首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
《Biophysical journal》2021,120(16):3374-3381
The crowdedness of living cells, hundreds of milligrams per milliliter of macromolecules, may affect protein folding, function, and misfolding. Still, such processes are most often studied in dilute solutions in vitro. To assess consequences of the in vivo milieu, we here investigated the effects of macromolecular crowding on the amyloid fiber formation reaction of α-synuclein, the amyloidogenic protein in Parkinson’s disease. For this, we performed spectroscopic experiments probing individual steps of the reaction as a function of the macromolecular crowding agent Ficoll70, which is an inert sucrose-based polymer that provides excluded-volume effects. The experiments were performed at neutral pH at quiescent conditions to avoid artifacts due to shaking and glass beads (typical conditions for α-synuclein), using amyloid fiber seeds to initiate reactions. We find that both primary nucleation and fiber elongation steps during α-synuclein amyloid formation are accelerated by the presence of 140 and 280 mg/mL Ficoll70. Moreover, in the presence of Ficoll70 at neutral pH, secondary nucleation appears favored, resulting in faster overall α-synuclein amyloid formation. In contrast, sucrose, a small-molecule osmolyte and building block of Ficoll70, slowed down α-synuclein amyloid formation. The ability of cell environments to modulate reaction kinetics to a large extent, such as severalfold faster individual steps in α-synuclein amyloid formation, is an important consideration for biochemical reactions in living systems.  相似文献   

2.
Human amyloid deposits always contain the normal plasma protein serum amyloid P component (SAP), owing to its avid but reversible binding to all amyloid fibrils, including the amyloid β (Aβ) fibrils in the cerebral parenchyma plaques and cerebrovascular amyloid deposits of Alzheimer''s disease (AD) and cerebral amyloid angiopathy (CAA). SAP promotes amyloid fibril formation in vitro, contributes to persistence of amyloid in vivo and is also itself directly toxic to cerebral neurons. We therefore developed (R)-1-[6-[(R)-2-carboxy-pyrrolidin-1-yl]-6-oxo-hexanoyl]pyrrolidine-2-carboxylic acid (CPHPC), a drug that removes SAP from the blood, and thereby also from the cerebrospinal fluid (CSF), in patients with AD. Here we report that, after introduction of transgenic human SAP expression in the TASTPM double transgenic mouse model of AD, all the amyloid deposits contained human SAP. Depletion of circulating human SAP by CPHPC administration in these mice removed all detectable human SAP from both the intracerebral and cerebrovascular amyloid. The demonstration that removal of SAP from the blood and CSF also removes it from these amyloid deposits crucially validates the strategy of the forthcoming ‘Depletion of serum amyloid P component in Alzheimer''s disease (DESPIAD)’ clinical trial of CPHPC. The results also strongly support clinical testing of CPHPC in patients with CAA.  相似文献   

3.
Ma Q  Fan JB  Zhou Z  Zhou BR  Meng SR  Hu JY  Chen J  Liang Y 《PloS one》2012,7(4):e36288

Background

Amyloid fibrils associated with neurodegenerative diseases can be considered biologically relevant failures of cellular quality control mechanisms. It is known that in vivo human Tau protein, human prion protein, and human copper, zinc superoxide dismutase (SOD1) have the tendency to form fibril deposits in a variety of tissues and they are associated with different neurodegenerative diseases, while rabbit prion protein and hen egg white lysozyme do not readily form fibrils and are unlikely to cause neurodegenerative diseases. In this study, we have investigated the contrasting effect of macromolecular crowding on fibril formation of different proteins.

Methodology/Principal Findings

As revealed by assays based on thioflavin T binding and turbidity, human Tau fragments, when phosphorylated by glycogen synthase kinase-3β, do not form filaments in the absence of a crowding agent but do form fibrils in the presence of a crowding agent, and the presence of a strong crowding agent dramatically promotes amyloid fibril formation of human prion protein and its two pathogenic mutants E196K and D178N. Such an enhancing effect of macromolecular crowding on fibril formation is also observed for a pathological human SOD1 mutant A4V. On the other hand, rabbit prion protein and hen lysozyme do not form amyloid fibrils when a crowding agent at 300 g/l is used but do form fibrils in the absence of a crowding agent. Furthermore, aggregation of these two proteins is remarkably inhibited by Ficoll 70 and dextran 70 at 200 g/l.

Conclusions/Significance

We suggest that proteins associated with neurodegenerative diseases are more likely to form amyloid fibrils under crowded conditions than in dilute solutions. By contrast, some of the proteins that are not neurodegenerative disease-associated are unlikely to misfold in crowded physiological environments. A possible explanation for the contrasting effect of macromolecular crowding on these two sets of proteins (amyloidogenic proteins and non-amyloidogenic proteins) has been proposed.  相似文献   

4.
Implications of macromolecular crowding for protein assembly   总被引:18,自引:0,他引:18  
Recent studies have led to increased appreciation of the influence of excluded volume in solutions of high total macromolecular content ('macromolecular crowding') upon the various classes of reaction that lead to the assembly of proteins and protein complexes. In general, crowding is expected to stabilize native protein structure relative to less compact non-native structures and to favor the formation of functional complexes of native proteins. Under certain pathological conditions, 'overcrowding' may enhance the formation of nonfunctional aggregates of non-native protein (e.g. amyloid and inclusion bodies).  相似文献   

5.
The crowdedness of living cells, hundreds of milligrams per milliliter of macromolecules, may affect protein folding, function, and misfolding. Still, such processes are most often studied in dilute solutions in vitro. To assess consequences of the in vivo milieu, we here investigated the effects of macromolecular crowding on the amyloid fiber formation reaction of α-synuclein, the amyloidogenic protein in Parkinson’s disease. For this, we performed spectroscopic experiments probing individual steps of the reaction as a function of the macromolecular crowding agent Ficoll70, which is an inert sucrose-based polymer that provides excluded-volume effects. The experiments were performed at neutral pH at quiescent conditions to avoid artifacts due to shaking and glass beads (typical conditions for α-synuclein), using amyloid fiber seeds to initiate reactions. We find that both primary nucleation and fiber elongation steps during α-synuclein amyloid formation are accelerated by the presence of 140 and 280 mg/mL Ficoll70. Moreover, in the presence of Ficoll70 at neutral pH, secondary nucleation appears favored, resulting in faster overall α-synuclein amyloid formation. In contrast, sucrose, a small-molecule osmolyte and building block of Ficoll70, slowed down α-synuclein amyloid formation. The ability of cell environments to modulate reaction kinetics to a large extent, such as severalfold faster individual steps in α-synuclein amyloid formation, is an important consideration for biochemical reactions in living systems.  相似文献   

6.
The biological cell is known to exhibit a highly crowded milieu, which significantly influences protein aggregation and association processes. As several cell degenerative diseases are related to the self-association and fibrillation of amyloidogenic peptides, understanding of the impact of macromolecular crowding on these processes is of high biomedical importance. It is further of particular relevance as most in vitro studies on amyloid aggregation have been performed in diluted solution which does not reflect the complexity of their cellular surrounding. The study presented here focuses on the self-association of the type-2 diabetes mellitus related human islet amyloid polypeptide (hIAPP) in various crowded environments including network-forming macromolecular crowding reagents and protein crowders. It was possible to identify two competing processes: a crowder concentration and type dependent stabilization of globular off-pathway species and a – consequently - retarded or even inhibited hIAPP fibrillation reaction. The cause of these crowding effects was revealed to be mainly excluded volume in the polymeric crowders, whereas non-specific interactions seem to be most dominant in protein crowded environments. Specific hIAPP cytotoxicity assays on pancreatic β-cells reveal non-toxicity for the stabilized globular species, in contrast to the high cytotoxicity imposed by the normal fibrillation pathway. From these findings it can be concluded that cellular crowding is able to effectively stabilize the monomeric conformation of hIAPP, hence enabling the conduction of its normal physiological function and prevent this highly amyloidogenic peptide from cytotoxic aggregation and fibrillation.  相似文献   

7.
Amyloid deposits are pathological hallmarks of various neurodegenerative diseases including Alzheimer's disease (AD), where amyloid β-peptide (Aβ) polymerizes into amyloid fibrils by a nucleation-dependent polymerization mechanism. The biological membranes or other interfaces as well as the convection of the extracellular fluids in the brain may influence Aβ amyloid fibril formation in vivo. Here, we examined the polymerization kinetics of 2.5, 5, 10 and 20 μM Aβ in the presence or absence of air–water interface (AWI) using fluorescence spectroscopy and fluorescence microscopy with the amyloid specific dye, thioflavin T. When the solutions were incubated with AWI and in quiescence, amyloid fibril formation was observed at all Aβ concentrations examined. In contrast, when incubated without AWI, amyloid fibril formation was observed only at higher Aβ concentrations (10 and 20 μM). Importantly, when the 5 μM Aβ solution was incubated with AWI, a ThT-reactive film was first observed at AWI without any other ThT-reactive aggregates in the bulk. When 5 μM Aβ solutions were voltexed or rotated with AWI, amyloid fibril formation was considerably accelerated, where a ThT-reactive film was first observed at AWI before ThT-reactive aggregates were observed throughout the mixture. When 5 μM Aβ solutions containing a polypropylene disc were rotated without AWI, amyloid fibril formation was also considerably accelerated, where fine ThT-reactive aggregates were first found attached at the edge of the disc. These results indicate the critical roles of interfaces and agitation for amyloid fibril formation. Furthermore, elimination of AWI may be essential for proper evaluation of the roles of various biological molecules in the amyloid formation studies in vitro.  相似文献   

8.
The role of a small transforming growth factor beta (TGF-β)-induced TIAF1 (TGF-β1-induced antiapoptotic factor) in the pathogenesis of Alzheimer''s disease (AD) was investigated. TIAF1 physically interacts with mothers against DPP homolog 4 (Smad4), and blocks SMAD-dependent promoter activation when overexpressed. Accordingly, knockdown of TIAF1 by small interfering RNA resulted in spontaneous accumulation of Smad proteins in the nucleus and activation of the promoter governed by the SMAD complex. TGF-β1 and environmental stress (e.g., alterations in pericellular environment) may induce TIAF1 self-aggregation in a type II TGF-β receptor-independent manner in cells, and Smad4 interrupts the aggregation. Aggregated TIAF1 induces apoptosis in a caspase-dependent manner. By filter retardation assay, TIAF1 aggregates were found in the hippocampi of nondemented humans and AD patients. Total TIAF1-positive samples containing amyloid β (Aβ) aggregates are 17 and 48%, respectively, in the nondemented and AD groups, suggesting that TIAF1 aggregation occurs preceding formation of Aβ. To test this hypothesis, in vitro analysis showed that TGF-β-regulated TIAF1 aggregation leads to dephosphorylation of amyloid precursor protein (APP) at Thr668, followed by degradation and generation of APP intracellular domain (AICD), Aβ and amyloid fibrils. Polymerized TIAF1 physically interacts with amyloid fibrils, which would favorably support plaque formation in vivo.  相似文献   

9.
Amyloids are proteinaceous fibers commonly associated with neurodegenerative diseases and prion-based encephalopathies. Many different polypeptides can form amyloid fibers, leading to the suggestion that amyloid is a primitive main chain-dominated structure. A growing body of evidence suggests that amino acid side chains dramatically influence amyloid formation. The specific role fulfilled by side chains in amyloid formation, especially in vivo, remains poorly understood. Here, we determined the role of internally conserved polar and aromatic residues in promoting amyloidogenesis of the functional amyloid protein CsgA, which is the major protein component of curli fibers assembled by enteric bacteria such as Escherichia coli and Salmonella spp. In vivo CsgA polymerization into an amyloid fiber requires the CsgB nucleator protein. The CsgA amyloid core region is composed of five repeating units, defined by regularly spaced Ser, Gln and Asn residues. The results of a comprehensive alanine scan mutagenesis screen showed that Gln and Asn residues at positions 49, 54, 139 and 144 were critical for curli assembly. Alanine substitution of Q49 or N144 impeded the ability of CsgA to respond to CsgB-mediated heteronucleation, and the ability of CsgA to self-polymerize in vitro. However, CsgA proteins harboring these mutations were still seeded by preformed wild-type CsgA fibers in vitro. This suggests that CsgA-fibril-mediated seeding and CsgB-mediated heteronucleation have distinguishable mechanisms. Remarkably, Gln residues at positions 49 and 139 could not be replaced by Asn residues without interfering with curli assembly, suggesting that the side chain requirements were especially stringent at these positions. This analysis demonstrates that bacterial amyloid formation is driven by specific side chain contacts, and provides a clear illustration of the essential roles of specific side chains in promoting amyloid formation.  相似文献   

10.
The overall effect of brain zinc (Zn2+) in the progression and development of Alzheimer''s disease (AD) is still not completely understood. Although an excess of Zn2+ can exacerbate the pathological features of AD, a deficit of Zn2+ intake has also been shown to increase the volume of amyloid plaques in AD transgenic mice. In this study, we investigated the effect of dietary Zn2+ supplementation (30 p.p.m.) in a transgenic mouse model of AD, the 3xTg-AD, that expresses both β amyloid (Aβ)- and tau-dependent pathology. We found that Zn2+ supplementation greatly delays hippocampal-dependent memory deficits and strongly reduces both Aβ and tau pathology in the hippocampus. We also evaluated signs of mitochondrial dysfunction and found that Zn2+ supplementation prevents the age-dependent respiratory deficits we observed in untreated 3xTg-AD mice. Finally, we found that Zn2+ supplementation greatly increases the levels of brain-derived neurotrophic factor (BDNF) of treated 3xTg-AD mice. In summary, our data support the idea that controlling the brain Zn2+ homeostasis may be beneficial in the treatment of AD.  相似文献   

11.
Jean L  Lee CF  Vaux DJ 《Biophysical journal》2012,102(5):1154-1162
The aggregation of proteins or peptides into amyloid fibrils is a hallmark of protein misfolding diseases (e.g., Alzheimer's disease) and is under intense investigation. Many of the experiments performed are in vitro in nature and the samples under study are ordinarily exposed to diverse interfaces, e.g., the container wall and air. This naturally raises the question of how important interfacial effects are to amyloidogenesis. Indeed, it has already been recognized that many amyloid-forming peptides are surface-active. Moreover, it has recently been demonstrated that the presence of a hydrophobic interface can promote amyloid fibrillization, although the underlying mechanism is still unclear. Here, we combine theory, surface property measurements, and amyloid fibrillogenesis assays on islet amyloid polypeptide and amyloid-β peptide to demonstrate why, at experimentally relevant concentrations, the surface activity of the amyloid-forming peptides leads to enriched fibrillization at an air-water interface. Our findings indicate that the key that links these two seemingly different phenomena is the surface-active nature of the amyloid-forming species, which renders the surface concentration much higher than the corresponding critical fibrillar concentration. This subsequently leads to a substantial increase in fibrillization.  相似文献   

12.
Proteins fold and function inside cells that are crowded with macromolecules. Here, we address the role of the resulting excluded volume effects by in vitro spectroscopic studies of Pseudomonas aeruginosa apoazurin stability (thermal and chemical perturbations) and folding kinetics (chemical perturbation) as a function of increasing levels of crowding agents dextran (sizes 20, 40, and 70 kDa) and Ficoll 70. We find that excluded volume theory derived by Minton quantitatively captures the experimental effects when crowding agents are modeled as arrays of rods. This finding demonstrates that synthetic crowding agents are useful for studies of excluded volume effects. Moreover, thermal and chemical perturbations result in free energy effects by the presence of crowding agents that are identical, which shows that the unfolded state is energetically the same regardless of method of unfolding. This also underscores the two-state approximation for apoazurin’s unfolding reaction and suggests that thermal and chemical unfolding experiments can be used in an interchangeable way. Finally, we observe increased folding speed and invariant unfolding speed for apoazurin in the presence of macromolecular crowding agents, a result that points to unfolded-state perturbations. Although the absolute magnitude of excluded volume effects on apoazurin is only on the order of 1–3 kJ/mol, differences of this scale may be biologically significant.  相似文献   

13.
The role of microtubule‐associated protein Tau in neurodegeneration has been extensively investigated since the discovery of Tau amyloid aggregates in the brains of patients with Alzheimer's disease (AD). The process of formation of amyloid fibrils is known as amyloidogenesis and attracts much attention as a potential target in the prevention and treatment of neurodegenerative conditions linked to protein aggregation. Cerebral deposition of amyloid aggregates of Tau is observed not only in AD but also in numerous other tauopathies and prion diseases. Amyloidogenesis of intrinsically unstructured monomers of Tau can be triggered by mutations in the Tau gene, post‐translational modifications, or interactions with polyanionic molecules and aggregation‐prone proteins/peptides. The self‐assembly of amyloid fibrils of Tau shares a number of characteristic features with amyloidogenesis of other proteins involved in neurodegenerative diseases. For example, in vitro experiments have demonstrated that the nucleation phase, which is the rate‐limiting stage of Tau amyloidogenesis, is shortened in the presence of fragmented preformed Tau fibrils acting as aggregation templates (“seeds”). Accordingly, Tau aggregates released by tauopathy‐affected neurons can spread the neurodegenerative process in the brain through a prion‐like mechanism, originally described for the pathogenic form of prion protein. Moreover, Tau has been shown to form amyloid strains—structurally diverse self‐propagating aggregates of potentially various pathological effects, resembling in this respect prion strains. Here, we review the current literature on Tau aggregation and discuss mechanisms of propagation of Tau amyloid in the light of the prion‐like paradigm.  相似文献   

14.

Background

It is known that in vivo human prion protein (PrP) have the tendency to form fibril deposits and are associated with infectious fatal prion diseases, while the rabbit PrP does not readily form fibrils and is unlikely to cause prion diseases. Although we have previously demonstrated that amyloid fibrils formed by the rabbit PrP and the human PrP have different secondary structures and macromolecular crowding has different effects on fibril formation of the rabbit/human PrPs, we do not know which domains of PrPs cause such differences. In this study, we have constructed two PrP chimeras, rabbit chimera and human chimera, and investigated how domain replacement affects fibril formation of the rabbit/human PrPs.

Methodology/Principal Findings

As revealed by thioflavin T binding assays and Sarkosyl-soluble SDS-PAGE, the presence of a strong crowding agent dramatically promotes fibril formation of both chimeras. As evidenced by circular dichroism, Fourier transform infrared spectroscopy, and proteinase K digestion assays, amyloid fibrils formed by human chimera have secondary structures and proteinase K-resistant features similar to those formed by the human PrP. However, amyloid fibrils formed by rabbit chimera have proteinase K-resistant features and secondary structures in crowded physiological environments different from those formed by the rabbit PrP, and secondary structures in dilute solutions similar to the rabbit PrP. The results from transmission electron microscopy show that macromolecular crowding caused human chimera but not rabbit chimera to form short fibrils and non-fibrillar particles.

Conclusions/Significance

We demonstrate for the first time that the domains beyond PrP-H2H3 (β-strand 1, α-helix 1, and β-strand 2) have a remarkable effect on fibrillization of the rabbit PrP but almost no effect on the human PrP. Our findings can help to explain why amyloid fibrils formed by the rabbit PrP and the human PrP have different secondary structures and why macromolecular crowding has different effects on fibrillization of PrPs from different species.  相似文献   

15.
The biological cells and extracellular matrix exhibit a highly crowded environment, called as macromolecular crowding. Crowding significantly influences protein structure and may lead to its aggregation. In the present study, buffalo heart cystatin (BHC), after purification from buffalo heart tissue, has been used as a model protein for studying effect of macromolecular crowding in the presence of high concentrations of bovine serum albumin (BSA), poly‐ethylene glycol‐1000 (PEG‐1000), and poly‐ethylene glycol‐4000 (PEG‐4000). Cystatins are thiol protease inhibitors and found to be involved in various important physiological processes. Functional inactivation of BHC was observed upon crowding, which varied as a function of concentration and molecular weight of crowding agents as well as incubation time. Structural changes of BHC at tertiary and secondary level were detected with the help of fluorescence and CD spectroscopy. CD analysis showed changes of α‐helix to β‐sheet, which could be due to aggregation. The ANS‐fluorescence study suggested the unfolding and presence of some partially folded intermediates. Increase in ThT‐fluorescence and absorption of Congo red spectra with red shift, confirmed the amyloid type aggregation of BHC in the presence of various crowding agents. Finally, electron microscopy provided the physical evidence about the formation of amyloid fibrils. Results suggested that among the various crowding agents used, amyloidogenesis of BHC was maximal in case of BSA followed by PEG‐4000 and least for PEG‐1000. The present work makes an important contribution in crowding mediated protein aggregation, which can have implications of potential interest. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
Protein dynamics in cells may be different from those in dilute solutions in vitro, because the environment in cells is highly concentrated with other macromolecules. This volume exclusion because of macromolecular crowding is predicted to affect both equilibrium and kinetic processes involving protein conformational changes. To quantify macromolecular crowding effects on protein folding mechanisms, we investigated the folding energy landscape of an α/β protein, apoflavodoxin, in the presence of inert macromolecular crowding agents, using in silico and in vitro approaches. By means of coarse-grained molecular simulations and topology-based potential interactions, we probed the effects of increased volume fractions of crowding agents (ϕc) as well as of crowding agent geometry (sphere or spherocylinder) at high ϕc. Parallel kinetic folding experiments with purified Desulfovibro desulfuricans apoflavodoxin in vitro were performed in the presence of Ficoll (sphere) and Dextran (spherocylinder) synthetic crowding agents. In conclusion, we identified the in silico crowding conditions that best enhance protein stability, and discovered that upon manipulation of the crowding conditions, folding routes experiencing topological frustrations can be either enhanced or relieved. Our test-tube experiments confirmed that apoflavodoxin''s time-resolved folding path is modulated by crowding agent geometry. Macromolecular crowding effects may be a tool for the manipulation of protein-folding and function in living cells.  相似文献   

17.
18.
The effects of two single macromolecular crowding agents, Ficoll 70 and bovine serum albumin (BSA), and one mixed macromolecular crowding agent containing both BSA and Ficoll 70, on amyloid formation of hen egg white lysozyme have been examined by thioflavin T binding, Congo red binding, transmission electron microscopy, and activity assay, as a function of crowder concentration and composition. Both the mixed crowding agent and the protein crowding agent BSA at 100 g/l almost completely inhibit amyloid formation of lysozyme and stabilize lysozyme activity on the investigated time scale, but Ficoll 70 at the same concentration neither impedes amyloid formation of lysozyme effectively nor stabilizes lysozyme activity. Further kinetic and isothermal titration calorimetry analyses indicate that a mixture of 5 g/l BSA and 95 g/l Ficoll 70 inhibits amyloid formation of lysozyme and maintains lysozyme activity via mixed macromolecular crowding as well as weak, nonspecific interactions between BSA and nonnative lysozyme. Our data demonstrate that BSA and Ficoll 70 cooperatively contribute to both the inhibitory effect and the stabilization effect of the mixed crowding agent, suggesting that mixed macromolecular crowding inside the cell may play a role in posttranslational quality control mechanism.  相似文献   

19.
Enzymes catalyze biochemical reactions in highly crowded environments where the amount of macromolecules may occupy up to 40% of the volume. Here we report how cell-like conditions tune catalytic parameters for the monomeric multi-copper oxidase, Saccharomyces cerevisiae Fet3p, in vitro. At low amounts of crowding agent, we detect increases in both of KM (weaker substrate binding) and kcat (improved catalytic efficiency), whereas at higher crowding levels, both parameters were reduced. Presence of crowding agents does not affect Fet3p structural content but increases thermal resistance. The observations are compatible with ordering of a non-optimal substrate-binding site and restricted internal dynamics as a result of excluded volume effects making the protein less structurally ‘strained’.  相似文献   

20.
Amyloid plaques are a key pathological hallmark of Alzheimer’s disease (AD). The detection of amyloid plaques in the brain is important for the diagnosis of AD, as well as for following potential amyloid targeting therapeutic interventions. Our group has developed several contrast agents to detect amyloid plaques in vivo using magnetic resonance microimaging (µMRI) in AD transgenic mice, where we used mannitol to enhance blood brain barrier (BBB) permeability. In the present study, we used bifunctional ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles, chemically coupled with Aβ1-42 peptide to image amyloid plaque deposition in the mouse brain. We coupled the nanoparticles to polyethylene glycol (PEG) in order to improve BBB permeability. These USPIO-PEG-Aβ1-42 nanoparticles were injected intravenously in AD model transgenic mice followed by initial in vivo and subsequent ex vivo μMRI. A 3D gradient multi-echo sequence was used for imaging with a 100 µm isotropic resolution. The amyloid plaques detected by T2*-weighted μMRI were confirmed with matched histological sections. The region of interest-based quantitative measurement of T2* values obtained from the in vivo μMRI showed contrast injected AD Tg mice had significantly reduced T2* values compared to wild-type mice. In addition, the ex vivo scans were examined with voxel-based analysis (VBA) using statistical parametric mapping (SPM) for comparison of USPIO-PEG-Aβ1-42 injected AD transgenic and USPIO alone injected AD transgenic mice. The regional differences seen by VBA in the USPIO-PEG-Aβ1-42 injected AD transgenic correlated with the amyloid plaque distribution histologically. Our results indicate that USPIO-PEG-Aβ1-42 can be used for amyloid plaque detection in vivo by intravenous injection without the need to co-inject an agent which increases permeability of the BBB. This technique could aid the development of novel amyloid targeting drugs by allowing therapeutic effects to be followed longitudinally in model AD mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号