首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
3.
4.
The pyridoxal-5'-phosphate-dependent enzymes (B(6) enzymes), that operate in the metabolism of amino acids, are of multiple evolutionary origin. To estimate their rates of evolution, a total of 180 sequences of 21 B(6) enzymes from distantly related eukaryotic species were compared. The enzymes belong to all four evolutionarily independent families of B(6) enzymes with different folds, i.e., the large alpha family, the beta family, the d-alanine aminotransferase family, and the alanine racemase family. Their unit evolutionary periods, i.e., the time for a 1% sequence difference to accumulate between branches, ranged from 4.6 to 45.1 million years. Both, fastest changing serine pyruvate aminotransferase and most slowly changing glutamate decarboxylase are members of the alpha family. The evolutionary rates of the few enzymes belonging to the other three families were interspersed among those of the alpha family members. Enzymes that catalyze the same reaction, e.g., transamination or amino acid decarboxylation, with different substrates show widely varying rates. The absence of correlations of the rate of evolution with either protein fold or type of catalyzed reaction suggests that individual functional constraints have determined the differential rates of evolution of B(6) enzymes.  相似文献   

5.
6.
—An inverse relationship was demonstrable between the concentration of pyridoxal phosphate and the activity of pyridoxal kinase in rabbit brain. The administration of pyridoxine elevated the concentration of pyridoxal phosphate and decreased the activity of pyridoxal kinase. Conversely, the administration of deoxypyridoxine decreased the concentration of pyridoxal phosphate and increased the activity of pyridoxal kinase. The increase in the activity of pyridoxal kinase by deoxypyridoxine was blocked by actinomycin D or puromycin. These results were interpreted to indicate that the tissue availability of pyridoxal phosphate regulated the activity of pyridoxal kinase.  相似文献   

7.
8.
SUMMARY: The searchable mutant database PLPMDB has been developed to provide rapid and simple access to relevant mutant information on pyridoxal-5'-phosphate dependent enzymes. All data have been extracted from publications and publicly available databases, then organized in a relational database to enable searching via a web-based search form. The current version of PLPMDB contains 688 mutants described in 220 research papers. The database is a useful tool for planning mutant experiments and for interpretation of information from such experiments. AVAILABILITY: PLPMDB is freely accessible from http://www.studiofmp.com/plpmdb/index.htm.  相似文献   

9.
The three-dimensional structure of diaminopelargonic acid synthase, a vitamin B6-dependent enzyme in the pathway of the biosynthesis of biotin, has been determined to 1.8 A resolution by X-ray crystallography. The structure was solved by multi-wavelength anomalous diffraction techniques using a crystal derivatized with mercury ions. The protein model has been refined to a crystallographic R -value of 17.5% (R -free 22.6%). Each enzyme subunit consists of two domains, a large domain (residues 50-329) containing a seven-stranded predominantly parallel beta-sheet, surrounded by alpha-helices, and a small domain comprising residues 1-49 and 330-429. Two subunits, related by a non-crystallographic dyad in the crystals, form the homodimeric molecule, which contains two equal active sites. Pyridoxal-5'-phosphate is bound in a cleft formed by both domains of one subunit and the large domain of the second subunit. The cofactor is anchored to the enzyme by a covalent linkage to the side-chain of the invariant residue Lys274. The phosphate group interacts with main-chain nitrogen atoms and the side-chain of Ser113, located at the N terminus of an alpha-helix. The pyridine nitrogen forms a hydrogen bond to the side-chain of the invariant residue Asp245. Electron density corresponding to a metal ion, most likely Na(+), was found in a tight turn at the surface of the enzyme. Structure analysis reveals that diaminopelargonic acid synthase belongs to the family of vitamin B6-dependent aminotransferases with the same fold as originally observed in aspartate aminotransferase. A multiple structure alignment of enzymes in this family indicated that they form at least six different subclasses. Striking differences in the fold of the N-terminal part of the polypeptide chain are one of the hallmarks of these subclasses. Diaminopelargonic acid synthase is a member of the aminotransferase subclass III. From the structure of the non-productive complex of the holoenzyme with the substrate 7-keto-8-aminopelargonic acid the location of the active site and residues involved in substrate binding have been identified.  相似文献   

10.
Pyridoxal 5′-phosphate (PLP) dependent enzymes comprise a large family that plays key roles in amino acid metabolism and are acquiring an increasing interest as drug targets. For the identification of compounds inhibiting PLP-dependent enzymes, a chemogenomics-based approach has been adopted in this work. Chemogenomics exploits the information coded in sequences and three-dimensional structures to define pharmacophore models. The analysis was carried out on a dataset of 65 high-resolution PLP-dependent enzyme structures, including representative members of four-fold types. Evolutionarily conserved residues relevant to coenzyme or substrate binding were identified on the basis of sequence-structure comparisons. A dataset was obtained containing the information on conserved residues at substrate and coenzyme binding site for each representative PLP-dependent enzyme. By linking coenzyme and substrate pharmacophores, bifunctional pharmacophores were generated that will constitute the basis for future development of small inhibitors targeting specific PLP-dependent enzymes.  相似文献   

11.
12.
A multiple sequence alignment among aspartate aminotransferase, dialkylglycine decarboxylase, and serine hydroxymethyltransferase (DAS) was used for profile databank search. The DAS profile could detect similarities to other pyridoxal or pyridoxamine phosphate-dependent enzymes, like several gene products involved in dideoxysugar and deoxyaminosugar synthesis. The alignment among DAS and such gene products shows the conservation of aspartate 222 and lysine 258, which, in aspartate aminotransferase, interacts with the N1 of the coenzyme pyridine ring and forms the internal Schiff base, respectively. The lysine is replaced by histidine in the pyridoxamine phosphate-dependent gene products. The alignment indicates also that the region encompassing the coenzyme binding site is the most conserved.  相似文献   

13.
A NMR method for quantifying the catalytic efficiency and stereospecificity of the exchange of the alpha-protons of glycine is described. It is used to determine how the binding of the alpha-carboxylate group of amino acids contributes to the stereospecificity of exchange reactions catalysed by tryptophan synthase, serine hydroxymethyltransferase and a catalytic antibody utilising pyridoxal-5'-phosphate (PLP) as a cofactor. Using larger substrates, it is shown how the size of the amino acid side chain contributes to the stereospecificity of exchange. Mutants of aspartate aminotransferase are used to determine how substrate binding controls the catalytic efficiency and stereospecificity of the exchange of the alpha-protons of aspartate and glutamate. Evidence is presented which shows that with serine hydroxymethyltransferase, L-norleucine is not bound at the same catalytic site as glycine. Finally the catalytic efficiency and stereospecificity of the alpha-proton exchange reactions catalysed by all the PLP-dependent catalysts examined are compared.  相似文献   

14.
Pyridoxal 5′-phosphate (pyridoxal phosphate, PLP) is an essential cofactor for multiple enzymatic reactions in industry. However, cofactor engineering based on PLP regeneration and related to the performance of enzymes in chemical production has rarely been discussed. First, we found that MG1655 strain was sensitive to nitrogen source and relied on different amino acids, thus the biomass was significantly reduced when PLP excess in the medium. Then, the six KEIO collection strains were applied to find out the prominent gene in deoxyxylulose-5-phosphate (DXP) pathway, where pdxB was superior in controlling cell growth. Therefore, the clustered regularly interspaced short palindromic repeats interference (CRISPRi) targeted on pdxB in MG1655 was employed to establish a novel direct enzymatic evaluation platform (DEEP) as a high-throughput tool and obtained the optimal modules for incorporating of PLP to enhance the biomass and activity of PLP-dependent enzymes simultaneously. As a result, the biomass has increased by 55% using PlacI promoter driven pyridoxine 5′-phosphate oxidase (PdxH) with a trace amount of precursor. When the strains incorporated DEEP and lysine decarboxylase (CadA), the cadaverine productivity was increased 32% due to the higher expression of CadA. DEEP is not only feasible for high-throughput screening of the best chassis for PLP engineering but also practical in fine-tuning the quantity and quality of enzymes.  相似文献   

15.
16.
Pyridoxal-5-phosphate (in a lesser degree, pyridoxal) interacts with both non-protonated and protonated exposed epsilon-amino groups of lysine residues and with alpha-amino groups in human serum albumin and pancreatic ribonuclease A. The reaction of Schiff base formation proceeds within a wide pH range--from 3.0 to 12.0. At a great pyridoxal-5-phosphate excess in ribonuclease A in neutral or slightly acidic aqueous media all the ten epsilon-amino groups of lysine residues and the alpha-amino groups of Lys-1 become modified. The formation of aldimine bonds of pyridoxal-5-phosphate with protonated amino groups in acidic media is determined by ionization of its phenol hydroxyl and phosphate residues. Acetaldehyde, propionic aldehyde and pyridine aldehyde interact only with non-protonated amino groups of the proteins. The equilibrium constants of pyridoxal-5-phosphate and other aldehydes binding to proteins and amino acids were determined. The rate constants of Schiff base formation for pyridoxal-5-phosphates with some amino acids and primary sites of proteins for direct and reverse reactions were calculated.  相似文献   

17.
In quantitative measurements of pyridoxal-5'-phosphate and pyridoxal in enzymes routinely used phenylhydrasine was substituted for 4-nitrophenylhydrasine. This increased the sensitivity of the method by 70%. The modified procedure had another advantage: it allowed measurements of the optic density of resulting 4-nitrophenylhydrasones at 430 nm for acid solutions and at 550 nm for alkaline solutions.  相似文献   

18.
Rabbit muscle glycogen phosphorylase (EC 2.4.1.1) was reconstituted with pyridoxal 5′-methylenephosphonate with ca. 25% restoration of enzymatic activity. The modified enzyme has very similar chemical and physical properties to native phosphorylase including UV and fluorescence spectra, quaternary structure, high energy of activation in the reconstitution reaction, optimum pH and susceptibility to phosphorylase kinase in the b to a conversion. While Vmax is reduced to ca. one-fifth, affinities for the substrate glucose 1-P and the effector AMP are increased. This is the first analog of pyridoxal 5′-P modified in the 5′-position found to restore catalytic activity to apophosphorylase.  相似文献   

19.
20.
Success has been achieved in detailed understanding of tautomeric and isomeric equilibria and search for the new tautomeric and isomeric forms of oximes of pyridoxal, pyridoxal-5'-phosphate and some of their analogs, their presence is explained. This is due to a careful deconvolution of absorption spectra of different ionic forms of oximes into bands corresponding to separate electronic transitions. The spectroscopical data and the results of quantum-chemical calculations are compared for all the forms of compounds under investigation. As it has been found to be valid for other vitamin B6 derivatives as well, quantum-chemical calculations can be used for analytical purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号