首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
The hypoxia-inducible factor-1alpha (HIF-1alpha) subunit is activated in response to lack of oxygen. HIF-1alpha-specific prolyl hydroxylase and factor inhibiting HIF-1alpha (FIH-1) catalyze hydroxylation of the proline and asparagine residues of HIF-1alpha, respectively. The hydroxyproline then interacts with ubiquitin E3 ligase, the von Hippel-Lindau protein, leading to degradation of HIF-1alpha by ubiquitin-dependent proteasomes, while the hydroxylation of the asparagine residue prevents recruitment of the coactivator, cAMP-response element-binding protein (CBP), thereby decreasing the transactivation ability of HIF-1alpha. We found that the Zn-specific chelator, N,N,N',N'-tetrakis (2-pyridylmethyl) ethylenediamine (TPEN), enhances the activity of HIF-1alpha-proline hydroxylase 2 but the level of HIF-1alpha protein does not fall because TPEN also inhibits ubiquitination. Since the Zn chelator does not prevent FIH-1 from hydroxylating the asparagine residue of HIF-1alpha, its presence leads to the accumulation of HIF-1alpha that is both prolyl and asparaginyl hydroxylated and is therefore nonfunctional. In hypoxic cells, TPEN also prevents HIF-1alpha from interacting with CBP, so reducing expression of HIF-1alpha target genes. As a result, Zn chelation causes the accumulation of nonfunctional HIF-1alpha protein in both normoxia and hypoxia.  相似文献   

7.
8.
9.
10.
11.
Ueda K  Xu J  Morimoto H  Kawabe A  Imaoka S 《FEBS letters》2008,582(16):2357-2364
We identified MafG as a protein that interacts with HIF-1alpha, a key factor in hypoxic response, using the yeast two-hybrid system. Interaction between MafG and HIF-1alpha was confirmed by surface plasmon resonance and by translocation to the nucleolus with the NoLS signal. A knockdown of MafG reduced erythropoietin (EPO) mRNA levels as well as luciferase reporter activity with the hypoxia response element. The knockdown of MafG did not change total HIF-1alpha protein, but reduced the accumulation of HIF-1alpha in the nuclei. These results suggest that MafG regulates the hypoxic response of cells by detaining HIF-1alpha in the nuclei.  相似文献   

12.
13.
Bisphenol A (BpA), an endocrine-disrupting chemical, is known to be a xenoestrogen and to affect the reproductive functions of animals. Recent reports have documented BpA-induced developmental abnormalities in the neuronal systems of humans and animals, and these effects appear to be non-estrogenic. In this study, we found that BpA inhibited the hypoxic response of human hepatoma cells. The expression of hypoxic response genes such as the erythropoietin (EPO) gene is done via a hypoxia inducible factor 1 (HIF-1)-dependent signaling pathway. To investigate possible structural requirements for this inhibitory effect, several BpA analogs were synthesized and added to this system. The blocking of two phenol groups in BpA did not change the effect, but the inhibition completely disappeared by the removal of two central methyl groups in BpA (the resulting compound is designated BpF). BpA, but not BpF, promoted degradation of the HIF-1alpha protein, which is a component of HIF-1, followed by inhibition of EPO induction. An immunoprecipitation assay indicated that BpA dissociated heat shock protein 90 (Hsp90) from HIF-1alpha and destabilized HIF-1alpha protein. HIF-1alpha is usually degraded first by ubiquitination and then by the proteasome pathway. Cobalt ion inhibits ubiquitination of HIF-1alpha and stabilizes it. In the present study, BpA promoted HIF-1alpha degradation in the presence of cobalt and in the presence of proteasome inhibitor. These results suggest that BpA degraded HIF-1alpha via a currently unknown pathway, and that this phenomenon required two methyl groups in BpA.  相似文献   

14.
15.
16.
17.
Inhibition of HIF-1alpha activity provides an important strategy for the treatment of cancer. Recently, 3-(5'-hydroxymethyl-2'-furyl)-1-benzyl indazole (YC-1) has been identified as an anti-HIF-1alpha drug in cancer therapy with unclear molecular mechanism. In the present study, we aimed to investigate the effect and mechanism of YC-1 on HIF-1alpha in a hepatocellular carcinoma cell line under hypoxic condition, which was generated by incubating cells with 0.1% O(2). The phenotypic and molecular changes of cells were determined by cell proliferation assay, apoptosis assay, luciferase promoter assay, and Western blot analysis. YC-1 arrested tumor cell growth in a dose-dependent manner, whereas it did not induce cell apoptosis. Hypoxia-induced upregulation of HIF-1alpha was suppressed by YC-1 administration. YC-1 inhibited HIF-1alpha protein synthesis under normoxia and affected protein stability under hypoxia. YC-1 suppressed the expression of total and phosphorylated forms of murine double minute 2 (Mdm2), whereas this inhibitory effect was blocked by overexpression of Mdm2. In conclusion, YC-1 suppressed both protein synthesis and stability of HIF-1alpha in HCC cells, and its inhibitory effects on HIF-1alpha were dependent on Mdm2.  相似文献   

18.
19.
Activated hepatic stellate cells (HSCs) produce cyclooxygenase-2 (COX-2) protein to induce vascular endothelial growth factor (VEGF) production that participates in angiogenesis in injured liver. To reveal the unknown regulatory mechanism, we used hypoxic atmosphere mimicking injured-tissue microenvironment to induce VEGF expression in a rat hepatic stellate cell line (T6-HSCs). The present study showed that hypoxia up-regulated the protein levels of COX-2 and hypoxia-inducible factor-1-alpha (HIF-1alpha), but rapidly effected degradation of von Hippel-Lindau (vHL) protein. As a result, expression of VEGF in HSCs was markedly elevated; and pretreatment with COX-2 inhibitors (nimesulide or indomethacin) could significantly ameliorate the angiogenic event. Collectively, hypoxic HSCs increased accumulation of HIF-1alpha protein and induced VEGF expression in a time-dependent manner. Inhibition of COX-2 activities would prevent vHL protein from degradation and suppress HIF-1alpha up-regulation. Thus, vHL/HIF-1alpha has a regulatory role in COX-2-mediated VEGF production in hypoxic stellate cells in injured liver.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号