capacity increased Raw by 80%. Cti was larger at functional residual capacity than at the volume extremes. Preceding the measurement by a full expiration rather than by a full inspiration increased Iaw by 15%. The data suggest that the determinants of Raw and Iaw are not identical, that airway hysteresis is larger than lung hysteresis, and that respiratory muscle activity influences tissue properties.  相似文献   

5.
The changes in airways resistance (Raw) and inertance (Iaw) during single inspirations of pure methane, helium, neon, and ethane at a flow of 0.1 l/s were measured in six healthy subjects by use of a forced-oscillation technique. Raw and Iaw were computed from respiratory transfer impedance obtained at a frequency of 20 Hz by applying pressure oscillations at the chest and measuring flow at the mouth with a bag-in-box system. Compared with the air data, the changes of Iaw after inhalation of 500 ml of gas averaged -41.1% with methane, -82.8% with helium, -25.8% with neon, and +4.8% with ethane. These changes were slightly less than the changes in gas density (-45%, -86%, -31%, and +5%, respectively). The inhaled volumes at which 50% of the changes had occurred (V50) did not differ significantly among gases and were approximately 100 ml. For Raw the data were more noisy than for Iaw; they were discarded in two subjects because of a strong and irreproducible volume dependence in air. Consistent differences were seen between the remaining subjects, one of whom exhibited a predominant viscosity dependence of Raw, one a predominant density dependence, and two an intermediate pattern. V50s were larger for Raw than for Iaw, indicating a more peripheral distribution of Raw. For Raw, V50s were lower with helium than with methane, in agreement with the notion that density-dependent resistance is located mainly in the large airways. The results suggest that some information on the serial distribution of Raw and Iaw may be derived from impedance measurements with foreign gases.  相似文献   

6.
Respiratory impedance may be studied by measuring airway flow (Vaw) when pressure is varied at the mouth (input impedance) or around the chest (transfer impedance). A third possibility, which had not been investigated so far, is to apply pressure variations simultaneously at the two places, that is to vary ambient pressure (Pam). This provides respiratory impedance to ambient pressure changes (Zapc = Vaw/Pam). In that situation airway impedance (Zaw) and tissue impedance (Zt) are mechanically in parallel, and both are in series with alveolar gas impedance (Zg): Zapc = Zaw + Zg + Zaw.Zg/Zt. We assessed the frequency dependence of Zapc from 0.05 to 2 Hz in nine normal subjects submitted to sinusoidal Pam changes of 2-4 kPa peak to peak. The real part of Zapc (Rapc) was of 6.2 kPa.1(-1).s at 0.05 Hz and decreased to 1.9 kPa.1(-1).s at 2 Hz. Similarly the effective compliance (Capc), computed from the imaginary part of Zapc, decreased from 0.045 1.kPa-1 at 0.05 Hz to 0.027 1.kPa-1 at 2 Hz. Breathing against an added resistance of 0.46 kPa.1(-1).s exaggerated the negative frequency dependence of both Rapc and Capc. When values of airway resistance and inertance derived from transfer impedance data were introduced, Zapc was used to compute effective tissue resistance (Rt) and compliance (Ct). Rt was found to decrease from 0.32 to 0.15 kPa.1(-1).s and Ct from 1.11 to 0.64 1.kPa-1 between 0.25 and 2 Hz. Ct was slightly lower with the added resistance. These results are in good agreement with the data obtained by other approaches.  相似文献   

7.
Recent studies on respiratory impedance (Zrs) have predicted that at frequencies greater than 64 Hz a second resonance will occur. Furthermore, if one intends to fit a model more complicated than the simple series combination of a resistance, inertance, and compliance to Zrs data, the only way to ensure statistically reliable parameter estimates is to include data surrounding this second resonance. An additional question, however, is whether the resulting parameters are physiologically meaningful. We obtained input impedance data from eight healthy adult humans using discrete frequency forced oscillations from 4 to 200 Hz. Three resonant frequencies were seen: 8 +/- 2, 151 +/- 10, and 182 +/- 16 Hz. A seven-parameter lumped element model provided an excellent fit to the data in all subjects. This model consists of an airway resistance (Raw), which is linearly dependent on frequency, and airway inertance separated from a tissue resistance, inertance, and compliance by a shunt compliance (Cg) thought to represent gas compressibility. Model estimates of Raw and Cg were compared with those suggested by measurement of Raw and thoracic gas volume using a plethysmograph. In all subjects the model Raw and Cg were significantly lower than and not correlated with the corresponding plethysmographic measurement. We hypothesize that the statistically reliable but physiologically inconsistent parameters are a consequence of the distorting influence of airway wall compliance and/or airway quarter-wave resonance. Such factors are not inherent to the seven-parameter model.  相似文献   

8.
We investigated the effects of a selective beta(2)-agonist, salbutamol, and of phosphodiesterase type 4 inhibition with 4-(3-butoxy-4-methoxy benzyl)-2-imidazolidinone (Ro-20-1724) on the airway and parenchymal mechanics during steady-state constriction induced by MCh administered as an aerosol or intravenously (iv). The wave-tube technique was used to measure the lung input impedance (ZL) between 0.5 and 20 Hz in 31 anesthetized, paralyzed, open-chest adult Brown Norway rats. To separate the airway and parenchymal responses, a model containing an airway resistance (Raw) and inertance (Iaw), and a parenchymal damping (G) and elastance (H), was fitted to ZL spectra under control conditions, during steady-state constriction, and after either salbutamol or Ro-20-1724 delivery. In the Brown Norway rat, the response to iv MCh infusion was seen in Raw and G, whereas continuous aerosolized MCh challenge produced increases in G and H only. Both salbutamol, administered either as an aerosol or iv, and Ro-20-1724 significantly reversed the increases in Raw and G when MCh was administered iv. During the MCh aerosol challenge, Ro-20-1724 significantly reversed the increases in G and H, whereas salbutamol had no effect. These results suggest that, after MCh-induced changes in lung function, salbutamol increases the airway caliber. Ro-20-1724 is effective in reversing the airway narrowings, and it may also decrease the parenchymal constriction.  相似文献   

9.

Background

To characterise the acute physiological and inflammatory changes induced by low-dose RSV infection in mice.

Methods

BALB/c mice were infected as adults (8 wk) or weanlings (3 wk) with 1 × 105 pfu of RSV A2 or vehicle (intranasal, 30 μl). Inflammation, cytokines and inflammatory markers in bronchoalveolar lavage fluid (BALF) and airway and tissue responses to inhaled methacholine (MCh; 0.001 – 30 mg/ml) were measured 5, 7, 10 and 21 days post infection. Responsiveness to iv MCh (6 – 96 μg/min/kg) in vivo and to electrical field stimulation (EFS) and MCh in vitro were measured at 7 d. Epithelial permeability was measured by Evans Blue dye leakage into BALF at 7 d. Respiratory mechanics were measured using low frequency forced oscillation in tracheostomised and ventilated (450 bpm, flexiVent) mice. Low frequency impedance spectra were calculated (0.5 – 20 Hz) and a model, consisting of an airway compartment [airway resistance (Raw) and inertance (Iaw)] and a constant-phase tissue compartment [coefficients of tissue damping (G) and elastance (H)] was fitted to the data.

Results

Inflammation in adult mouse BALF peaked at 7 d (RSV 15.6 (4.7 SE) vs. control 3.7 (0.7) × 104 cells/ml; p < 0.001), resolving by 21 d, with no increase in weanlings at any timepoint. RSV-infected mice were hyperresponsive to aerosolised MCh at 5 and 7 d (PC200 Raw adults: RSV 0.02 (0.005) vs. control 1.1 (0.41) mg/ml; p = 0.003) (PC200 Raw weanlings: RSV 0.19 (0.12) vs. control 10.2 (6.0) mg/ml MCh; p = 0.001). Increased responsiveness to aerosolised MCh was matched by elevated levels of cysLT at 5 d and elevated VEGF and PGE2 at 7 d in BALF from both adult and weanling mice. Responsiveness was not increased in response to iv MCh in vivo or EFS or MCh challenge in vitro. Increased epithelial permeability was not detected at 7 d.

Conclusion

Infection with 1 × 105 pfu RSV induced extreme hyperresponsiveness to aerosolised MCh during the acute phase of infection in adult and weanling mice. The route-specificity of hyperresponsiveness suggests that epithelial mechanisms were important in determining the physiological effects. Inflammatory changes were dissociated from physiological changes, particularly in weanling mice.  相似文献   

10.
A tracking impedance estimation technique was developed to follow the changes in total respiratory impedance (Zrs) during slow total lung capacity maneuvers in six anesthetized and mechanically ventilated BALB/c mice. Zrs was measured with the wave-tube technique and pseudorandom forced oscillations at nine frequencies between 4 and 38 Hz during inflation from a transrespiratory pressure of 0-20 cmH2O and subsequent deflation, each lasting for approximately 20 s. Zrs was averaged for 0.125 s and fitted by a model featuring airway resistance (Raw) and inertance, and tissue damping and elastance (H). Lower airway conductance (Glaw) was linearly related to volume above functional residual capacity (V) between 0 and 75-95% maximum V, with a mean slope of dGlaw/dV = 13.6 +/- 4.6 cmH2O-1. s-1. The interdependence of Raw and H was characterized by two distinct and closely linear relationships for the low- and high-volume regions, separated at approximately 40% maximum V. Comparison of Raw with the highest-frequency resistance of the total respiratory system revealed a marked volume-dependent contribution of tissue resistance to total respiratory system resistance, resulting in the overestimation of Raw by 19 +/- 8 and 163 +/- 40% at functional residual capacity and total lung capacity, respectively, whereas the lowest frequency reactance was proportional to H; these findings indicate that single-frequency resistance values may become inappropriate as surrogates of Raw when tissue impedance is changing.  相似文献   

11.
Forced oscillatory impedance of the respiratory system at low frequencies   总被引:6,自引:0,他引:6  
Respiratory mechanical impedances were determined during voluntary apnea in five healthy subjects, by means of 0.25- to 5-Hz pseudo/random oscillations applied at the mouth. The total respiratory impedance was partitioned into pulmonary (ZL) and chest wall components with the esophageal balloon technique; corrections were made for the upper airway shunt impedance and the compressibility of alveolar gas. Neglect of these shunt effects did not qualitatively alter the frequency dependence of impedances but led to underestimations in impedance, especially in the chest wall resistance (Rw), which decreased by 20-30% at higher frequencies. The total resistance (Rrs) was markedly frequency dependent, falling from 0.47 +/- 0.06 (SD) at 0.25 Hz to 0.17 +/- 0.01 at 1 Hz and 0.15 +/- 0.01 kPa X l-1 X s at 5 Hz. The changes in Rrs were caused by the frequency dependence of Rw almost exclusively between 0.25 and 2 Hz and in most part between 2 and 5 Hz. The effective total respiratory (Crs,e) and pulmonary compliance were computed with corrections for pulmonary inertance derived from three- and five-parameter model fittings of ZL. Crs,e decreased from the static value (1.03 +/- 0.18 l X kPa-1) to a level of approximately 0.35 l X kPa-1 at 2-3 Hz; this change was primarily caused by the frequency-dependent behavior of chest wall compliance.  相似文献   

12.
13.
We have developed a new technique to directly measure airway resistance (Raw) in small animals with a pressure-type body plethysmograph equipped with a hot-wire microflow sensor. Seventeen male golden hamsters weighing 70-84 g were studied. Change in alveolar pressure (delta PA) was calculated from total gas volume and the respired volume difference through the flow sensor between the midpoints of the tidal excursion curve, reflecting the thorax movement. The ratio of delta PA to the flow difference between those two midpoints gave Raw. Raw was compared with pulmonary resistance, and inspiratory and expiratory resistances were also compared. Raw was 0.44 +/- 0.06 (SE) cmH2O.ml-1.s. Mean of the coefficients of variation of Raw was 19.6 +/- 3.2% (SE). Raw was well correlated with pulmonary resistance (r = 0.93). We demonstrated that Raw could be directly measured in small animals with a hot-wire flow sensor and a plethysmographic technique, and the values were well correlated with previously reported pulmonary resistance.  相似文献   

14.
Increased transforming growth factor (TGF)-alpha has been observed in neonatal chronic lung disease. Lungs of transgenic mice that overexpress TGF-alpha develop enlarged air spaces and pulmonary fibrosis compared with wild-type mice. We hypothesized that these pathological changes may alter the mechanical coupling of viscous and elastic forces within lung parenchyma. Respiratory impedance was measured in open-chested, tracheostomized adult wild-type and TGF-alpha mice by using the forced oscillation technique (0.25-19.63 Hz) delivered by flexiVent (Scireq, Montreal, PQ). Estimates of airway resistance (Raw), inertance (I), and the coefficients of tissue damping (G(L)) and tissue elastance (H(L)) were obtained by fitting a model to each impedance spectrum. Hysteresivity (eta) was calculated as G(L)/H(L). There was a significant increase in eta (P < 0.01) and a trend to a decrease in H(L) (P = 0.07) of TGF-alpha mice compared with the wild-type group. There was no significant change in Raw, I, or G(L). Structural abnormality present in the lungs of adult TGF-alpha mice alters viscoelastic coupling of the tissues, as evidenced by a change in eta.  相似文献   

15.
A setup is described for measuring the respiratory transfer impedance of conscious rats in the frequency range 16-208 Hz. The rats were placed in a restraining tube in which head and body were separated by means of a dough neck collar. The restraining tube was placed in a body chamber, allowing the application of pseudorandom noise pressure variations to the chest and abdomen. The flow at the airway opening was measured in a small chamber connected to the body chamber. The short-term reproducibility of the transfer impedance was tested by repeated measurements in nine Wistar rats. The mean coefficient of variation for the impedance did not exceed 10%. The impedance data were analyzed using different models of the respiratory system of which a three-coefficient resistance-inertance-compliance model provided the most reliable estimates of respiratory resistance (Rrs) and inertance (Irs). The model response, however, departed systematically from the measured impedance. A nine-coefficient model best described the data. Optimization of this model provided estimates of the respiratory tissue coefficients and upper and lower airway coefficients. Rrs with this model was 13.6 +/- 1.0 (SD) kPa.l-1.s, Irs was 14.5 +/- 1.3 Pa.l-1.s2, and tissue compliance (Cti) was 2.5 +/- 0.5 ml/kPa. The intraindividual coefficient of variation for Rrs and Irs was 11 and 18%, respectively. Because most of the resistance and inertance was located in the airways (85 and 81% of Rrs and Irs, respectively), the partitioning in tissue and upper and lower airway components was rather poor. Our values for Rrs and Irs of conscious rats were much lower and our values for Cti were higher than previously reported values for anesthetized rats.  相似文献   

16.
We have investigated the body surface flow/mouth flow transfer function (magnitude ratio and phase difference) in seven healthy male subjects driven at the chest from 4 to 30 Hz. The measurements were performed with a specially designed plethysmograph and analyzer. The subjects were driven with a mechanical oscillator placed on the sternum. After differences in gas temperature and humidity were taken into account, the data were in agreement up to 15 Hz with a simple second-order model including an airway compartment, with a resistance and an inertance, and a shunt compliance representing alveolar gas. At larger frequencies, closer inspection revealed that a third-order model was optimal. We interpret these results as indicating a compartmentalization of gas compliance within the thorax, communicating via a resistive element. Airway inertance did not seem to be distributed.  相似文献   

17.
Ascaris suum (AS) challenge in nonhuman primates is used as an animal model of human asthma. The primary goal of this study was to determine whether the airways and respiratory tissues in monkeys that are bronchoconstricted by AS inhalation behave similarly to those in asthmatic humans. Airway resistance (Raw) and tissue elastance (Eti) were estimated from respiratory system input (Zin) or transfer (Ztr) impedance. Zin (0.4-20 Hz) and Ztr (2-128 Hz) were measured in anesthetized cynomolgus monkeys (n = 10) under baseline (BL) and post-AS challenge conditions. Our results indicate that AS challenge in monkeys produces 1) predominantly an increase in Raw and not tissue resistance, 2) airway wall shunting at higher AS doses, and 3) heterogeneous airway constriction resulting in a decrease of lung parenchyma effective compliance. We investigated whether the airway and tissue properties estimated from Zin and Ztr were similar and found that Raw estimated from Zin and Ztr were correlated [r(2) = 0.76], not significantly different at BL (13.6 +/- 1.4 and 13.1 +/- 0.9 cmH(2)O. l(-1). s(-1), respectively), but significantly different post-AS (20.5 +/- 4.5 cmH(2)O. l(-1). s(-1) and 18.5 +/- 5.2 cmH(2)O. l(-1). s(-1)). There was no correlation between Eti estimated from Zin and Ztr. The changes in lung mechanical properties in AS-bronchoconstricted monkeys are similar to those recently reported in human asthma, confirming that this is a reasonable model of human asthma.  相似文献   

18.
The lumped six-element model of the respiratory system proposed by DuBois et al. (J. Appl. Physiol. 8: 587-594, 1956) has often been used to analyze respiratory system impedance (Zrs) data. This model predicts a resonance (relative minimum in Zrs) at fr between 6 and 10 Hz and an antiresonance (relative maximum in Zrs) at far at higher frequencies (greater than 64 Hz). The far is due to the lumped tissue inertance (Iti) and the alveolar gas compression compliance (Cg). An fr and far have been recently reported in humans, but the far was shown to be not related to Iti and Cg, but instead it is the first acoustic antiresonance of the airways due to their axial dimensions). Zrs data to frequencies high enough to include the far have not been reported in dogs. In this study, we measured Zrs in dogs for frequencies between 5 and 320 Hz and found an fr at 7.5 +/- 1.6 Hz and two far at 97 +/- 13 and 231 +/- 27 Hz (far,1 and far,2, respectively). When breathing 80% He-20% O2, the fr shifted to 14 +/- 2 Hz, far,1 did not change (98 +/- 9 Hz), and far,2 increased to greater than 320 Hz. The behavior of fr and far,1 is consistent with the structure-function implied by the six-element model. However, the presence of an far,2 is not consistent with this model, because it is the airway acoustic antiresonance not represented in the model. These results indicate that, for frequencies that include the fr and far,1, the six-element model can be used to analyze Zrs data and reliable estimates of the model's parameters can be extracted by fitting the model to the data. However, more complex models must be used to analyze Zrs data that include far,2.  相似文献   

19.
Many previous studies have fit lumped parameter models to respiratory input (Zin) and transfer (Ztr) impedance data. For frequency ranges higher than 4-32 Hz, a six-element model may be required in which an airway branch (with a resistance and inertance) is separated from a tissue branch (with a resistance, inertance, and compliance) by a shunt compliance. A sensitivity analysis is applied to predict the effects of frequency range on the accuracy of parameter estimates in this model obtained from Zin or Ztr data. Using a parameter set estimated from experimental data between 4 and 64 Hz in dogs, both Zin and Ztr were simulated from 4 to 200 Hz. Impedance sensitivity to each parameter was also calculated over this frequency range. The simulation predicted that for Zin a second resonance occurs near 80 Hz and that the impedance is considerably more sensitive to several of the parameters at frequencies surrounding this resonance than at any other frequencies. Also, unless data is obtained at very high frequencies (where the model is suspect), Zin data provides more accurate estimates than Ztr data. After adding random noise to the simulated Zin data, we attempted to extract the original parameters by using a nonlinear regression applied to three frequency ranges: 4-32, 4-64, and 4-110 Hz. Estimated parameters were substantially incorrect when using only 4- to 32-Hz or 4- to 64-Hz data, but nearly correct when fitting 4- to 110-Hz data. These results indicate that respiratory system parameters can be more accurately extracted from Zin than Ztr, and to make physiological inferences from parameter estimates based on Zin impedance data in dogs, the data must include frequencies surrounding the second resonance.  相似文献   

20.
In eight anesthetized and tracheotomized rabbits, we studied the transfer impedances of the respiratory system during normocapnic ventilation by high-frequency body-surface oscillation from 3 to 15 Hz. The total respiratory impedance was partitioned into pulmonary and chest wall impedances to characterize the oscillatory mechanical properties of each component. The pulmonary and chest wall resistances were not frequency dependent in the 3- to 15-Hz range. The mean pulmonary resistance was 13.8 +/- 3.2 (SD) cmH2O.l-1.s, although the mean chest wall resistance was 8.6 +/- 2.0 cmH2O.l-1.s. The pulmonary elastance and inertance were 0.247 +/- 0.095 cmH2O/ml and 0.103 +/- 0.033 cmH2O.l-1.s2, respectively. The chest wall elastance and inertance were 0.533 +/- 0.136 cmH2O/ml and 0.041 +/- 0.063 cmH2O.l-1.s2, respectively. With a linear mechanical behavior, the transpulmonary pressure oscillations required to ventilate these tracheotomized animals were at their minimal value at 3 Hz. As the ventilatory frequency was increased beyond 6-9 Hz, both the minute ventilation necessary to maintain normocapnia and the pulmonary impedance increased. These data suggest that ventilation by body-surface oscillation is better suited for relatively moderate frequencies in rabbits with normal lungs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号