首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary We examined the zoospores produced by the unilocular sporangia ofLaminaria digitata (L.) Lamour. andNereocystis luetkeana Post. & Rupr. by serial sectioning to determine the absolute configuration of their flagellar apparatuses. The basal bodies, which are interconnected by three striated bands, lie parallel to the ventral face of the zoospore, and the posterior basal body always is found to the right of the anterior basal body when the cell is viewed from the ventral face, anterior end up. The four rootlets associated with the basal bodies include a major anterior rootlet of about seven microtubules extending from the anterior basal body along the ventral face towards the apex, a five-membered bypassing rootlet that passes ventral to the basal bodies and is connected to the posterior basal body by a posterior fibrous band, and two short rootlets having a single member each, the minor anterior and posterior rootlets. We consider the configuration observed here to be typical of most phaeophycean motile cells. The flagellar apparatus features suggest a considerable phylogenetic difference between thePhaeophyceae and other classes of chlorophyll c-containing organisms.  相似文献   

2.
The flagellar apparatus of the biflagellate zoospores from Blastophysa rhizopus Reinke has 180° rotational symmetry of the major components and counterclockwise absolute orientation. The basal bodies are connected anteriorly by a prominent striated distal fiber and posteriorly by two proximal striated bands. The C microtubules in the basal bodies terminate proximal to the transition region. Terminal caps and well-defined proximal sheaths are absent. The four microtubular rootlets diverge at a very small angle from the basal bodies. Six to eight (usually seven) microtubules are present in the s rootlets and two microtubules in the d rootlets. Rootlet 1s is associated with the eyespot. Each d rootlet is subtended by a coarsely striated fiber. Rootlet Id also has a finely striated fiber, roughly opposite the coarsely striated fiber, associated with it. Rhizoplasts and mating structures were not observed. Ultrastructural features of B. rhizopus zoospores are essentially identical with those found in examined members of the Siphonocladales sensu lato (= Siphonocladadales/Cladophorales complex) and Dasycladales, and have relatively few features in common with motile cells of caulerpalean algae. Blastophysa rhizopus probably does not represent an intermediate between the Siphonocladadales and the Caulerpales. Its evolutionary history is different from that of other algae placed in the siphonocladalean family Chaetosiphonaceae. Whether or not Blastophysa is representative of the ancestor to the Siphonodadales and Dasycladales is unclear.  相似文献   

3.
The detailed fine structure of the biflagellate motile cells of Ulvaria oxysperma (Kiitz.) Bliding is described. These cells demonstrate most of the features presently used to characterize the ulvaphycean motile cell, i.e., the capping plate, terminal cap, alternating two- and four-membered rootlets, rhizoplasts that extend posteriorly into the cell, the striated microtubule-associated component (SMAC) near the two-membered rootlets, microtubule septations in the basal bodies and flagella, and scales covering the external surface of the cell. In addition, the anterior end components have 180° rotational symmetry. The rootlets insert into the basal body complex in the anterior region just beneath the capping plate, and the rhizoplasts insert into triangularshaped proximal fibers that connect the basal bodies. The features of many other ulvaphycean algae are summarized and compared with Ulvaria oxysperma. Based on comparative ultrastructure, it is suggested that the Ulvaphyceae diverged from the Chlorophyceae after the separation of these two classes from the Charophyceae.  相似文献   

4.
The flagellar basal apparatus of the brown alga Ectocarpus siliculosus was re‐investigated in details using transmission electron microscopy and electron tomography. As a result, three‐dimensional structures with spatial arrangement of bands and microtubular flagellar rootlets were observed. Fibrous structures linking the anterior flagellar basal body to the major anterior rootlet (R3) or the bypassing rootlet was newly discovered in this study. A direct attachment from the minor anterior rootlet (R4) to the anterior and posterior basal bodies was also discovered, as were attachments from the minor posterior rootlet (R1) to the deltoid striated band and from the major posterior rootlet (R2) to the posterior fibrous band. The microtubular flagellar rootlets were connected to the bands and to the anterior or posterior basal body. These bands may have a role in maintaining the spatial arrangement of the anterior and posterior flagellar basal bodies and the microtubular flagellar rootlets. A numbering system of the basal body triplets was established by tracing axonemal doublets in the serial sections. From these observations, the precise position of two flagellar basal bodies, bands, and flagellar rootlets was determined.  相似文献   

5.
We have examined the motile cell ultrastructural features of several green algal species having filamentous or foliose thallus morphology and probable affinities with the Ulvophyceae, and compared them with the structural, reproductive, and life history features known for these taxa. We separate the algae studied into the orders Ulotrichales and Ulvales on the basis of consistent variations in terminal cap and proximal sheath structure that correlate well with life history patterns and certain features of sporangial and gametangial structure and development. Body scales are present only in certain members of the Ulotrichales. Both orders encompass a variety of thallus forms, demonstrating parallel evolution of thallus morphology. Flagellar apparatus features common to all the motile cells examined include 180° rotational symmetry, counterclockwise absolute orientation, the positioning of the basal bodies in an apical papilla, and the presence of one or more sets of striated bands associated with the X rootlets. Additional features that are usually present include basal body overlap and orientation roughly perpendicular to the long axis of the cell during forward swimming, striated distal fibers, and a single, striated, microtuble-associated component underlying each two-membered rootlet. These similarities indicate to us that the two groups are closely related members of the Ulvophyceae. We suggest that the Ulotrichales is the most primitive ulvophyceous assemblage known, but that all groups studied have advanced features relative to those supposed to have been present in the ancestral members of the Ulvophyceae.  相似文献   

6.
The flagellar apparatus of Pyrobotrys has a number of features that are typical of the Chlorophyceae, but others that are unusual for this class. The two flagella are inserted at the apex, but they extend to the side of the cell toward the outside of the colony, here designated as the ventral side. Four basal bodies are present, two of which extend into flagella. Four microtubular rootlets alternate between the functional and accessory basal bodies. In each cell, the two ventral rootlets are nearly parallel, but the dorsal rootlets are more widely divergent. The rootlets alternate between two and four microtubules each. A striated distal fiber connects the two functional basal bodies in the plane of the flagella. Two additional, apparently nonstriated, fibers connect the basal bodies proximal to the distal fiber. Another striated fiber is associated with each four-membered rootlet near its insertion into the flagellar apparatus. A fine periodic component is associated with each two-membered rootlet. A rhizoplast-like structure extends into the cell from each of the functional basal bodies. The arrangement of these components does not reflect the 180° rotational symmetry that is usually present in the Chlorophyceae, but appears to be derived from a more symmetrical ancestor. It is suggested that the form of the flagellar apparatus is associated with the unusual colony structure of Pyrobotrys.  相似文献   

7.
The spatial configuration of the flagellar apparatus of the biflagellate zoospores of the green algal genusMicrospora is reconstructed by serial sectioning analysis using transmission electron microscopy. Along with the unequal length of the flagella, the most remarkable characteristics of the flagellar apparatus are: (1) the subapical emergence of the flagella (especially apparent with scanning electron microscopy); (2) the parallel orientation of the two basal bodies which are interconnected by a prominent one-piece distal connecting fiber; (3) the unique ultrastructure of the distal connecting fiber composed of a central tubular region which is bordered on both sides by a striated zone; (4) the different origin of the d-rootlets from their relative basal bodies; (5) the asymmetry of the papillar region which together with the subapical position of the basal bodies apparently cause the different paths of corresponding rootlets in the zoospore anterior; (6) the presence of single-membered d-rootlets and multi-membered s-rootlets resulting in a 7-1-7-1 cruciate microtubular root system which, through the different rootlet origin, does not exhibit a strict 180° rotational symmetry. It is speculated that the different basal body origin of the d-rootlets is correlated with the subapical implant of flagella. It is further hypothesized that in the course of evolution the ancestors ofMicrospora had a flagellar papilla that has migrated from a strictly apical position towards a subapical position. Simultaneously, ancestral shift of flagella along the apical cell body periphery has taken place as can be concluded from the presence of an upper flagellum overlying a lower flagellum in the flagellar apparatus ofMicrospora. The basic features of the flagellar apparatus of theMicrospora zoospore resemble those of the coccoid green algal generaDictyochloris andBracteacoccus and also those of the flagellate green algal genusHeterochlamydomonas. This strengthens the general supposition thatMicrospora is evolutionarily closely related to taxa which were formerly classified in the traditionalChlorococcales.  相似文献   

8.
The flagellar apparatuses of the quadriflagellate zoo-spores and biflagellate female gametes of the marine chaetophoracean alga Entocladia viridis Reinke are significantly different from those of algae belonging to Chaetophoraceae sensu stricto, but closely resemble those of ulvacean genera. These differences permit the taxonomic reassignment of certain marine chaetophoracean genera and an evaluation of the flagellar apparatus features used to characterize the class Ulvophyceae. Critical features of the zoospore include arrangement of the four basal bodies into an upper and a lower pair with the proximal ends of the upper basal bodies overlapping, terminal caps, proximal sheaths connected to one another by striated bands, and a cruciate microtubular rootlet system having a 3-2–3-2 alternation pattern and striated microtubule-associated components that accompany the two-membered rootlets. An indistinct distal fiber occurs just anterior to the basal bodies, and is closely associated with the insertion into the flagellar apparatus of the three-membered rootlets. The flagellar apparatus demonstrates 180° rotational symmetry, and its components show counterclockwise absolute orientation when viewed from above. Newly described features include the prominently bilobed structure of the terminal caps on the upper basal body pair, and the presence of both a granular zone and an additional single microtubule anterior to each of the four rootlets, an arrangement termed the “stacked rootlet configuration.” Rhizoplasts were not observed and are presumed to be absent. The gamete is identical, except for the absence of the lower basal body pair and the presence of an electron-dense membrane associated structure that resembles the mating structure found in Ulva gametes. These findings, correlated with life history data, sporangial and gametangial structure and developmental patterns, chloroplast pigment arrays, and vegetative cell ultrastructural features, compel the removal of Entocladia viridis and similar members of the marine Chaetophoraceae to a separate family, the Ulvellaceae. The latter is referred to the order Ulvales of the Ulvophyceae. The counterclockwise absolute orientation of components, and terminal caps, may be the most consistent flagellar apparatus features of ulvophycean green algae, while variations in other features previously considered diagnostic for the Ulvophyceae may serve instead to identify discrete lineages within this class.  相似文献   

9.
K. Lundin 《Zoomorphology》1997,117(2):81-92
 The fine morphology of epidermal ciliary structures in four species of the Nemertodermatida and four species of the Acoela was studied, with emphasis on Meara stichopi (Nemertodermatida). The cilium of M. stichopi has a distal shelf and is proximally separated from the basal body by a cup-shaped structure. The bottom of the cup consists of a bilayered dense plate, or basal plate. The basal body consists of peripheral microtubule doublets continuous with those of the cilium. In the upper part of the basal body, the doublets are set at an angle and are anchored to the enclosing cell membrane by Y-shaped structures. The lower part of the basal body tapers eventually. The striated main rootlet arises on the anterior face of the basal body, initially like a flattened strap, and continues along the basal body shaped as a tube which further down becomes solid. The hour-glass-shaped posterior rootlet arises on the posterior face of the basal body. Contrary to the main rootlet, the striations in the proximal part of the posterior rootlet run parallel to the microtubule doublets of the basal body. A pair of microtubule bundles lead from the posterior rootlet to the two main rootlets in the hind ciliary row, and follow these to their lower tip. In the other species of the Nemertodermatida studied, the structure of the ciliary basal body and the ciliary rootlets is similar to that of M. stichopi. Structural differences in the species of the Acoela are that the lowermost end of the basal body is narrow and bent forwards, the proximal part of the main rootlet is trough-shaped, the main rootlet is accompanied by a pair of lateral rootlets and the posterior rootlet with associated microtubule bundles is thin. The epidermal ciliary structures in species of the Nemertodermatida and Acoela have a number of shared characters which are unique within the Plathelminthes. However, almost all of these characters are found in Xenoturbella bocki (Xenoturbellida), and some even in species of other ”phyla” of the ”lower” Metazoa. Hence, these characters cannot be considered apomorphic for the Acoelomorpha. A character seemingly present only in species of the Nemertodermatida and Acoela is the bilayered dense plate. This feature might represent an autapomorphic character state for the Acoelomorpha. Accepted: 7 March 1997  相似文献   

10.
The ciliary rootlet maintains long-term stability of sensory cilia   总被引:3,自引:0,他引:3       下载免费PDF全文
The striated ciliary rootlet is a prominent cytoskeleton originating from basal bodies of ciliated cells. Although a familiar structure in cell biology, its function has remained unresolved. In this study, we carried out targeted disruption in mice of the gene for rootletin, a component of the rootlet. In the mutant, ciliated cells are devoid of rootlets. Phototransduction and ciliary beating in sensory and motile cilia initially exhibit no apparent functional deficits. However, photoreceptors degenerate over time, and mutant lungs appear prone to pathological changes consistent with insufficient mucociliary clearance. Further analyses revealed a striking fragility at the ciliary base in photoreceptors lacking rootlets. In vitro assays suggest that the rootlet is among the least dynamic of all cytoskeletons and interacts with actin filaments. Thus, a primary function of the rootlet is to provide structural support for the cilium. Inasmuch as photoreceptors elaborate an exceptionally enlarged sensory cilium, they are especially dependent on the rootlet for structural integrity and long-term survival.  相似文献   

11.
The absolute configuration of the flagellar apparatus of biflagellate zoospores of Enteromorpha flexuosa (Wulfen ex Roth.) J. Agardh ssp. pilifera (Kütz.) Bliding was determined. Viewed from the anterior of the cell, the flagellar apparatus shows 180° rotational symmetry with a counter-clockwise absolute orientation of its components. In longitudinal sections, the posteriorly directed basal bodies form an angle of about 170°–180° to one another. A reduced striated distal fiber connects the two basal bodies. The cruciate microtubular rootlet system has a 4–2–4–2 alternation pattern. Striated microtubule-associated components (SMACs or system I-fibers) and rhizoplasts (or system II fibers) accompany the two-membered rootlets. Striated bands connect the proximal sheaths with the four-Membered rootlets. The bilobate terminal caps do not completely cover the proximal ends of the basal bodies. This is the first ultrastructural study of biflagellate zoospores in a member of the Ulvales.  相似文献   

12.
The ultrastructure of the ciliary apparatus of multiciliated epidermal cells in larval and adult sipunculids is described and the phylogenetic implications discussed. The pelagosphera of Apionsoma misakianum has a dense cover of epidermal cilia on the head region. The cilia have a long, narrow distal part and two long ciliary rootlets, one rostrally and one vertically orientated. The adult Phascolion strombus has cilia on the nuchal organ and on the oral side of the tentacles. These cilia have a narrow distal part as in the A. misakianum larva, but the ciliary rootlets have a different structure. The first rootlet on the anterior face of the basal body is very short and small. The second, vertically orientated rootlet is long and relatively thick. The two ciliary rootlets present in the larval A. misakianum are similar to the basal metazoan type of ciliary apparatus of epidermal multiciliated cells and thus likely represent the plesiomorphic state. The minute first rootlet in the adult P. strombus is viewed as a consequence of a secondary reduction. No possible synapomorphic character with the phylogenetically troublesome Xenoturbella was found.  相似文献   

13.
The somatic cell flagellar apparatuses of Volvox carteri f. weismannia (Powers) Iyengar and V. rousseletii G. S. West have parallel or nearly parallel basal bodies which are separated at their proximal ends. The four microtubular rootlets alternate between two and four members, and all are associated with a striated microtubular associated component (SMAC) that runs between the basal bodies. In addition, each half of the flagellar apparatus apparently rotates during development and loses the 180° rotational symmetry characteristic of most unicellular chlorophycean motile cells. All of these features appear necessary for efficient motion of a colony composed of numerous radially arranged cells. However, the structural details of the flagellar apparatuses of these two species differ. The distance between flagella is greater in V. rousseletii than in V. carteri. One distal striated fiber and two proximal striated fibers connect the basal bodies in V. carteri, but both types of fibers are absent from V. rousseletii. In the latter species, a striated fiber wraps around each of the basal bodies and attaches to the rootlets and the SMAC. No such fiber is present in V. carteri. Since the similarities in the flagellar apparatuses can be explained as a result of adaptation for efficient colonial motion in organisms with similar colonial morphology, the differences suggest a wider phylogenetic distance than previously believed.  相似文献   

14.
The chlorococcalean algae Dictyochloris fragrans and Bracteacoccus sp. produce naked zoospores with two unequal flagella and parallel basal bodies. Ultrastructural features of the flagellar apparatus of these zoospores are basically identical and include a banded distal fiber, two proximal fibers, and four cruciately arranged microtubular rootlets with only one microtubule in each dexter rootlet. In D. fragrans, each proximal fiber is composed of two subfibers, one striated and one nonstriated, and each sinister rootlet is composed of five microtubules (4/1), decreasing to four away from the basal bodies. In Bracteacoccus sp., each proximal fiber is a single unit, the sinister rootlets are four (3/1) or rarely five (4/1) microtubules, and each basal body is associated with an unusual curved structure. The basic features of the flagellar apparatus of the zoospores of these two algae resemble those of Heterochlamydomonas rather than most other chlorococcalean algae that have equal length flagella, basal bodies in the V-shape arrangement, and clockwise absolute orientation. It is proposed that these algae with unequal flagella and parallel basal bodies have a shared common ancestry within the green algae.  相似文献   

15.
A. R. Hardham 《Protoplasma》1987,137(2-3):109-124
Summary A correlated immunofluorescence and ultrastructural study of the microtubular cytoskeleton has been made in zoospores and young cysts ofPhytophthora cinnamomi. Labelling of microtubules using antibodies directed towards tubulin has revealed new details of the arrangement of the flagellar rootlets in these cells, and of the variability that occurs from cell to cell. Most of the variation exists at the distal ends of the rootlets, and may be correlated with differences in cell shape in these regions. The rootlets have the same right and left configuration in all zoospores. The arrangement of the rootlet microtubules at the anterior end of the zoospores raises the possibility that the microtubules on the left hand side of the groove may not comprise an independent rootlet which arises at the basal bodies.The absolute configuration of the flagellar apparatus has been determined from ultrastructural observations of serial sections. In the vicinity of the basal bodies, there is little, if any, variation between individuals, and the structure of the flagellar apparatus is similar to that described for related species of fungi. Two ribbon-like coils surround the central pair of microtubules at the distal tip of the whiplash flagellum, and clusters of intramembranous particles, similar to ciliary plaques, have been found at the bases of both flagella. There are two arrays of microtubules associated with the nucleus in the zoospores. One array lies next to the outer surface of the nuclear envelope, and probably functions in the shaping and positioning of the apex of the nucleus. The nuclear pores in this region are aligned in rows alongside these microtubules. The second array is formed by kinetochore microtubules which extend into a collar-like arrangement of chromatin material around the narrow end of the (interphase) nucleus. During encystment, all flagellar rootlets are internalized when the flagella are detached at the terminal plate. The rootlets arrays are no longer recognizable 5–10 minutes after the commencement of encystment.  相似文献   

16.
Summary The basal apparatus of embryonic cells of the sea urchin Lytechinus pictus was examined by transmission electron microscopy and compared with the basal apparatus of other metazoan cells. The basal apparatus in these cells is associated with a specialized region of the apical cell surface that is encircled by a ring of microvilli. The basal apparatus includes several features that are common to all ciliated cells, including a basal body, basal foot, basal foot cap, and striated rootlet. However, a component not seen in the basal apparatus of other species has been observed in these cells. This structure is continuous with the striated rootlet, and its ultrastructure indicates that it is composed of the same components as the rootlet. This structure extends from the junction of the basal body and striated rootlet to the cortical region that surrounds the basal body. Based on its morphology and position, this structure is referred to as a striated side-arm. The striated side-arm is always aligned in the plane of the basal foot. Thus, both of these structures extend from the basal body in the plane of the effective stroke. It is suggested that the striated side-arm serves to stabilize the basal apparatus against force exerted by the cilium.  相似文献   

17.
Nine species ofNeochloris can be divided into three groups on the basis of comparative ultrastructure of the flagellar apparatus, the cell wall and the pyrenoid of zoospores. In Group I,N. wimmeri andN. minuta, zoospores are thin-walled, pyrenoids are penetrated by stromal channels, and the basal bodies are in the clockwise absolute orientation and connected by the distal and two proximal fibers. In Group II,N. aquatica, N. vigenis, N. terrestris, N. pyenoidosa, andN. pseudostigmatica, zoospores are naked or covered by fuzzy material, pyrenoids are covered by a continuous starch sheath or invaginated by cytoplasmic channels, basal bodies are directly opposed, the distal fiber is differentiated into a ribbed structure at the central region, a striated microtubule-associated component (SMAC) is continuous between opposite two-membered rootlets and connected to the ribbed structure, proximal ends of basal bodies are covered by partial caps, each two-membered rootlet and a basal body are connected by a striated fiber to the X-membered rootlet associated with the opposite basal body, and the basal bodies, when oriented at wide angles, are joined at their proximal ends by core extensions. In Group III,N. pseudoalveolaris andN. cohaerens, zoospores are naked, pyrenoids are traversed by parallel thylakoids, basal bodies are in the counterclockwise absolute orientation and overlapped, and each X-membered rootlet is connected to the end of the opposite basal body by a terminal cap. It is suggested that the genusChlorococcopsis gen. nov. be erected for the Group I species. Group II, which includes the type species,N. aquatica, should be preserved asNeochloris. The group appears to be closely related to the coenobial generaPediastrum, Hydrodictyon, andSorastrum, and to have affinities with the coenocytic generaSphaeroplea andAtractomorpha as well. It is also suggested that the genusParietochloris gen. nov. be erected in thePleurastrophyceae for the species of Group III.  相似文献   

18.
Little is known about the molecular composition of the ciliary rootlet. We raised monoclonal antibodies to a crude preparation of striated rootlets isolated from the human oviduct, and obtained a clone (R4109) that specifically labeled the ciliary rootlets. Rootlets associated with the solitary cilium in secretory cells and fibroblasts were also labeled. R4109 identified a 195-kDa protein by immunoblotting. Ciliogenic cells in the oviduct epithelium of young mice were labeled in the globular and/or granular pattern by R4109 by immunofluorescence microscopy. Immunoelectron microscopy showed that they corresponded to fibrogranular complex and dense granule, respectively. The result demonstrated that the 195-kDa protein is a component common to the striated rootlet and dense granule, and thus suggested that dense granules are involved in the rootlet formation.  相似文献   

19.
The eyespot of the unicellular green alga Chlamydomonas reinhardtii is a photoreceptive organelle required for phototaxis. Relative to the anterior flagella, the eyespot is asymmetrically positioned adjacent to the daughter four-membered rootlet (D4), a unique bundle of acetylated microtubules extending from the daughter basal body toward the posterior of the cell. Here, we detail the relationship between the rhodopsin eyespot photoreceptor Channelrhodopsin 1 (ChR1) and acetylated microtubules. In wild-type cells, ChR1 was observed in an equatorial patch adjacent to D4 near the end of the acetylated microtubules and along the D4 rootlet. In cells with cytoskeletal protein mutations, supernumerary ChR1 patches remained adjacent to acetylated microtubules. In mlt1 (multieyed) mutant cells, supernumerary photoreceptor patches were not restricted to the D4 rootlet, and more anterior eyespots correlated with shorter acetylated microtubule rootlets. The data suggest a model in which photoreceptor localization is dependent on microtubule-based trafficking selective for the D4 rootlet, which is perturbed in mlt1 mutant cells.  相似文献   

20.
The organization of microtubular systems in the quadriflagellate unicell Polytomella agilis has been reconstructed by electron microscopy of serial sections, and the overall arrangement confirmed by immunofluorescent staining using antiserum directed against chick brain tubulin. The basal bodies of the four flagella are shown to be linked in two pairs of short fibers. Light microscopy of swimming cells indicates that the flagella beat in two synchronous pairs, with each pair exhibiting a breast-stroke-like motion. Two structurally distinct flagellar rootlets, one consisting of four microtubules in a 3 over 1 pattern and the other of a striated fiber over two microtubules, terminate between adjacent basal bodies. These rootlets diverge from the basal body region and extend toward the cell posterior, passing just beneath the plasma membrane. Near the anterior part of the cell, all eight rootlets serve as attachment sites for large numbers of cytoplasmic microtubules which occur in a single row around the circumference of the cell and closely parallel the cell shape. It is suggested that the flagellar rootless may function in controlling the patterning and the direction of cytoplasmic microtubule assembly. The occurrence of similar rootlet structures in other flagellates is briefly reviewed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号