首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 537 毫秒
1.
When loaded with high (pathological) levels of Ca2+, mitochondria become swollen and uncoupled as the result of a large non-specific increase in membrane permeability. This process, known as the mitochondrial permeability transition (MPT), is exacerbated by oxidative stress and adenine nucleotide depletion. These conditions match those that a heart experiences during reperfusion following a period of ischaemia. The MPT is caused by the opening of a non-specific pore that can be prevented by sub-micromolar concentrations of cyclosporin A (CsA). A variety of conditions that increase the sensitivity of pore opening to [Ca2+], such as thiol modification, oxidative stress, increased matrix volume and chaotropic agents, all enhance the binding of matrix cyclophilin (CyP) to the inner mitochondrial membrane in a CsA-sensitive manner. In contrast, ADP, membrane potential and low pH decrease the sensitivity of pore opening to [Ca2+] without affecting CyP binding. We present a model of pore opening involving CyP binding to a membrane target protein followed by Ca2+-dependent triggering of a conformational change to induce channel opening. Using the ischaemic/reperfused rat heart we have shown that the mitochondrial pore does not open during ischaemia, but does do so during reperfusion. Recovery of heart during reperfusion is improved in the presence of 0.2 µM CsA, suggesting that the MPT may be critical in the transition from reversible to irreversible reperfusion injury. (Mol Cell Biochem 174: 167–172, 1997)  相似文献   

2.
Ropinirole, an agonist of the post-synaptic dopamine D2-receptor, exerts neuroprotective activity. The mechanism is still under discussion. Assuming that this neuroprotection might be associated with inhibition of the apoptotic cascade underlying cell death, we examined a possible effect of ropinirole on the permeability transition pore (mtPTP) in the mitochondrial inner membrane. Using isolated rat liver mitochondria, the effect of ropinirole was studied on Ca2+-triggered large amplitude swelling, membrane depolarization and cytochrome c release. In addition, the effect of ropinirole on oxidation of added, membrane-impermeable NADH was investigated. The results revealed doubtlessly, that ropinirole can inhibit permeability transition. In patch-clamp experiments on mitoplasts, we show directly that ropinirole interacts with the mtPTP. Thus, ropinirole reversibly inhibits the opening of mtPTP with an IC50 of 3.4 µM and a Hill coefficient of 1.3. In both systems (i.e. energized mitochondria and mitoplasts) the inhibitory effect on permeability transition was attenuated by increasing concentrations of inorganic phosphate. In addition, we showed with antimycin A-treated mitochondria that ropinirole failed to suppress respiratory chain-linked reactive oxygen species release. In conclusion, our data suggest that the neuroprotective activity of ropinirole is due to the blockade of the Ca2+-triggered permeability transition.  相似文献   

3.
Intracellular Zn2+ toxicity is associated with mitochondrial dysfunction. Zn2+ depolarizes mitochondria in assays using isolated organelles as well as cultured cells. Some reports suggest that Zn2+-induced depolarization results from the opening of the mitochondrial permeability transition pore (mPTP). For a more detailed analysis of this relationship, we compared Zn2+-induced depolarization with the effects of Ca2+ in single isolated rat liver mitochondria monitored with the potentiometric probe rhodamine 123. Consistent with previous work, we found that relatively low levels of Ca2+ caused rapid, complete and irreversible loss of mitochondrial membrane potential, an effect that was diminished by classic inhibitors of mPT, including high Mg2+, ADP and cyclosporine A. Zn2+ also depolarized mitochondria, but only at relatively high concentrations. Furthermore Zn2+-induced depolarization was slower, partial and sometimes reversible, and was not affected by inhibitors of mPT. We also compared the effects of Ca2+ and Zn2+ in a calcein-retention assay. Consistent with the well-documented ability of Ca2+ to induce mPT, we found that it caused rapid and substantial loss of matrix calcein. In contrast, calcein remained in Zn2+-treated mitochondria. Considered together, our results suggest that Ca2+ and Zn2+ depolarize mitochondria by considerably different mechanisms, that opening of the mPTP is not a direct consequence of Zn2+-induced depolarization, and that Zn2+ is not a particularly potent mitochondrial inhibitor.  相似文献   

4.
Among the neurodegenerative diseases (ND), Parkinson’s disease affects 6.3 million people worldwide characterized by the progressive loss of dopaminergic neurons in substantia nigra. The mitochondrial permeability transition pore (mtPTP) is a non-selective voltage-dependent mitochondrial channel whose opening modifies the permeability properties of the mitochondrial inner membrane. It is recognized as a potent pharmacological target for diseases associated with mitochondrial dysfunction and excessive cell death including ND such as Parkinson’s disease (PD). Imbalance in Ca2+ concentration, change in mitochondrial membrane potential, overproduction of reactive oxygen species (ROS), or mutation in mitochondrial genome has been implicated in the pathophysiology of the opening of the mtPTP. Different proteins are released by permeability transition including cytochrome c which is responsible for apoptosis. This review aims to discuss the importance of PTP in the pathophysiology of PD and puts together different positive as well as negative aspects of drugs such as pramipexole, ropinirole, minocyclin, rasagilin, and safinamide which act as a blocker or modifier for mtPTP. Some of them may be detrimental in their neuroprotective nature.  相似文献   

5.
Patch–clamping mitoplasts isolated from human colon carcinoma 116 cells has allowed the identification and characterization of the intermediate conductance Ca2+-activated K+-selective channel KCa3.1, previously studied only in the plasma membrane of various cell types. Its identity has been established by its biophysical and pharmacological properties. Its localisation in the inner membrane of mitochondria is indicated by Western blots of subcellular fractions, by recording of its activity in mitochondria made fluorescent by a mitochondria-targeted fluorescent protein and by the co-presence of channels considered to be markers of the inner membrane. Moderate increases of mitochondrial matrix [Ca2+] will cause mtKCa3.1 opening, thus linking inner membrane K+ permeability and transmembrane potential to Ca2+ signalling.  相似文献   

6.
The permeability transition pore (PTP) is a Ca2+-sensitive mitochondrial inner membrane channel involved in several models of cell death. Because the matrix concentration of PTP regulatory factors depends on matrix volume, we have investigated the role of the mitochondrial volume in PTP regulation. By incubating rat liver mitochondria in media of different osmolarity, we found that the Ca2+ threshold required for PTP opening dramatically increased when mitochondrial volume decreased relative to the standard condition. This shrinkage-induced PTP inhibition was not related to the observed changes in protonmotive force, or pyridine nucleotide redox state and persisted when mitochondria were depleted of adenine nucleotides. On the other hand, mitochondrial volume did not affect PTP regulation when mitochondria were depleted of Mg2+. By studying the effects of Mg2+, cyclosporin A (CsA) and ubiquinone 0 (Ub0) on PTP regulation, we found that mitochondrial shrinkage increased the efficacy of Mg2+ and Ub0 at PTP inhibition, whereas it decreased that of CsA. The ability of mitochondrial volume to alter the activity of several PTP regulators represents a hitherto unrecognized characteristic of the pore that might lead to a new approach for its pharmacological modulation.  相似文献   

7.
Olga Vergun 《BBA》2005,1709(2):127-137
Ca2+-induced mitochondrial depolarization was studied in single isolated rat brain and liver mitochondria. Digital imaging techniques and rhodamine 123 were used for mitochondrial membrane potential measurements. Low Ca2+ concentrations (about 30-100 nM) initiated oscillations of the membrane potential followed by complete depolarization in brain mitochondria. In contrast, liver mitochondria were less sensitive to Ca2+; 20 μM Ca2+ was required to depolarize liver mitochondria. Ca2+ did not initiate oscillatory depolarizations in liver mitochondria, where each individual mitochondrion depolarized abruptly and irreversibly. Adenine nucleotides dramatically reduced the oscillatory depolarization in brain mitochondria and delayed the onset of the depolarization in liver mitochondria. In both type of mitochondria, the stabilizing effect of adenine nucleotides completely abolished by an inhibition of adenine nucleotide translocator function with carboxyatractyloside, but was not sensitive to bongkrekic acid. Inhibitors of mitochondrial permeability transition cyclosporine A and bongkrekic acid also delayed Ca2+-depolarization. We hypothesize that the oscillatory depolarization in brain mitochondria is associated with the transient conformational change of the adenine nucleotide translocator from a specific transporter to a non-specific pore, whereas the non-oscillatory depolarization in liver mitochondria is caused by the irreversible opening of the pore.  相似文献   

8.
The role of inorganic phosphate as inhibitor of mitochondrial membrane permeability transition was studied. It is shown that in mitochondria containing a high phosphate concentration, i.e., 68 nmol/mg, Ca2+ did not activate the pore opening. Conversely, at lower levels of matrix phosphate, i.e., 38 nmol/mg, Ca2+ was able to induce subsequent pore opening. The inhibitory effect of phosphate was apparent in sucrose-based media, but it was not achieved in KCl media. The matrix free Ca2+ concentration and matrix pH were lowered by phosphate, but they were always higher in K+-media. In the absence of ADP, phosphate strengthened the inhibitory effect of cyclosporin A on carboxyatractyloside-induced Ca2+ efflux. Acetate was unable to replace phosphate in the induction of the aforementioned effects. It is concluded that phosphate preserves selective membrane permeability by diminishing the matrix free Ca2+ concentration.  相似文献   

9.
The effects of hydrophobic and hydrophilic bile acids as inducers of Ca2+-dependent permeability of the inner membrane were studied on isolated liver mitochondria. It is shown that in the absence of the inorganic phosphate (Pi)–a modulator of the mitochondrial pore–hydrophobic bile acids (lithocholic, deoxycholic, chenodeoxycholic) at concentrations of 20–50 μM, as well as a hydrophilic cholic acid at a concentration of 800 μM, induce swelling of liver mitochondria loaded with Ca2+. This effect is completely eliminated by a specific inhibitor of mitochondrial pore cyclosporin A (CsA). The effect of the bile acids as inducers of Ca2+-dependent CsA-sensitive mitochondrial pore is not associated with the modulation of the Pi effects. In contrast to other tested bile acids, a hydrophilic ursodeoxycholic acid (UDCA) at a concentration of 400 μM is able to induce Ca2+-dependent CsA-sensitive pore opening in liver mitochondria only in the presence of Pi or in the absence of potassium chloride in the incubation medium. In the presence of potassium chloride but in the absence of Pi, UDCA effects associated with the induction of the inner membrane permeability (swelling of mitochondria, drop in Δψ, and Ca2+ release from the matrix) are also observed in the presence of CsA. This Ca2+-dependent permeability of the inner membrane, in contrast to the “classical” CsA-sensitive pore, is characterized by a lower intensity of the mitochondrial swelling, a total drop in Δψ, and Ca2+ release from the matrix and is blocked by Pi. We suggest that the induction of the CsA-insensitive permeability in the inner mitochondrial membrane by UDCA is associated with activation of electrophoretic influx of K+ into the matrix and Ca2+ release from the matrix in exchange to H+. The effect of Pi as a blocker of such permeability is discussed.  相似文献   

10.
Rasola A  Bernardi P 《Cell calcium》2011,50(3):222-233
A variety of stimuli utilize an increase of cytosolic free Ca2+ concentration as a second messenger to transmit signals, through Ca2+ release from the endoplasmic reticulum or opening of plasma membrane Ca2+ channels. Mitochondria contribute to the tight spatiotemporal control of this process by accumulating Ca2+, thus shaping the return of cytosolic Ca2+ to resting levels. The rise of mitochondrial matrix free Ca2+ concentration stimulates oxidative metabolism; yet, in the presence of a variety of sensitizing factors of pathophysiological relevance, the matrix Ca2+ increase can also lead to opening of the permeability transition pore (PTP), a high conductance inner membrane channel. While transient openings may serve the purpose of providing a fast Ca2+ release mechanism, persistent PTP opening is followed by deregulated release of matrix Ca2+, termination of oxidative phosphorylation, matrix swelling with inner membrane unfolding and eventually outer membrane rupture with release of apoptogenic proteins and cell death. Thus, a rise in mitochondrial Ca2+ can convey both apoptotic and necrotic death signals by inducing opening of the PTP. Understanding the signalling networks that govern changes in mitochondrial free Ca2+ concentration, their interplay with Ca2+ signalling in other subcellular compartments, and regulation of PTP has important implications in the fine comprehension of the main biological routines of the cell and in disease pathogenesis.  相似文献   

11.
In order to explore the role of mitochondria in proliferation promotion and/or apoptosis induction of lanthanum, the mutual influences between La3+ and Ca2+ on mitochondrial permeability transition pore (PTP) opening were investigated with isolated mitochondria from rat liver. The experimental results revealed that La3+ influence the state of mitochondria in a concentration-dependent biphasic manner. La3+ in nanomolar concentrations, acting as a Ca2+ analog, entered mitochondrial matrix via the RuR sensitive Ca2+ channel and elevated ROS level, leading to opening of PTP indicated by mitochondrial swelling, reduction of ΔΨm and cytochrome c release. Inhibition of PTP with 10 μM CsA attenuated the effects of La3+. However, micromolar concentrations La3+ acted mainly as a Ca2+ antagonist, inhibiting PTP opening induced by Ca2+. We postulated that this action of La3+ on mitochondria through interaction with Ca2+ might be involved in the proliferation-promoting and apoptosis induction by La3+.  相似文献   

12.
The effect of bile acids as inducers of Ca2+ efflux from the matrix was studied on isolated rat liver mitochondria. Mitochondria in the presence of cyclosporin A (CsA) were energized by succinate, then loaded with Ca2+ and after the addition of the calcium uniporter inhibitor ruthenium red were de-energized by malonate. It was shown that under these conditions hydrophobic bile acids lithocholic and chenodeoxycholic at concentrations of 10 and 30 μM respectively and hydrophilic bile acids ursodeoxycholic and cholic at a concentration of 400 μM induce Ca2+ efflux from the mitochondrial matrix. It is noted that the efflux of these ions is not associated with damage of the inner mitochondrial membrane by bile acids, since it is accompanied by the generation of Δψ, i.e., the formation of the diffusion potential. It is assumed that along with induction of calcium efflux from the matrix, bile acids are also capable of transporting hydrogen and potassium ions in the opposite direction, i.e., perform H+/Ca2+ and K+/Ca2+ exchange. It was found that ruthenium red added to Ca2+-loaded energized mitochondria prevents the return of these ions to the matrix and weakens the effect of chenodeoxycholic acid as an inducer of the CsA-sensitive mitochondrial pore and the effect of ursodeoxycholic acid as an inducer of CsA-insensitive permeability of the inner mitochondrial membrane. We conclude that in the conditions of the calcium uniporter activity decrease, Ca2+ efflux from the matrix induced by bile acids can be considered as one of the mechanisms reducing their effectiveness as inducers of the Ca2+-dependent CsA-sensitive pore and CsA-insensitive permeability transition in mitochondria.  相似文献   

13.
The work examines the mechanism of central nerve cell death upon stimulation of brain NMDA receptors with the stimulatory mediator glutamate. A prolonged stimulation of neurons with glutamate is known to result in the disorder of Ca2+ homeostasis and severe mitochondrial depolarization followed by cell death. It has been shown that the overload of mitochondria with Sr2+ leads to the release of the cation, medium alkalization, decrease of membrane potential and mitochondrial swelling, indicating a nonspecific permeabilization of the mitochondrial membrane. The permeabilization, in our opinion, is caused by the activation of Ca2+/Sr2+-dependent phospholipase A2 (PLA2), resulting in the formation of free palmitic and stearic acids in the mitochondrial membrane. These fatty acids bind Ca2+ with high affinity and the process of binding is accompanied by the formation of a transient lipid pore—a phenomenon demonstrated earlier on both artificial and mitochondrial membranes. The inhibitors of PLA2 have been shown to suppress permeabilization of mitochondrial membranes. In the culture of granular cerebellum neurons, the PLA2 inhibitors prolonged the lag of the delayed Sr2+ deregulation and membrane depolarization. On the basis of data obtained on isolated mitochondria and neurons we suppose that the initial stages of glutamate-induced Ca2+ deregulation of neurons are underlain by the opening of lipid pores in brain mitochondria.  相似文献   

14.
Mitochondrial stress results in changes in mitochondrial function, morphology and homeostasis (biogenesis, fission/fusion, mitophagy) and may lead to changes in mitochondrial subpopulations. While flow cytometric techniques have been developed to quantify features of individual mitochondria related to volume, Ca2+ concentration, mtDNA content, respiratory capacity and oxidative damage, less information is available concerning the identification and characterization of mitochondrial subpopulations, particularly in epithelial cells. Mitochondria from rabbit kidneys were stained with molecular probes for cardiolipin content (nonyl acridine orange, NAO) and membrane potential (tetramethylrhodamine, TMRM) and analyzed using flow cytometry. We validated that side scatter was a better indicator of volume and that as side scatter (SSC) decreased mitochondrial volume increased. Furthermore, those mitochondria with the highest NAO content had greater side scattering and were most highly charged. Mitochondria with average NAO content were of average side scattering and maintained an intermediate charge. Those mitochondria with low NAO content had minimal side scattering and exhibited minimal charge. Upon titration with the uncoupler carbonylcyanide-4-(trifluoromethoxy)-phenylhydrazone (FCCP), it was found that the high NAO content subpopulations were more resistant to uncoupling than lower NAO content populations. Ca2+-induced swelling of mitochondria was evaluated using probability binning (PB) analyses of SSC. Interestingly, only 30 % of the mitochondria showed changes in response to Ca2+, which was blocked by cyclosporine A. In addition, the small, high NAO content mitochondria swelled differentially in response to Ca2+ over time. Our results demonstrate that flow cytometry can be used to identify mitochondrial subpopulations based on high, mid and low NAO content and/or volume/complexity. These subpopulations showed differences in membrane potential, volume, and responses to uncoupling and Ca2+-induced swelling.  相似文献   

15.
Several studies have demonstrated that the mitochondrial membrane switches from selective to non-selective permeability because of its improved matrix Ca2+ accumulation and oxidative stress. This process, known as permeability transition, evokes severe dysfunction in mitochondria through the opening of a non-specific pore, whose chemical nature is still under discussion. There are some proposals regarding the components of the pore structure, e.g., the adenine nucleotide translocase and dimers of the F1 Fo-ATP synthase. Our results reveal that Ca2+ induces oxidative stress, which not only increases lipid peroxidation and ROS generation but also brings about both the collapse of the transmembrane potential and the membrane release of cytochrome c. Additionally, it is shown that Ca2+ increases the binding of the probe eosin-5-maleimide to adenine nucleotide translocase. Interestingly, these effects are diminished after the addition of ADP. It is suggested that pore opening is caused by the binding of Ca2+ to the adenine nucleotide translocase.  相似文献   

16.
17.
Earlier we found that in isolated rat liver mitochondria the reversible opening of the mitochondrial cyclosporin A-insensitive pore induced by low concentrations of palmitic acid (Pal) plus Ca2+ results in the brief loss of Δψ [Mironova et al., J Bioenerg Biomembr (2004), 36:171–178]. Now we report that Pal and Ca2+, increased to 30 and 70 nmol/mg protein respectively, induce a stable and prolonged (10 min) partial depolarization of the mitochondrial membrane, the release of Ca2+ and the swelling of mitochondria. Inhibitors of the Ca2+ uniporter, ruthenium red and La3+, as well as EGTA added in 10 min after the Pal/Ca2+-activated pore opening, prevent the release of Ca2+ and repolarize the membrane to initial level. Similar effects can be observed in the absence of exogeneous Pal, upon mitochondria accumulating high [Sr2+], which leads to the activation of phospholipase A2 and appearance of endogenous fatty acids. The paper proposes a new model of the mitochondrial Ca2+ cycle, in which Ca2+ uptake is mediated by the Ca2+ uniporter and Ca2+ efflux occurs via a short-living Pal/Ca2+-activated pore.  相似文献   

18.
The mitochondrial membrane permeability transition induced byCa2+ is inhibited by quinine in a dose-dependent fashion.Competition experiments strongly suggest that quinine displacesCa2+ bound to the inner membrane. This is supported byexperiments showing that quinine inhibits Ca2+-dependent butnot Ca2+-independent mitochondrial swelling induced byphenylarsine oxide. As with Ca2+ chelators, quinine inducespermeability transition pore closure preventing the contraction induced bypoly(ethylene glycol) 2000 in mitochondria preswollen by incubation in KSCNmedium containing Ca2+ and inorganic phosphate. These resultssuggest that quinine dislodges Ca2+ bound to the protein site,which triggers pore opening.  相似文献   

19.
The inotropic effect of Pr3+ and La3+ ions on the heart muscle of frog Rana ridibunda, as well as the influence of the ions on respiration, swelling, and the potential (ΔΨmito) on the inner membrane of Ca2+- loaded rat heart mitochondria, energized by glutamate and malate or succinate in the presence of rotenone were studied. It was found that 2 mM Pr3+ in Ringer’s solution reduces the force of spontaneous contractions and those induced by electrical stimulation in the heart; it had a negative chronotropic effect, decreasing the frequency of spontaneous contractions. Pr3+ and La3+ prevented a decrease in the 2,4-dinitrophenol (DNP)- uncoupled respiration of energized rat heart mitochondria, swelling of these organelles in salt media, and a reduction in ΔΨmito on the inner mitochondrial membrane that were induced by Ca2+ ions. Retardation by Pr3+ and La3+ ions of these calcium-induced effects may suggest that in the inner mitochondrial membrane these metals inhibit the opening of the mitochondrial permeability transition pore caused by Ca2+ overload of mitochondria. The data we obtained are important for a better understanding of the mechanisms of the damaging action of rare-earth elements on Ca2+-dependent processes in the vertebrate myocardium.  相似文献   

20.
The effect of the most hydrophobic bile acid–lithocholic–as an inducer of two different Ca2+-dependent inner membrane permeability systems was studied on isolated rat liver mitochondria. It is shown that the addition of lithocholic acid at a concentration of 20 μM to the Ca2+-loaded mitochondria leads to swelling of the organelles, rapid release of Ca2+ from the matrix and almost complete collapse of Δψ. Mitochondrial pore blocker cyclosporin A (CsA) eliminates mitochondrial swelling but has no effect on the process of Ca2+ release and Δψ collapse. In the absence of Ca2+ lithocholic acid causes only a transient decrease of Δψ with subsequent complete recovery. Ruthenium red, inhibitor of mitochondrial Ca2+ uniporter, which blocks Ca2+ influx into the matrix, prevents mitochondrial swelling induced by lithocholic acid. At the same time, ruthenium red, which is added before lithocholic acid to the Ca2+-preloaded mitochondria, does not affect the swelling of the organelles but reduces the CsA-insensitive drop in Δψ. It is concluded that lithocholic acid is able to induce two Ca2+-dependent energy dissipation systems in the inner membrane of liver mitochondria: CsA-sensitive mitochondrial pore and CsA-insensitive permeability, which exhibits sensitivity to ruthenium red. It is found that the effect of this bile acid as an inductor of CsA-sensitive mitochondrial pore is not associated with the modulation of Pi effects. It is assumed that CsA-insensitive action of lithocholic acid is associated with the induction of Ca2+ efflux from the matrix in exchange for protons. In this case, the energy-dependent Ca2+ transport in the opposite direction with the participation of mitochondrial calcium uniporter sensitive to ruthenium red leads to the formation of calcium cycle and thereby to energy dissipation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号