首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phosphorylated derivatives of phosphatidylinositol (PtdIns) are key components of many signaling cascades. Many isoforms of PtdIns kinases, PtdIns phosphate kinases and phosphatases use these lipids in amazing networks of signaling cascades that are yet to be understood fully. PtdIns 4-kinase(s) phosphorylates PtdIns at the 4th -OH position of inositol head group and are classified in to type II and III PtdIns 4-kinases. While type III PtdIns 4-kinases are implicated in vesicular trafficking, type II PtdIns 4-kinases are suggested to play a role in cell signaling, cytoskeletal rearrangements, cell motility and in microbial pathogenicity. This paper reviews the role of type II PtdIns 4-kinases in cell signaling cascades in health and disease.  相似文献   

2.
Autophagy is a degradative cellular pathway that protects eukaryotic cells from starvation/stress. Phosphatidylinositol 4-kinases, Pik1p and Stt4p, are indispensable for autophagy in budding yeast, but participation of PtdIns-4 kinases and their product, phosphatidylinositol 4-phosphate [PtdIns(4)P], is not understood. Nanoscale membrane lipid distribution analysis showed PtdIns(4)P is more abundant in yeast autophagosomes in the luminal leaflet than the cytoplasmic leaflet. PtdIns(4)P is confined to the cytoplasmic leaflet of autophagosomal inner and outer membranes in mammalian cells. Using temperature-conditional single PIK1 or STT4 PtdIns 4-kinase mutants, autophagic bodies in the vacuole of PIK1 and STT4 mutant cells dramatically decreased at restrictive temperatures, and the number of autophagosomes in the cytosol of PIK1 mutants cells was also decreased, whereas autophagosome levels of STT4 mutant cells were comparable to that of wild-type and STT4 mutant cells at permissive temperatures. Localization of PtdIns(4)P in the luminal leaflet in the biological membrane is a novel finding, and differences in PtdIns(4)P distribution suggest substantial differences between yeast and mammals. We also demonstrate in this study that Pik1p and Stt4p play essential roles in autophagosome formation and autophagosome–vacuole fusion in yeast cells, respectively.  相似文献   

3.
Phosphoinositide (PI) 3-kinases have been characterized as enzymes involved in receptor signal transduction in mammalian cells and in a complex which mediates protein trafficking in yeast. PI 3-kinases linked to receptors with intrinsic or associated tyrosine kinase activity are heterodimeric proteins, consisting of p85 adaptor and p110 catalytic subunits, which can generate the 3-phosphorylated forms of phosphatidylinositol (PtdIns), PtdIns4P and PtdIns(4,5)P2 as potential second messengers. Yeast Vps34p kinase, however, has a substrate specificity restricted to PtdIns and is a PtdIns 3-kinase. Here the molecular characterization of a new human PtdIns 3-kinase with extensive sequence homology to Vps34p is described. PtdIns 3-kinase does not associate with p85 and phosphorylates PtdIns, but not PtdIns4P or PtdIns(4,5)P2. In vivo PtdIns 3-kinase is in a complex with a cellular protein of 150 kDa, as detected by immunoprecipitation from human cells. Protein sequence analysis and cDNA cloning show that this 150 kDa protein is highly homologous to Vps15p, a 160 kDa protein serine/threonine kinase associated with yeast Vps34p. These results suggest that the major components of the yeast Vps intracellular trafficking complex are conserved in humans.  相似文献   

4.
Phosphatidylinositol 4-kinases (PI 4-kinases) catalyze the conversion of phosphatidylinositol to phosphatidylinositol 4-phosphate (PtdIns4P). The four known mammalian PI 4-kinases, PI4KA, PI4KB, PI4K2A, and PI4K2B have roles in intracellular lipid and protein trafficking. PI4KA and PI4KB also assist in the replication of several positive-sense RNA viruses. The identification of selective inhibitors of these kinases would be facilitated by assays suitable for high-throughput screening. We describe a homogeneous and nonisotopic assay for PI 4-kinase activity based on the bioluminescent detection of the ADP produced by kinase reactions. We have evaluated this assay with known nonselective inhibitors of PI 4-kinases and show that it performs similar to radiometric assay formats previously described in the literature. In addition, this assay generates Z-factor values of >0.7 for PI4KA in a 384-well format, demonstrating its suitability for high-throughput screening applications.  相似文献   

5.
The early signaling events in T cell activation through CD3 receptor include a rapid change in intra cellular free calcium concentration and reorganization of actin cytoskeleton. Phosphatidylinositol 4-kinases (PtdIns 4-kinases) are implicated as key components in these early signaling events. The role of type II PtdIns 4-kinase β in CD3 receptor signaling was investigated with the help of short hairpin RNA sequences. Cross-linking of CD3 receptors on Jurkat T Cells with monoclonal antibodies showed an early increase in type II PtdIns 4-kinase activity and co-localization of type II PtdIns 4-kinase β with CD3 ζ. Transfection of Jurkat T Cells with shRNAs inhibited CD3 receptor mediated type II PtdIns 4-kinase activation with a concomitant reduction in intra cellular calcium release, suggesting a role for type II PtdIns 4-kinase β in CD3 receptor signal transduction. Knock-down of type II PtdIns 4-kinase β with shRNAs also correlated with a decrease in PtdIns 4-kinase activity in cytoskeleton fractions and reduced adhesion to matrigel surfaces. These results indicate that type II PtdIns 4-kinase β is a key component in early T cell activation signaling cascades.  相似文献   

6.
Several enzymes involved in the phosphoinositide metabolism have been shown to be present in nuclei of rat liver and Friend cells. In this paper we demonstrate that nuclear matrices of mouse NIH 3T3-fibroblasts and rat liver cells, isolated by nuclease treatment and high salt extraction, contain phosphatidylinositol 4-kinase (PdtIns 4-kinase), phosphatidylinositol 4-phosphate 5-kinase (PtdIns(4)P 5-kinase), diacylglycerol kinase, and phospholipase C. By a selective extraction the nucleus can be dissected in the peripheral matrix (lamina-pore complex) and the internal matrix as shown by using marker antibodies. Surprisingly, PtdIns 4-kinase was found exclusively in the peripheral nuclear matrix, whereas PtdIns(4)P 5-kinase was found to be associated to internal matrix structures. Diacylglycerol kinase and phospholipase C activities were also preferentially detected in the internal matrix. These data demonstrate a differential localization of the phosphoinositide kinases in the nucleus and suggest that the phosphoinositide metabolism may play a specific role in the nucleus.  相似文献   

7.
Phosphatidylinositol 3-kinases (PtdIns 3-kinases) that produce phosphatidylinositol (3,4,5) triphosphate (PtdIns(3,4,5)P3) are considered to be important regulators of actin dynamics in animal cells. In plants, neither PtdIns(3,4,5)P3 nor the enzyme that produces this lipid has been reported. However, a PtdIns 3-kinase that produces phosphatidylinositol 3-phosphate (PtdIns3P) has been identified, suggesting that PtdIns3P, instead of PtdIns(3,4,5)P3, regulates actin dynamics in plant cells. Phosphatidylinositol 4-kinase (PtdIns 4-kinase) is closely associated with the actin cytoskeleton in plant cells, suggesting a role for this lipid kinase and its product phosphatidylinositol 4-phosphate (PtdIns4P) in actin-related processes. Here, we investigated whether or not PtdIns3P or PtdIns4P plays a role in actin reorganization induced by a plant hormone abscisic acid (ABA) in guard cells of day flower ( Commelina communis ). ABA-induced changes in actin filaments were inhibited by LY294002 (LY) and wortmannin (WM), inhibitors of PtdIns3P and PtdIns4P synthesis. Expression of PtdIns3P- and PtdIns4P-binding domains also inhibited ABA-induced actin reorganization in a manner similar to LY and WM. These results suggest that PtdIns3P and PtdIns4P regulate actin dynamics in guard cells. Furthermore, we demonstrate that PtdIns3P exerts its effect on actin dynamics, at least in part, via generation of reactive oxygen species (ROS) in response to ABA.  相似文献   

8.
9.
Phosphatidylinositol (PtdIns) 4-kinases catalyze the conversion of PtdIns to PtdIns 4-phosphate, the major precursor of phosphoinositides that regulates a vast array of cellular processes. Based on enzymatic differences, two classes of PtdIns 4-kinase have been distinguished termed Types II and III. Type III kinases, which belong to the phosphatidylinositol (PI) 3/4-kinase family, have been extensively characterized. In contrast, little is known about the Type II enzymes (PI4KIIs), which have been cloned and sequenced very recently. PI4KIIs bear essentially no sequence similarity to other protein or lipid kinases; hence, they represent a novel and distinct branch of the kinase superfamily. Here we define the minimal catalytic domain of a rat PI4KII isoform, PI4KIIalpha, and identify conserved amino acid residues required for catalysis. We further show that the catalytic domain by itself determines targeting of the kinase to membrane rafts. To verify that the PI4KII family extends beyond mammalian sources, we expressed and characterized Drosophila PI4KII and its catalytic domain. Depletion of PI4KII from Drosophila cells resulted in a severe reduction of PtdIns 4-kinase activity, suggesting the in vivo importance of this enzyme.  相似文献   

10.
Soluble phosphatidylinositol (PtdIns) 4- and 3-kinase activities were partially purified and characterized from human placental extracts. The placental PtdIns 4-kinase (type 3) has a Km for ATP of 460 microM and is kinetically different to a partially purified human erythrocyte, membrane-bound, PtdIns 4-kinase (type 2). These three inositol lipid kinases were then used to compare their substrate specificities against the four synthetic stereoisomers of dipalmitoyl PtdIns. Only the placental 4-kinase was influenced by the chirality of the glycerol moiety of PtdIns. However, neither of the 4-kinases was able to phosphorylate L-PtdIns and, therefore, these kinases have an absolute requirement for the inositol ring to be linked to the glyceryl backbone of the lipid through the D-1 position. Phosphoinositide 3-kinase, on the other hand, was found to phosphorylate both D- and L-PtdIns. While the 3-kinase phosphorylated exclusively the D-3 position of D-PtdIns, further analyses demonstrated that the same enzyme phosphorylated two sites on L-PtdIns, namely the D-6 and D-5 positions of the inositol ring. Some implications of these findings are discussed.  相似文献   

11.
The inhibition of phosphatidylinositol 3-kinase by quercetin and analogs.   总被引:6,自引:0,他引:6  
Phosphatidylinositol (PtdIns) 3-kinase is an enzyme involved in cellular responses to growth factors. Quercetin (2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-4H-1-benzopyrano-4-one), a naturally occuring bioflavinoid, was found to inhibit PtdIns 3-kinase with an IC50 of 1.3 micrograms/ml (3.8 microM); inhibition appears to be directed towards the ATP binding site of the kinase. Analogs of quercetin were also investigated as PtdIns 3-kinase inhibitors, with the most potent compounds exhibiting IC50's in the range of 1.7-8.4 micrograms/ml (5-19 microM). In contrast, genistein, a potent tyrosine kinase inhibitor of the isoflavone class, did not inhibit PtdIns 3-kinase significantly (IC50 greater than 30 micrograms/ml). These findings suggest that flavinoids may serve as potent inhibitors of PtdIns 3-kinase. Furthermore, the enzyme is much more sensitive to substituents at the 3-position of the flavinoid ring than are other protein and PtdIns kinases, suggesting that specific inhibitors of PtdIns 3-kinase can be developed to explore the biological role of the enzyme in cellular proliferation and growth factor response.  相似文献   

12.
By constructing DNA probes we have identified and cloned a human PtdIns 4-kinase, PI4K230, corresponding to a mRNA of 7.0 kb. The cDNA encodes a protein of 2044 amino acids. The C-terminal part of ca. 260 amino acids represents the catalytic domain which is highly conserved in all recently cloned PtdIns 4-kinases. N-terminal motifs indicate multiple heterologous protein interactions. Human PtdIns 4-kinase PI4K230 expressed in vitro exhibits a specific activity of 58 micromol mg-1min-1. The enzyme expressed in Sf9 cells is essentially not inhibited by adenosine, it shows a high Km for ATP of about 300 microM and it is half-maximally inactivated by approximately 200 nM wortmannin. These data classify this enzyme as type 3 PtdIns 4-kinase. Antibodies raised against the N-terminal part moderately activate and those raised against the C-terminal catalytic domain inhibit the enzymatic activity. The coexistence of two different type 3 PtdIns 4-kinases, PI4K92 and PI4K230, in several human tissues, including brain, suggests that these enzymes are involved in distinct basic cellular functions.  相似文献   

13.
Phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P(2)) is widespread in eukaryotic cells. In Saccharomyces cerevisiae, PtdIns(3,5)P(2) synthesis is catalyzed by the PtdIns3P 5-kinase Fab1p, and loss of this activity results in vacuolar morphological defects, indicating that PtdIns(3,5)P(2) is essential for vacuole homeostasis. We have therefore suggested that all Fab1p homologues may be PtdIns3P 5-kinases involved in membrane trafficking. It is unclear which phosphatidylinositol phosphate kinases (PIPkins) are responsible for PtdIns(3,5)P(2) synthesis in higher eukaryotes. To clarify how PtdIns(3,5)P(2) is synthesized in mammalian and other cells, we determined whether yeast and mammalian Fab1p homologues or mammalian Type I PIPkins (PtdIns4P 5-kinases) make PtdIns(3,5)P(2) in vivo. The recently cloned murine (p235) and Schizosaccharomyces pombe FAB1 homologues both restored basal PtdIns(3,5)P(2) synthesis in Deltafab1 cells and made PtdIns(3,5)P(2) in vitro. Only p235 corrected the growth and vacuolar defects of fab1 S. cerevisiae. A mammalian Type I PIPkin supported no PtdIns(3,5)P(2) synthesis. Thus, FAB1 and its homologues constitute a distinct class of Type III PIPkins dedicated to PtdIns(3,5)P(2) synthesis. The differential abilities of p235 and of SpFab1p to complement the phenotypic defects of Deltafab1 cells suggests that interaction(s) with other protein factors may be important for spatial and/or temporal regulation of PtdIns(3,5)P(2) synthesis. These results also suggest that p235 may regulate a step in membrane trafficking in mammalian cells that is analogous to its function in yeast.  相似文献   

14.
Phosphatidylinositol (PtdIns) 3-kinase (PI 3-kinase) activity has been implicated in fundamental cellular functions such as endosomal trafficking, growth-factor receptor signal transduction, and cell survival. This multiplicity of actions can be attributed to the existence of three classes of PI 3-kinases in mammalian cells, which can together lead to the production of fourknown distinct end products: PtdIns(3)P, PtdIns(3,4)P2, PtdIns(3,4,5)P3 and PtdIns(3,5)P2. The challenge of deciphering the connection between PI 3-kinase activity, the production of specific phosphoinositides and the control of specific cellular events is being met with the discovery of novel structural motifs that interact specifically with distinct PI 3-kinase products.  相似文献   

15.
BACKGROUND: Phosphatidylinositol-3,4,5-trisphosphate [PtdIns(3,4,5)P(3)] is a key second messenger found ubiquitously in higher eukaryotic cells. The activation of Class I phosphoinositide 3-kinases and the subsequent production of PtdIns(3,4,5)P(3) is an important cell signaling event that has been causally linked to the activation of a variety of downstream cellular processes, such as cell migration and proliferation. Although numerous proteins regulating a variety of biological pathways have been shown to bind PtdIns(3,4,5)P(3), there are no data to demonstrate multiple mechanisms for PtdIns(3,4,5)P(3) synthesis in vivo. RESULTS: In this study, we demonstrate an alternative pathway for the in vivo production of PtdIns(3,4,5)P(3) mediated by the action of murine Type Ialpha phosphatidylinositol 4-phosphate 5-kinase (Type Ialpha PIPkinase), an enzyme best characterized as regulating cellular PtdIns(4,5)P(2) levels. Analysis of this novel pathway of PtdIns(3,4,5)P(3) synthesis in cellular membranes leads us to conclude that in vivo, Type Ialpha PIPkinase also acts as a PtdIns(3,4)P(2) 5-kinase. We demonstrate for the first time that cells actually contain an endogenous PtdIns(3,4)P(2) 5-kinase, and that during oxidative stress, this enzyme is responsible for PtdIns(3,4,5)P(3) synthesis. Furthermore, we demonstrate that by upregulating the H(2)O(2)-induced PtdIns(3,4,5)P(3) levels using overexpression studies, the endogenous PtdIns(3,4)P(2) 5-kinase is likely to be Type Ialpha PIPkinase. CONCLUSIONS: We describe for the first time a novel in vivo activity for Type Ialpha PIPkinase, and a novel pathway for the in vivo synthesis of functional PtdIns(3,4,5)P(3), a key lipid second messenger regulating a number of diverse cellular processes.  相似文献   

16.
Type I and type II phosphatidylinositol phosphate (PIP) kinases generate the lipid second messenger phosphatidylinositol (PtdIns) 4,5-bisphosphate and thus play fundamental roles in the regulation of many cellular processes. Although the two kinase families are highly homologous, they phosphorylate distinct substrates and are functionally non-redundant. Type I PIP kinases phosphorylate PtdIns 4-phosphate at the D-5 hydroxyl group and are consequently PtdIns 4-phosphate 5-kinases. By contrast, type II PIP kinases are PtdIns 5-phosphate 4-kinases that phosphorylate PtdIns 5-phosphate at the D-4 position. Type I PIP kinases, in addition, also phosphorylate other phosphoinositides in vitro and in vivo and thus have the potential to generate multiple lipid second messengers. To understand how these enzymes differentiate between stereoisomeric substrates, we used a site-directed mutagenesis approach. We show that a single amino acid substitution in the activation loop, A381E in IIbeta and the corresponding mutation E362A in Ibeta, is sufficient to swap substrate specificity between these PIP kinases. In addition to its role in substrate specificity, the type I activation loop is also key in subcellular targeting. The Ibeta(E362A) mutant and other mutants with reduced PtdIns 4-phosphate binding affinity were largely cytosolic when expressed in mammalian cells in contrast to wild-type Ibeta which targets to the plasma membrane. These results clearly establish the role of the activation loop in determining both signaling specificity and plasma membrane targeting of type I PIP kinases.  相似文献   

17.
Signaling by phosphatidylinositol (PI) 3-kinases is mediated by 3-phosphoinositides, which bind to Pleckstrin homology (PH) domains that are present in a wide spectrum of proteins. PH domains can be classified into three groups based on their different lipid binding specificities. Distinct 3-phosphoinositides can accumulate upon PI 3-kinase activation in cells in response to different stimuli and mediate specific cellular responses. In Swiss 3T3 mouse fibroblasts, oxidative stress induced by 1 mM H(2)O(2) caused almost exclusive accumulation of phosphatidylinositol 3,4-bisphosphate (PtdIns(3, 4)P(2)), whereas osmotic stress increased both phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3)) and PtdIns(3,4)P(2) levels. The increase in PtdIns(3,4)P(2) levels, caused by oxidative stress, correlated with the activation of protein kinase B, which has a promiscuous PH domain that binds both PtdIns(3,4,5)P(3) and PtdIns(3, 4)P(2). p70 S6 kinase, another signaling component downstream of PI 3-kinase, however, was not activated by this oxidative stress-induced increase in PtdIns(3,4)P(2) levels. Increased PtdIns(3,4,5)P(3) and PtdIns(3,4)P(2) levels in response to osmotic stress did not correlate with protein kinase B activation, because of concomitant activation of an inhibitory pathway, but p70 S6 kinase was activated by osmotic stress. These results demonstrate that PtdIns(3,4)P(2) can accumulate independently of PtdIns(3,4, 5)P(3) and exerts a pattern of cellular responses that is distinct from that induced by accumulation of PtdIns(3,4,5)P(3).  相似文献   

18.
Phosphatidylinositol (PtdIns)-4- and -3-kinases, PtdIns(4)P-5-kinase, diacylglycerol (DAG) kinase, and PtdIns-phospholipase C were all detected in cytoskeletons of resting human platelets. The total cytoskeletal enzyme activities were greatly increased upon thrombin stimulation of the intact cells. Those reached a maximum after a 60-s stimulation for PtdIns(4)P-5-kinase and phospholipase C, while the other kinases appeared to be slightly delayed. Specific activities were stimulated from about 4-fold (PtdIns-3-kinase) to about 6-fold (PtdIns-4-kinase). Thrombin treatment also promoted a co-extraction of pp60c-src with the cytoskeletons and its disappearance from the Triton X-100 soluble fraction. These results suggest that stimulation of platelets by thrombin causes the association of enzymes responsible for lipid phosphorylation and hydrolysis with the cytoskeletons. This could occur at cytoskeleton anchoring points to the membranes.  相似文献   

19.
Ligation of high-affinity IgE receptor I (FcεRI) on RBL-2H3 cells leads to recruitment of FcεRI and type II phosphatidylinositol 4-kinases (PtdIns 4-kinases) into lipid rafts. Lipid raft integrity is required for the activation of type II PtdIns 4-kinases and signal transduction through FcεRIγ during RBL-2H3 cell activation. However, the molecular mechanism by which PtdIns 4-kinases are coupled to FcεRI signaling is elusive. Here, we report association of type II PtdIns 4-kinase activity with FcεRIγ subunit in anti-FcεRIγ immunoprecipitates. FcεRIγ-associated PtdIns 4-kinase activity increases threefold upon FcεRI ligation in anti-FcεRIγ immunoprecipitates. Biochemical characterization of PtdIns 4-kinase activity associated with FcεRIγ reveals that it is a type II PtdIns 4-kinases. Canonical tyrosine residues mutation in FcεRIγ ITAM (Y65 and Y76) reveals that these two tyrosine residues in γ subunit are required for its interaction with type II PtdIns 4-kinases.  相似文献   

20.
The effects of sanguinarine on IgE mediated early signaling mechanisms leading to inflammatory mediators release were investigated. Pretreatment of RBL 2H3 cells with sanguinarine inhibited IgE induced activation of type II PtdIns 4-kinase activity. Concomitant with type II PtdIns 4-kinase inhibition, sanguinarine also inhibited IgE induced degranulation and β hexosaminidase release in RBL 2H3 cells. In vitro assays showed sanguinarine inhibited type II PtdIns 4-kinase activity in a dose dependent fashion with no effect on PtdIns 3-kinase activity. Fluorescence spectroscopic studies suggested that sanguinarine binds to type II PtdIns 4-kinases α and β isoforms with a Kd of 2.4 and 1.8 μM, respectively. Kinetic studies showed that sanguinarine competes with PtdIns binding site of type II PtdIns 4-kinase β. These results suggest that the anti-inflammatory effects of sanguinarine on PtdIns 3-kinase signaling pathway are more likely an indirect effect and emphasize the importance of the cross talk between type II PtdIns 4-kinases and PtdIns 3-kinases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号