首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Everglades periphyton mats are tightly-coupled autotrophic (algae and cyanobacteria) and heterotrophic (eubacteria, fungi and microinvertebrates) microbial assemblages. We investigated the effect of water column total phosphorus and nitrogen concentrations, water depth and hydroperiod on periphyton of net production, respiration, nutrient content, and biomass. Our study sites were located along four transects that extended southward with freshwater sheetflow through sawgrass-dominated marsh. The water source for two of the transects were canal-driven and anchored at canal inputs. The two other transects were rain-driven (ombrotrophic) and began in sawgrass-dominated marsh. Periphyton dynamics were examined for upstream and downstream effects within and across the four transects. Although all study sites were characterized as short hydroperiod and phosphorus-limited oligotrophic, they represent gradients of hydrologic regime, water source and water quality of the southern Everglades. Average periphyton net production of 1.08 mg C AFDW−1 h−1 and periphyton whole system respiration of 0.38 mg C AFDW−1 h−1 rates were net autotrophic. Biomass was generally highest at ombrotrophic sites and sites downstream of canal inputs. Mean biomass over all our study sites was high, 1517.30 g AFDW m−2. Periphyton was phosphorus-limited. Average periphyton total phosphorus content was 137.15 μg P g−1 and average periphyton total N:P ratio was 192:1. Periphyton N:P was a sensitive indicator of water source. Even at extremely low mean water total phosphorus concentrations ( ≤ 0.21 μmol l−1), we found canal source effects on periphyton dynamics at sites adjacent to canal inputs, but not downstream of inflows. These canal source effects were most pronounced at the onset of wet season with initial rewetting. Spatial and temporal variability in periphyton dynamics could not solely be ascribed to water quality, but was often associated with both hydrology and water source.  相似文献   

2.
The Florida Everglades is a naturally oligotrophic hydroscape that has experienced large changes in ecosystem structure and function as the result of increased anthropogenic phosphorus (P) loading and hydrologic changes. We present whole-ecosystem models of P cycling for Everglades wetlands with differing hydrology and P enrichment with the goal of synthesizing existing information into ecosystem P budgets. Budgets were developed for deeper water oligotrophic wet prairie/slough (‘Slough’), shallower water oligotrophic Cladium jamaicense (‘Cladium’), partially enriched C. jamaicense/Typha spp. mixture (‘Cladium/Typha’), and enriched Typha spp. (‘Typha’) marshes. The majority of ecosystem P was stored in the soil in all four ecosystem types, with the flocculent detrital organic matter (floc) layer at the bottom of the water column storing the next largest proportion of ecosystem P pools. However, most P cycling involved ecosystem components in the water column (periphyton, floc, and consumers) in deeper water, oligotrophic Slough marsh. Fluxes of P associated with macrophytes were more important in the shallower water, oligotrophic Cladium marsh. The two oligotrophic ecosystem types had similar total ecosystem P stocks and cycling rates, and low rates of P cycling associated with soils. Phosphorus flux rates cannot be estimated for ecosystem components residing in the water column in Cladium/Typha or Typha marshes due to insufficient data. Enrichment caused a large increase in the importance of macrophytes to P cycling in Everglades wetlands. The flux of P from soil to the water column, via roots to live aboveground tissues to macrophyte detritus, increased from 0.03 and 0.2 g P m−2 yr−1 in oligotrophic Slough and Cladium marsh, respectively, to 1.1 g P m−2 yr−1 in partially enriched Cladium/Typha, and 1.6 g P m−2 yr−1 in enriched Typha marsh. This macrophyte translocation P flux represents a large source of internal eutrophication to surface waters in P-enriched areas of the Everglades.  相似文献   

3.
We present here a 4-year dataset (2001–2004) on the spatial and temporal patterns of aboveground net primary production (ANPP) by dominant primary producers (sawgrass, periphyton, mangroves, and seagrasses) along two transects in the oligotrophic Florida Everglades coastal landscape. The 17 sites of the Florida Coastal Everglades Long Term Ecological Research (FCE LTER) program are located along fresh-estuarine gradients in Shark River Slough (SRS) and Taylor River/C-111/Florida Bay (TS/Ph) basins that drain the western and southern Everglades, respectively. Within the SRS basin, sawgrass and periphyton ANPP did not differ significantly among sites but mangrove ANPP was highest at the site nearest the Gulf of Mexico. In the southern Everglades transect, there was a productivity peak in sawgrass and periphyton at the upper estuarine ecotone within Taylor River but no trends were observed in the C-111 Basin for either primary producer. Over the 4 years, average sawgrass ANPP in both basins ranged from 255 to 606 g m−2 year−1. Average periphyton productivity at SRS and TS/Ph was 17–68 g C m−2 year−1 and 342–10371 g C m−2 year−1, respectively. Mangrove productivity ranged from 340 g m−2 year−1 at Taylor River to 2208 g m−2 year−1 at the lower estuarine Shark River site. Average Thalassia testudinum productivity ranged from 91 to 396 g m−2 year−1 and was 4-fold greater at the site nearest the Gulf of Mexico than in eastern Florida Bay. There were no differences in periphyton productivity at Florida Bay. Interannual comparisons revealed no significant differences within each primary producer at either SRS or TS/Ph with the exception of sawgrass at SRS and the C−111 Basin. Future research will address difficulties in assessing and comparing ANPP of different primary producers along gradients as well as the significance of belowground production to the total productivity of this ecosystem.  相似文献   

4.
Abundance, depth distribution, potential productivity and respiration of periphyton on short-time (1 month) and long-time incubated strips were followed monthly during the winter–spring (January–May) transition in a shallow eutrophic lake. A taxonomic shift occurred from dominance of diatoms under ice to chlorophyte dominance in spring communities on the long-time incubated strips, while diatoms dominated until May on the short-time incubated strips. Periphyton biomass accrual was low during the ice-covered winter months (November–January: 4 mg chl a m−2 month−1), but increased to a maximum of 112 mg chl a m−2 month−1 immediately after ice-out in February. During February–April, the biomass remained constant before declining in May. Periphyton on long-time incubated strips was equally distributed in the water column in winter (January–February), but was higher near the water surface in spring (March–May). Periphyton did not change with depth on the short-time incubated strips. The potential production to respiration ratio (P/R) was negatively correlated with periphyton biomass. Throughout the study, P/R was <1 for the short-time incubated periphyton, while this was only the case in March–April for the long-time incubations. This study showed a high productive capacity of winter periphyton, resulting in accumulation of a relatively high periphytic biomass early in the season. A massive periphyton density in eutrophic lakes already in winter–spring may potentially delay or prevent the establishment and re-occurrence of submerged macrophytes in the early oligotrophication phase following a reduction of the external nutrient loading. Handling editor: Luigi Naselli-Flores  相似文献   

5.
Regester KJ  Lips KR  Whiles MR 《Oecologia》2006,147(2):303-314
Breeding adults and metamorphosing larval amphibians transfer energy between freshwater and terrestrial ecosystems during seasonal migrations and emergences, although rarely has this been quantified. We intensively sampled ambystomatid salamander assemblages (Ambystoma opacum,A. maculatum, and A. tigrinum) in five forested ponds in southern Illinois to quantify energy flow associated with egg deposition, larval production, and emergence of metamorphosed larvae. Oviposition by female salamanders added 7.0–761.4 g ash-free dry mass (AFDM) year−1 to ponds (up to 5.5 g AFDM m−2 year−1). Larval production ranged from 0.4 to 7.4 g AFDM m−2 year−1 among populations in three ponds that did not dry during larval development, with as much as 7.9 g AFDM m−2 year−1 produced by an entire assemblage. Mean larval biomass during cohort production intervals in these three ponds ranged from 0.1 to 2.3 g AFDM m−2 and annual P/B (production/biomass) ranged from 4 to 21 for individual taxa. Emergent biomass averaged 10% (range=2–35%) of larval production; larval mortality within ponds accounted for the difference. Hydroperiod and intraguild predation limited larval production in some ponds, but emerging metamorphs exported an average of 70.0±33.9 g AFDM year−1 (range=21.0–135.2 g AFDM year−1) from ponds to surrounding forest. For the three ponds where larvae survived to metamorphosis, salamander assemblages provided an average net flux of 349.5±140.8 g AFDM year−1 into pond habitats. Among all ponds, net flux into ponds was highest for the largest pond and decreased for smaller ponds with higher perimeter to surface area ratios (r 2 =0.94, P<0.05, n=5). These results are important in understanding the multiple functional roles of salamanders and the impact of amphibian population declines on ecosystems. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

6.
The use of periphyton nitrogenase activity (biological N2 fixation) as an indicator of wetland P impact was assessed using patterns of nutrient content (C, N, P, Ca, Mg, K, Fe, and Mn) and acetylene reduction (AR) in floating cyanobacterial periphyton mat (metaphyton) communities of a P-enriched portion of the Florida Everglades, USA (Water Conservation Area-2A, WCA-2A). Spatial patterns of nutrients indicate the enrichment of floating mat periphyton N, P, Fe, and K, and the reduction of Mn and TN:TP in enriched marsh areas. In highly enriched areas, floating mat periphyton AR was approximately threefold greater than that in less enriched, interior marsh zones. Multiple regression models indicated AR dependence on P in eutrophic WCA-2A areas while the AR of more interior marsh periphyton mats was more closely related to tissue levels of Ca and Fe. Nitrogenase activity of floating mat periphyton from P-loaded mesocosms revealed a significant enhancement of N2 fixation in samples receiving approximately 2–3 mg P m−2 of cumulative P dosing or with biomass TP content of 100–300 mg kg−1. At P contents above the optimum, mat periphyton AR was suppressed possibly as a result of changes in species composition or increased levels of NH4+. After 3 years of dosing, consistently high AR occurred only at low rates of P enrichment (0.4–0.8 g P m−2 yr−1), and the patterns appeared to be seasonal. These findings agree with the hypothesis that P availability is a key determinant of nitrogenase activity in aquatic systems, and thus, may support the use of periphyton nitrogenase to indicate P impacts in P-limited systems. These results also demonstrate the potential existence of a P threshhold for biogeochemical alteration of periphyton mat function in the Everglades, and that cumulative loading of limiting nutrients (i.e., P), rather than instantaneous concentrations, should be considered when evaluating nutrient criteria.  相似文献   

7.
This study examined the effects land use on biomass and ecological stoichiometry of periphyton in 36 streams in southeastern New York State (USA). We quantified in-stream and land-use variables along a N–S land-use gradient at varying distances from New York City (NYC). Streams draining different landscapes had fundamentally different physical, chemical, and biological properties. Human population density significantly decreased (r = −0.739; P < 0.00001), while % agricultural land significantly increased (r = 0.347; P = 0.0379) with northing. Turbidity, temperature, conductivity, and dissolved Mg, Ca, SRP, pH, DOC, and Si significantly increased in more urban locations, but NO3 and NH4 + did vary not significantly along the gradient. Periphyton biomass (as AFDM and Chl-a) in rural streams averaged one-third to one-fifth that measured in urban locations. Periphyton biomass in urban streams averaged 18.8 ± 6.0 g/m2 AFDM and 75.6 ± 28.5 mg/m2 Chl-a. Urban Chl-a levels ranging between 100 and 200 mg/m2, are comparable to quantities measured in polluted agricultural streams in other regions, but in our study area was not correlated with % agricultural land. Periphyton nutrient content also varied widely; algal C varied >20-fold (0.06–1.7 μmol/mm2) while N and P content varied >6-fold among sites. Algal C, N, and P correlated negatively with distance from NYC, suggesting that periphyton in urban streams may provide greater nutrition for benthic consumers. C:N ratios averaged 7.6 among streams, with 91% very close to 7.5, a value suggested as the optimum for algal growth. In contrast, periphyton C:P ratios ranged from 122 to >700 (mean = 248, twice Redfield). Algal-P concentrations were significantly greater in urban streams, but data suggest algal growth was P-limited in most streams regardless of degree of urbanization. GIS models indicate that land-use effects did not easily fit into strict categories, but varied continuously from rural to urban conditions. We propose that the gradient approach is the most effective method to characterize the influence of land use and urbanization on periphyton and stream function.  相似文献   

8.
Periphyton (epilithon) gross primary production (GPP) was estimated using the DCMU-fluorescence method in the Yenisei River. In the unshaded littoral zone, chlorophyll a concentration (Chl a) and GPP value varied from 0.83 to 973.74 mg m−2and 2–304,425 O2 m−2 day−1 (0.64–95 133 mg C m−2 day−1), respectively. Positive significant correlation (r = 0.8) between daily GPP and periphyton Chl a was found. Average ratio GPP:Chl a for periphyton was 36.36 mg C mg Chl a m−2 day−1. The obtained GPP values for the Yenisei River have a high significant correlation with values predicted by a conventional empirical model for stream periphyton. We concluded that the DCMU-fluorescence method can be successfully used for measuring of gross primary production of stream phytoperiphyton at least as another useful tool for such studies.  相似文献   

9.
Allochthonous inputs of detritus represent an important energy source for streams in forested regions, but dynamics of these materials are not well studied in neotropical headwater streams. As part of the tropical amphibian declines in streams (TADS) project, we quantified benthic organic matter standing stocks and organic seston dynamics in four Panamanian headwater streams, two with (pre-amphibian decline) and two without (post-decline) healthy amphibian assemblages. We also measured direct litterfall and lateral litter inputs in two of these streams. Continuous litterfall and monthly benthic samples were collected for 1 year, and seston was collected 1–3 times/month for 1 year at or near baseflow. Direct litterfall was similar between the two streams examined, ranging from 934–1,137 g DM m−2 y−1. Lateral inputs were lower, ranging from 140–187 g DM m−1 y−1. Dead leaves (57–60%), wood (24–29%), and green leaves (8–9%) contributed most to inputs, and total inputs were generally higher during the rainy season. Annual habitat-weighted benthic organic matter standing stocks ranged from 101–171 g AFDM m−2 across the four study reaches, with ∼4 × higher values in pools compared to erosional habitats. Total benthic organic matter (BOM) values did not change appreciably with season, but coarse particulate organic matter (CPOM, >1 mm) generally decreased and very fine particulate organic matter (VFPOM, 1.6–250 μm) generally increased during the dry season. Average annual seston concentrations ranged from 0.2–0.6 mg AFDM l−1 (fine seston, <754 μm >250 μm) and 2.0–4.7 mg AFDM l−1 (very fine, <250 μm >1.6 μm), with very fine particles composing 85–92% of total seston. Quality of fine seston particles in the two reaches where tadpoles were present was significantly higher (lower C/N) than the two where tadpoles had been severely reduced (P = 0.0028), suggesting that ongoing amphibian declines in this region are negatively influencing the quality of particles exported from headwaters. Compared to forested streams in other regions, these systems receive relatively high amounts of allochthonous litter inputs but have low in-stream storage. Handling editor: J. Padisak  相似文献   

10.
The catabolic diversity of wetland microbial communities may be a sensitive indicator of nutrient loading or changes in environmental conditions. The objectives of this study were to assess the response of periphyton and microbial communities in water conservation area-2a (WCA-2a) of the Everglades to additions of C-substrates and inorganic nutrients. Carbon dioxide and CH4 production rates were measured using 14 days incubation for periphyton, which typifies oligotrophic areas, and detritus, which is prevalent at P-impacted areas of WCA-2a. The wetland was characterized by decreasing P levels from peripheral to interior, oligotrophic areas. Microbial biomass and N mineralization rates were higher for oligotrophic periphyton than detritus. Methane production rates were also higher for unamended periphyton (80 mg CH4-C kg−1 d−1) than detritus (22 mg CH4-C kg−1 d−1), even though the organic matter content was higher for detritus (80%) than periphyton (69%). Carbon dioxide production for unamended periphyton (222 mg CO2-C kg−1 d−1) was significantly greater than unamended detritus (84 mg CO2-C kg−1 d−1). The response of the heterotrophic microbial community to added C-substrates was related to the nutrient status of the wetland, as substrate-induced respiration (SIR) was higher for detritus than periphyton. Amides and polysaccharides stimulated SIR more than other C-substrates, and methanogenesis was greater contributor to SIR for periphyton than detritus. Inorganic P addition stimulated CO2 and CH4 production for periphyton but not detritus, indicating a P limitation in the interior areas of WCA-2a. Continued nutrient loading into oligotrophic areas of WCA-2a or enhanced internal nutrient cycling may stimulate organic matter decomposition and further contribute to undesirable changes to the Everglades ecosystem caused by nutrient enrichment.  相似文献   

11.
The abundance, community structure and nutrient content of periphyton, and the host plant taxa Chara, Hydrilla, Potamogeton, Vallisneria and Scirpus were studied in Lake Okeechobee, USA. Water levels were generally high during the study period (August 2002–January 2006), but substantial fluctuations occurred. All host plant biomass was seasonally variable but only Vallisneria biomass was spatially variable. All submerged plant beds disappeared after the passage of two hurricanes in September 2004, and a third hurricane passed over the lake in October 2005. Periphyton assemblages were statistically separated most by substrate and then by season. Prior to the hurricanes, annual maxima of periphyton biovolumes and those of summer submerged plant coverage coincided. During all study years, the diatom taxa dominated periphyton total biovolumes. Periphyton biomass was generally highest during the summer or prior to the hurricanes (in the case of epiphytes) and was spatially variable in the case of both Scirpus and Vallisneria. Epiphytic nutrient contents within each host plant group seasonally varied except for nitrogen and carbon in the Vallisneria epiphytes. Epipelic nutrient contents were spatially variable and seasonally variable for carbon. Nutrient contents in epipelon were significantly higher than that in Scirpus epiphytes and were similar but lower among all epiphytic communities. The total annual areal potential epiphytic phosphorus storage extrapolated during this study (2.0 × 10−4 metric tons ha−1 year−1) was underestimated because storage estimates for epipelon, Chara and Hydrilla-associated epiphytes were omitted. The Chara and Hydrilla-associated epiphytic nutrient storage values were omitted because of limited data, whereas the epipelic data may have not been spatially representative. For periphyton biovolume, host substrate type, water level fluctuation and hurricane impacts on host substrates appear to be more important than seasonal variation in such factors as temperature and nutrients. Epiphytic nutrient storage appears to be influenced most by water level fluctuation and hurricane-related impacts, while the host substrate type appears to be a less important factor than it is for periphyton biovolume. Maximum periphyton biomass and high nutrient storage in shallow subtropical and tropical eutrophic lakes may only occur at consistently lower water levels and during infrequent periods of disturbance, which enhance host substrate colonizable area.  相似文献   

12.
The Florida Everglades is a mosaic of short and long-hydroperiod marshes that differ in the depth, duration, and timing of inundation. Algae are important primary producers in widespread Everglades’ periphyton mats, but relationships of algal production and community structure to hydrologic variability are poorly understood. We quantified differences in algal biomass and community structure between periphyton mats in 5 short and 6 long-hydroperiod marshes in Everglades National Park (ENP) in October 2000. We related differences to water depth and total phosphorus (TP) concentration in the water, periphyton and soils. Long and short-hydroperiod marshes differed in water depth (73 cm vs. 13 cm), periphyton TP concentrations (172μg g−1 vs. 107 μg g−1, respectively) and soil TP (284 μg g−1 vs. 145 μg g−1). Periphyton was abundant in both marshes, with short-hydroperiod sites having greater biomass than long-hydroperiod sites (2936 vs. 575 grams ash-free dry mass m−2). A total of 156 algal taxa were identified and separated into diatom (68 species from 21 genera) and “soft algae” (88 non-diatom species from 47 genera) categories for further analyses. Although diatom total abundance was greater in long-hydroperiod mats, diatom species richness was significantly greater in short- hydroperiod periphyton mats (62 vs. 47 diatom taxa). Soft algal species richness was greater in long-hydroperiod sites (81 vs. 67 soft algae taxa). Relative abundances of individual taxa were significantly different among the two site types, with soft algal distributions being driven by water depth, and diatom distributions by water depth and TP concentration in the water and periphyton. Periphyton communities differ between short and long-hydroperiod marshes, but because they share many taxa, alterations in hydroperiod could rapidly promote the alternate community. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

13.
Although fungi are known to colonize and decompose plant tissues in various environments, there is scanty information on fungal communities on wetland plants, their relation to microhabitat conditions, and their link to plant litter decomposition. We examined fungal diversity and succession on Phragmites australis leaves both attached to standing shoots and decaying in the litter layer of a brackish tidal marsh. Additionally, we followed changes in fungal biomass (ergosterol), leaf nitrogen dynamics, and litter mass loss on the sediment surface of the marsh. Thirty-five fungal taxa were recorded by direct observation of sporulation structures. Detrended correspondence analysis and cluster analysis revealed distinct communities of fungi sporulating in the three microhabitats examined (middle canopy, top canopy, and litter layer), and indicator species analysis identified a total of seven taxa characteristic of the identified subcommunities. High fungal biomass developed in decaying leaf blades attached to standing shoots, with a maximum ergosterol concentration of 548 ± 83 μg g–1 ash-free dry mass (AFDM; mean ± SD). When dead leaves were incorporated in the litter layer on the marsh surface, fungi experienced a sharp decline in biomass (to 191 ± 60 μg ergosterol g–1 AFDM) and in the number of sporulation structures. Following a lag phase, species not previously detected began to sporulate. Leaves placed in litter bags on the sediment surface lost 50% of their initial AFDM within 7 months (k = −0.0035 day–1) and only 21% of the original AFDM was left after 11 months. Fungal biomass accounted for up to 34 ± 7% of the total N in dead leaf blades on standing shoots, but to only 10 ± 4% in the litter layer. These data suggest that fungi are instrumental in N retention and leaf mass loss during leaf senescence and early aerial decay. However, during decomposition on the marsh surface, the importance of living fungal mass appears to diminish, particularly in N retention, although a significant fraction of total detrital N may remain associated with dead hyphae.  相似文献   

14.
The effects of shade on benthic calcareous periphyton were tested in a short-hydroperiod oligotrophic subtropical wetland (freshwater Everglades). The experiment was a split-plot design set in three sites with similar environmental characteristics. At each site, eight randomly selected 1-m2 areas were isolated individually in a shade house, which did not spectrally change the incident irradiance but reduced it quantitatively by 0, 30, 50, 60, 70, 80, 90 and 98%. Periphyton mat was sampled monthly under each shade house for a 5 month period while the wetland was flooded. Periphyton was analyzed for thickness, DW, AFDW, chlorophyll a (chl a) and incubated in light and dark BOD bottles at five different irradiances to assess its photosynthesis–irradiance (PI) curve and respiration. The PI curves parameters P max, I k and eventually the photoinhibition slope (β) were determined following non-linear regression analyses. Taxonomic composition and total algal biovolume were determined at the end of the experiment. The periphyton composition did not change with shade but the PI curves were significantly affected by it. I k increased linearly with increasing percent irradiance transmittance (%IT = 1−%shade). P max could be fitted with a PI curve equation as it increased with %IT and leveled off after 10%IT. For each shade level, the PI curve was used to integrate daily photosynthesis for a day of average irradiance. The daily photosynthesis followed a PI curve equation with the same characteristics as P max vs. %IT. Thus, periphyton exhibited a high irradiance plasticity under 0–80% shade but could not keep up the same photosynthetic level at higher shade, causing a decrease in daily GPP at 98% shade levels. The plasticity was linked to an increase in the chl a content per cell in the 60–80% shade, while this increase was not observed at lower shade likely because it was too demanding energetically. Thus, chl a is not a good metric for periphyton biomass assessment across variously shaded habitats. It is also hypothesized that irradiance plasticity is linked to photosynthetic coupling between differently comprised algal layers arranged vertically within periphyton mats that have different PI curves.  相似文献   

15.
To determine relationships between soil nutrient status and known gradients in primary production, we collected and analyzed soils from 17 LTER sampling sites along two transects through south Florida wetland ecosystems. Through upstream freshwater marsh, a middle reach including the oligohaline marsh/mangrove ecotone, and downstream estuarine habitats, we observed systematic variation in soil bulk density, organic content, and pools of phosphorus (P), inorganic sulfur, and extractable iron. Consistent with observed differences in wetland productivity known to be limited by P availability, total P averaged ~200 μg g dw−1 in soils from the eastern Taylor Slough/Panhandle and was on average three times higher in soils from the western Shark River Slough. Along both transects, the largest pool of phosphorus was the inorganic, carbonate-bound fraction, comprising 35–44% of total P. Greater than 90% of the total inorganic sulfur pool in these south Florida wetland soils was extracted as pyrite. Freshwater marsh sites typically were lower in pyrite sulfur (0.2–0.8 mg g dw−1) relative to marsh/mangrove ecotone and downstream estuary sites (0.5–2.9 mg g dw−1). Extractable iron in freshwater marsh soils was significantly higher from the Taylor Slough/Panhandle transect (3.2 mg g dw−1) relative to the western Shark River Slough transect (1.1 mg g dw−1), suggesting spatial variation in sources and/or depositional environments for iron. Further, these soil characteristics represent the collective, integrated signal of ecosystem structure, so any long-term changes in factors like water flow or water quality may be reflected in changes in bulk soil properties. Since the objective of current Everglades restoration initiatives is the enhancement and re-distribution of freshwater flows through the south Florida landscape, the antecedent soil conditions reported here provide a baseline against which future, post-restoration measurements can be compared.  相似文献   

16.
Daoust RJ  Childers DL 《Oecologia》2004,141(4):672-686
We conducted a low-level phosphorus (P) enrichment study in two oligotrophic freshwater wetland communities (wet prairies [WP] and sawgrass marsh [SAW]) of the neotropical Florida Everglades. The experiment included three P addition levels (0, 3.33, and 33.3 mg P m–2 month–1), added over 2 years, and used in situ mesocosms located in northeastern Everglades National Park, Fla., USA. The calcareous periphyton mat in both communities degraded quickly and was replaced by green algae. In the WP community, we observed significant increases in net aboveground primary production (NAPP) and belowground biomass. Aboveground live standing crop (ALSC) did not show a treatment effect, though, because stem turnover rates of Eleocharis spp., the dominant emergent macrophyte in this community, increased significantly. Eleocharis spp. leaf tissue P content decreased with P additions, causing higher C:P and N:P ratios in enriched versus unenriched plots. In the SAW community, NAPP, ALSC, and belowground biomass all increased significantly in response to P additions. Cladium jamaicense leaf turnover rates and tissue nutrient content did not show treatment effects. The two oligotrophic communities responded differentially to P enrichment. Periphyton which was more abundant in the WP community, appeared to act as a P buffer that delayed the response of other ecosystem components until after the periphyton mat had disappeared. Periphyton played a smaller role in controlling ecosystem dynamics and community structure in the SAW community. Our data suggested a reduced reliance on internal stores of P by emergent macrophytes in the WP that were exposed to P enrichment. Eleocharis spp. rapidly recycled P through more rapid aboveground turnover. In contrast, C. jamaicense stored added P by initially investing in belowground biomass, then shifting growth allocation to aboveground tissue without increasing leaf turnover rates. Our results suggest that calcareous wetland systems throughout the Caribbean, and oligotrophic ecosystems in general, respond rapidly to low-level additions of their limiting nutrient.  相似文献   

17.
Invasive species can monopolize resources and thus dominate ecosystem production. In this study we estimated secondary production and diet of four populations of Pomacea canaliculata, a freshwater invasive snail, in wetlands (abandoned paddy, oxbow pond, drainage channel, and river meander) in monsoonal Hong Kong (lat. 22°N). Apple snail secondary production (ash-free dry mass [AFDM]) ranged from 165.9 to 233.3 g m−2 year−1, and varied between seasons. Production was lower during the cool dry northeast monsoon, when water temperatures might have limited growth, but fast growth and recruitment of multiple cohorts were possible throughout much (7–10 months) of the year and especially during the warm, wet southwest monsoon. The diet, as revealed by stomach-content analysis, consisted mainly of detritus and macrophytes, and was broadly consistent among habitats despite considerable variation in the composition and cover of aquatic plants. Apple snail annual production was >10 times greater than production estimates for other benthic macroinvertebrates in Hong Kong (range 0.004–15 g AFDM m−2 year−1, n = 29). Furthermore, annual production estimates for three apple snail populations (i.e. >230 g AFDM m−2 year−1) were greater than published estimates for any other freshwater snails (range 0.002–194 g AFDM m−2 year−1, n = 33), regardless of climatic regime or habitat type. High production by P. canaliculata in Hong Kong was attributable to the topical climate (annual mean ~24°C), permitting rapid growth and repeated reproduction, together with dietary flexibility including an ability to consume a range of macrophytes. If invasive P. canaliculata can monopolize food resources, its high productivity indicates potential for competition with other macroinvertebrate primary consumers. Manipulative experiments will be needed to quantify these impacts on biodiversity and ecosystem function in wetlands, combined with management strategies to prevent further range extension by P. canaliculata.  相似文献   

18.
Chilina gibbosa is an endemic snail widely distributed in Patagonia, Argentina. Due to its importance in the benthic fauna and in the diet of some fish in the oligo-mesotrophic reservoir Ezequiel Ramos Mexía (39° 30′ S, 69° 00′ W), special attention has been given to its life cycle, growth patterns and annual production. Samples were taken monthly at five littoral stations between June 1983 and July 1984. Mean abundance and biomass of C. gibbosa were much higher in vegetated stations dominated by Potamogeton berteroanus (Station 1 : 583 ind. m−2, 5.95 g AFDM m−2) or by Nitella clavata (Station 5 : 275 ind. m−2, 4.18 g AFDM m−2) than bare stations with low transparency or stations with other macrophytes. The snails presented a clustered spatial pattern and their abundance was significantly correlated with macrophyte wet biomass only when this was above 250 g m−2. Analysis of size distributions showed an annual life cycle with a reproductive period in the summer. However, differences in recruitment and growth occurred probably due to differences in water temperature and food availability. Growth was maximum in summer and almost absent during winter. Hence, shell growth data fit a sigmoid curve well, and growth was somewhat higher at Station 1. Annual production at Stations 1 and 5, estimated by the ‘growth increment summation’ method (28.8 g AFDM m−2 and 14.18 g AFDM m−2 respectively), was among the highest recorded for pulmonate gastropods, possibly due to a low interspecific competition. The P : B ratio values were within the range for univoltine gastropods (4.84 and 3.39). The high productivity and turnover rate of these snails grant a high availability of food for the abundant molluscivore, the silverside Patagonina hatcheri.  相似文献   

19.
Periphyton constitutes an important community that is useful for assessment of ecological conditions in lotic systems. The objective of this study was to assess the effects of different mixtures of Cd and Pb on periphyton growth as well as Cd and Pb mixtures toxicity to diatom assemblages in laboratory mesocosm experiments. A natural periphyton community sampled from the Monjolinho River (South of Brazil) was inoculated into five experimental systems containing clean glass substrates for periphyton colonization. The communities were exposed to mixtures of dissolved Cd and Pb concentrations of 0.01 and 0.1 mg l−1 Cd and 0.033 and 0.1 mg l−1 Pb. Periphyton ash-free dry weight, growth rate, diatom cell density and diatom community composition were analyzed on samples collected after 1, 2 and 3 weeks of colonization. High Cd concentration (0.1 mg l−1) has negative effects on periphyton growth while high concentration of Pb (0.1 mg l−1) decreased the toxic effects of Cd on periphyton growth. Shifts in species composition (development of more resistant species like Achnanthidium minutissimum and reduction of sensitive ones like Cymbopleura naviculiformis, Fragilaria capucina, Navicula cryptocephala, Encyonema silesiacum, Eunotia bilunaris, and Gomphonema parvulum), decreases in species diversity of diatom communities with increasing Cd and Pb concentrations and exposure duration have been demonstrated in this study making diatom communities appropriate monitors of metal mixtures in aquatic systems.  相似文献   

20.
1. Phosphate uptake kinetics and uptake rates were calculated for planktonic (phytoplankton and bacterioplankton) and benthic (epiphyton and epipelon) assemblages in a large, shallow, subtropical lake. Samples were taken bimonthly over the period of 1 year at three different sites to examine spatial and temporal variability in these processes. 2. Two of the sites, located at the edge of the littoral zone next to the open water (ecotone sites), had low irradiance at the sediment surface and high total phosphorus (TP) concentration (annual mean TP = 112 μg L–1). The third site, located in the littoral marsh zone, had high irradiance at the sediment surface and low TP concentration (annual mean TP = 7 μg L–1). 3. Based on 32P-PO4 turnover time, P availability varied temporally and spatially. At the two high TP ecotone sites, P concentration was lowest in July and August. At the low TP marsh site, P limited algal production throughout the year. 4. The quotient of maximum uptake rate to half saturation constant (Vm/Ks) in the plankton increased by over two orders of magnitude during the P-limited (summer) period at the two ecotone sites, suggesting that plankton used the scarce phosphorus more efficiently. The specific uptake rate of plankton was significantly greater than that of periphyton at all sites, suggesting that the plankton were more efficient than periphyton at taking up phosphate. 5. Periphyton biomass, as well as absolute and percentage P uptake rate, was greater at the marsh site than at the ecotone sites, despite the lower P concentrations in the marsh. This was probably a result of rapid nutrient cycling, combined with high light availability in the marsh.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号