共查询到20条相似文献,搜索用时 15 毫秒
1.
Vandermeer J 《Journal of theoretical biology》2006,238(3):497-504
The ecological concept of omnivory, feeding at more than a single trophic level, is formulated as an intermediate stage between any two of three classical three-dimensional species interaction systems-tritrophic chain, competition, and polyphagy. It is shown that omnivory may be either stabilizing or destabilizing, depending, in part, on the conditions of the parent systems from which it derives. It is further conjectured that the tritrophic to competition gradient cannot be entirely stable, that there must be an instability at some level of intermediate omnivory. 相似文献
2.
Traditional ecological theory predicts that the stability of simple food webs will decline with an increasing number of trophic
levels and increasing amounts of omnivory. These ideas have been tested using protozoans in laboratory microcosms. However,
the results are equivocal, and contrary to expectation, omnivory is common in natural food webs. Two recent developments lead
us to re-evaluate these predictions using food webs assembled from protists and bacteria. First, recent modelling work suggests
that omnivory is actually stabilizing, providing that interactions are not too strong. Second, it is difficult to evaluate
the degree of omnivory of some protozoan species without explicit experimental tests. This study used seven species of ciliated
protozoa and a mixed bacterial flora to assemble four food webs with two trophic levels, and four webs with three trophic
levels. Protist species were assigned a rank for their degree of omnivory using information in the literature and the results
of experiments that tested whether the starvation rate of predators was influenced by the amount of bacteria on which they
may have fed and whether cannibalism (a form of omnivory) occurred. Consistent with recent modelling work, both bacterivorous
and predatory species with higher degrees of omnivory showed more stable dynamics, measured using time until extinction and
the temporal variability of population density. Systems with two protist species were less persistent than systems with one
protist species, supporting the prediction that longer food chains will be less stable dynamically.
Received: 28 December 1997 / Accepted: 22 June 1998 相似文献
3.
We investigate how perturbations propagate up and down a food chain with and without self-interaction and omnivory. A source
of perturbation is a shift in death rate of a trophic level, and the measure of perturbation is the difference between the
perturbed and unperturbed steady-state populations. For Lotka–Volterra food chains with linear functional response, we show
analytically that both intraspecific competition and intraguild predation can either dampen or enhance the propagation of
perturbations, thus stabilizing or destabilizing the food web. The direction of the effect depends on the position of the
source of perturbation, as well as on the position of the additional competitive and predatory links . These conclusions are
confirmed numerically for a food chain with more realistic type II functional response. Our results extend and confirm previous
numerical results for short food chains and support positions on both sides in the long-standing debate on the effect of intraspecific
competition and omnivory on the stability of trophic systems. 相似文献
4.
Omnivory does not prevent trophic cascades in pelagic food webs 总被引:2,自引:0,他引:2
NILS OKUN JANDESON BRASIL JOSÉ LUIZ ATTAYDE IVANEIDE A. S. COSTA 《Freshwater Biology》2008,53(1):129-138
1. Strong trophic cascades have been well documented in pelagic food webs of temperate lakes. In contrast, the limited available evidence suggests that strong cascades are less typical in tropical lakes.
2. To measure the effects of omnivorous tilapia on planktonic communities and water transparency of a small man-made tropical lake, we performed a 5-week in situ enclosure experiment with five densities of fish randomly allocated to 20 enclosures. Zooplankton and Phytoplankton biomasses as well as water transparency were measured weekly.
3. Results show that omnivorous tilapia significantly decreased the abundance of large Cladocerans, increased the abundance of small algae (greatest axial linear dimension <50 μ m) and decreased water transparency as predicted by trophic cascade theory.
4. Therefore, omnivory was not a sufficient factor to prevent a trophic cascade in this pelagic community, although the cascade effect was weaker than reported from many north temperate, nutrient-rich lakes. 相似文献
2. To measure the effects of omnivorous tilapia on planktonic communities and water transparency of a small man-made tropical lake, we performed a 5-week in situ enclosure experiment with five densities of fish randomly allocated to 20 enclosures. Zooplankton and Phytoplankton biomasses as well as water transparency were measured weekly.
3. Results show that omnivorous tilapia significantly decreased the abundance of large Cladocerans, increased the abundance of small algae (greatest axial linear dimension <50 μ m) and decreased water transparency as predicted by trophic cascade theory.
4. Therefore, omnivory was not a sufficient factor to prevent a trophic cascade in this pelagic community, although the cascade effect was weaker than reported from many north temperate, nutrient-rich lakes. 相似文献
5.
R.A. Parker 《Mathematical biosciences》1983,64(1):115-126
The predator-prey systems of Lotka and Volterra are modified to include efficiencies eij of converting prey biomass to predator biomass. For three or more species, it is shown that neutral stability results if eik = eijejk for all transfers. When the number of species is odd, consistency of the differential equation system for changes in logarithms of biomass is also required. 相似文献
6.
The dynamical theory of food webs has been based typically on local stability analysis. The relevance of local stability to food web properties has been questioned because local stability holds only in the immediate vicinity of the equilibrium and provides no information about the size of the basin of attraction. Local stability does not guarantee persistence of food webs in stochastic environments. Moreover, local stability excludes more complex dynamics such as periodic and chaotic behaviors, which may allow persistence. Global stability and permanence could be better criteria of community persistence. Our simulation analysis suggests that these three stability measures are qualitatively consistent in that all three predict decreasing stability with increasing complexity. Some new predictions on how stability depends on food web configurations are generated here: a consumer-victim link has a smaller effect on the probabilities of stability, as measured by all three stability criteria, than a pair of recipient-controlled and donor-controlled links; a recipient-controlled link has a larger effect on the probabilities of local stability and permanence than a donor-controlled link, while they have the same effect on the probability of global stability; food webs with equal proportions of donor-controlled and recipient-controlled links are less stable than those with different proportions. 相似文献
7.
Mark Emmerson Martijn Bezemer† Mark D. Hunter‡ T. Hefin Jones§ 《Global Change Biology》2005,11(3):490-501
Recent research has generally shown that a small change in the number of species in a food web can have consequences both for community structure and ecosystem processes. However ‘change’ is not limited to just the number of species in a community, but might include an alteration to such properties as precipitation, nutrient cycling and temperature. How such changes might affect species interactions is important, not just through the presence or absence of interactions, but also because the patterning of interaction strengths among species is intimately associated with community stability. Interaction strengths encompass such properties as feeding rates and assimilation efficiencies, and encapsulate functionally important information with regard to ecosystem processes. Interaction strengths represent the pathways and transfer of energy through an ecosystem. We review the best empirical data available detailing the frequency distribution of interaction strengths in communities. We present the underlying (but consistent) pattern of species interactions and discuss the implications of this patterning. We then examine how such a basic pattern might be affected given various scenarios of ‘change’ and discuss the consequences for community stability and ecosystem functioning. 相似文献
8.
Biodiversity, productivity and stability in real food webs 总被引:3,自引:0,他引:3
The global biodiversity crisis has motivated new theory and experiments that explore relationships between biodiversity (species richness and composition in particular), productivity and stability. Here we emphasize that these relationships are often bi-directional, such that changes in biodiversity can be both a cause and a consequence of changes in productivity and stability. We hypothesize that this bi-directionality creates feedback loops, as well as indirect effects, that influence the complex responses of communities to biodiversity losses. Important, but often neglected, mediators of this complexity are trophic interactions. Recent work shows that consumers can modify, dampen or even reverse the directionality of biodiversity-productivity-stability linkages inferred from the plant level alone. Such consumer mediation is likely to be common in many ecosystems. We suggest that merging biodiversity research and food-web theory is an exciting and pressing frontier for ecology, with implications for biodiversity conservation. 相似文献
9.
Akihiko Mougi 《Ecology and evolution》2020,10(17):9192-9199
Ecosystems comprise living organisms and organic matter or detritus. In earlier community ecology theories, ecosystem dynamics were normally understood in terms of aboveground, green‐world trophic interaction networks, or food webs. Recently, there has been growing interest in the role played in ecosystem dynamics by detritus in underground, brown‐world interactions. However, the role of decomposers in the consumption of detritus to produce nutrients in ecosystem dynamics remains unclear. Here, an ecosystem model of trophic food chains, detritus, decomposers, and decomposer predators demonstrated that decomposers play a totally different role than that previously predicted, with regard to their relationship between nutrient cycling and ecosystem stability. The high flux of nutrients due to efficient decomposition by decomposers increases ecosystem stability. However, moderate levels of ecosystem openness (with movement of materials) can either greatly increase or decrease ecosystem stability. Furthermore, the stability of an ecosystem peaks at intermediate openness because open systems are less stable than closed systems. These findings suggest that decomposers and the food‐web dynamics of brown‐world interactions are crucial for ecosystem stability, and that the properties of decomposition rate and openness are important in predicting changes in ecosystem stability in response to changes in decomposition efficiency driven by climate change. 相似文献
10.
Allometric scaling enhances stability in complex food webs 总被引:4,自引:1,他引:3
Classic local stability theory predicts that complex ecological networks are unstable and are unlikely to persist despite empiricists' abundant documentation of such complexity in nature. This contradiction has puzzled biologists for decades. While some have explored how stability may be achieved in small modules of a few interacting species, rigorous demonstrations of how large complex and ecologically realistic networks dynamically persist remain scarce and inadequately understood. Here, we help fill this void by combining structural models of complex food webs with nonlinear bioenergetic models of population dynamics parameterized by biological rates that are allometrically scaled to populations' average body masses. Increasing predator–prey body mass ratios increase population persistence up to a saturation level that is reached by invertebrate and ectotherm vertebrate predators when being 10 or 100 times larger than their prey respectively. These values are corroborated by empirical predator–prey body mass ratios from a global data base. Moreover, negative effects of diversity (i.e. species richness) on stability (i.e. population persistence) become neutral or positive relationships at these empirical ratios. These results demonstrate that the predator–prey body mass ratios found in nature may be key to enabling persistence of populations in complex food webs and stabilizing the diversity of natural ecosystems. 相似文献
11.
The diversity–stability hypothesis in ecology asserts that biodiversity begets stability of ecological systems. This hypothesis has been supported by field studies on primary producers in grasslands, in which the interaction between species is mostly competition. As to ecosystems with multitrophic predatory interaction, however, no definite consensus has been arrived at for the relation between trophic diversity and ecosystem stability. The stability index suitable to ecosystems with predatory interaction is given by MacArthurs idea of stability and its formulation by Rutledge et al. More suitable indices of stability (relative conditional entropy) are proposed in this study for the comparison of different ecosystems, and the validity of the diversity–stability hypothesis for food webs (networks of predation) with many trophic compartments in natural aquatic ecosystems is examined. Results reveal that an increase in the biomass diversity of trophic compartments causes an increase in the whole systemic stability of food webs in aquatic ecosystems. Hence, evidence of the whole systemic validity of the diversity–stability hypothesis for natural aquatic ecosystems with ubiquitous multitrophic predatory interaction was obtained for the first time. 相似文献
12.
ROBERT L. FRANCE 《Freshwater Biology》2012,57(4):787-794
1. The energetic hypothesis proposes that the vertical structure of food webs should increase in height with increasing system productivity. I measured the trophic positions and extent of trophic separation between the invertebrate planktivores Mysis relicta and Chaoborus spp. and their putative zooplankton prey along a gradient of lake productivity with the use of stable nitrogen isotopes. 2. In lakes of low productivity, these planktivores were found to be herbivorous, becoming omnivorous at intermediate lake productivities, and only able to be truly zooplanktivorous as lakes approached mesotrophy. A subsequent secondary analysis of literature data revealed that the strength of top‐down trophic cascades among these organisms increased with lake productivity as reflected by relationships between the abundance of planktivores and that of phytoplankton. 3. Increased omnivory under conditions of low productivity, effectively shortening the vertical structure of food webs as predicted by the energetic hypothesis, may produce increased community stability. 相似文献
13.
The study of freshwater pelagic communities is entering an exciting and controversial phase. Recent efforts to clarify how food web interactions differ from food chain interactions have emphasized the various, often subtle, repercussions of top predators on communities. Predators can modify community structure not only through directly imposed death rates, but also through direct and indirect effects on prey interactions, behavior, life-styles and morphology (e.g. induction of defenses). In some cases, the effects influence ecosystem properties (material fluxes, turnover rates and primary production). Attempts to trace food web impacts in enclosure and lake studies have revealed important time-dependent system properties. Severe resource limitation of fast variables (phytoplankton and small zooplankton) stabilizes lower trophic levels, whereas the potentially destabilizing effects of fish population oscillations are long compared to the growing season and subject to year-to-year climatic vagaries. The time-scale dependent approach is important because it emphasizes how local (transient) solutions may be more ecologically relevant to stability calculations than overall (global) solutions. 相似文献
14.
Cassandra van Altena Lia Hemerik Johan A. P. Heesterbeek Peter C. de Ruiter 《Theoretical Ecology》2016,9(1):95-106
A common approach to analyse stability of biological communities is to calculate the interaction strength matrix. Problematic in this approach is defining intraspecific interaction strengths, represented by diagonal elements in the matrix, due to a lack of empirical data for these strengths. Theoretical studies have shown that an overall increase in these strengths enhances stability. However, the way in which the pattern in intraspecific interaction strengths, i.e. the variation in these strengths between species, influences stability has received little attention. We constructed interaction strength matrices for 11 real soil food webs in which four patterns for intraspecific interaction strengths were chosen, based on the ecological literature. These patterns included strengths that were (1) similar for all species, (2) trophic level dependent, (3) biomass dependent, or (4) death rate dependent. These four patterns were analysed for their influence on (1) ranking food webs by their stability and (2) the response in stability to variation of single interspecific interaction strengths. The first analysis showed that ranking the 11 food webs by their stability was not strongly influenced by the choice of diagonal pattern. In contrast, the second analysis showed that the response of food web stability to variation in single interspecific interaction strengths was sensitive to the choice of diagonal pattern. Notably, stability could increase using one pattern and decrease using another. This result asks for deliberate approaches to choose diagonal element values in order to make predictions on how particular species, interactions, or other food web parameters affect food web stability. 相似文献
15.
We investigate the influence of functional responses (Lotka-Volterra or Holling type), initial topological web structure (randomly connected or niche model), adaptive behavior (adaptive foraging and predator avoidance) and the type of constraints on the adaptive behavior (linear or nonlinear) on the stability and structure of food webs. Two kinds of stability are considered: one is the network robustness (i.e., the proportion of species surviving after population dynamics) and the other is the species deletion stability. When evaluating the network structure, we consider link density as well as the trophic level structure. We show that the types of functional responses and initial web structure do not have a large effect on the stability of food webs, but foraging behavior has a large stabilizing effect. It leads to a positive complexity-stability relationship whenever higher "complexity" implies more potential prey per species. The other type of adaptive behavior, predator avoidance behavior, makes food webs only slightly more stable. The observed link density after population dynamics depends strongly on the presence or absence of adaptive foraging, and on the type of constraints used. We also show that the trophic level structure is preserved under population dynamics with adaptive foraging. 相似文献
16.
Microbial food chains and food webs 总被引:4,自引:0,他引:4
Mathematical models for simple microbial food chains and food webs in continuous culture are developed and analyzed. A model for competition of two microbial species for a single scarce resource is also presented as a degenerate case of the food web model. Two models for food chains are developed. The first is based on a model of microbial growth (Monod's) that is widely mentioned and used at the present time. The second is based on a generalization of that model that recent experimental results on microbial food chains seem to require. Experimental data for microbial food webs are almost entirely lacking but a tentative model having what are felt to be the right properties is developed and analyzed. The results obtained from these models seem to be consistent in most circumstances with current ecological thinking on community dynamics. 相似文献
17.
18.
Bottom-up effects of species diversity on the functioning and stability of food webs 总被引:1,自引:0,他引:1
1. The importance of species diversity for the stability of populations, communities and ecosystem functions is a central question in ecology. 2. Biodiversity experiments have shown that diversity can impact both the average and variability of stocks and rates at these levels of ecological organization in single trophic-level ecosystems. Whether these impacts hold in food webs and across trophic levels is still unclear. 3. We asked whether resource species diversity, community composition and consumer feeding selectivity in planktonic food webs impact the stability of resource or consumer populations, community biomass and ecosystem functions. We also tested the relative importance of resource diversity and community composition. 4. We found that resource diversity negatively affected resource population stability, but had no effect on consumer population stability, regardless of the consumer's feeding selectivity. Resource diversity had positive effects on most ecosystem functions and their stability, including primary production, resource biomass and particulate carbon, nitrogen and phosphorus concentrations. 5. Community composition, however, generally explained more variance in population, community and ecosystem properties than species diversity per se. This result points to the importance of the outcomes of particular species interactions and individual species' effect traits in determining food web properties and stability. 6. Among the stabilizing mechanisms tested, an increase in the average resource community biomass with increasing resource diversity had the greatest positive impact on stability. 7. Our results indicate that resource diversity and composition are generally important for the functioning and stability of whole food webs, but do not have straightforward impacts on consumer populations. 相似文献
19.
食物网理论沟通了群落生态学和生态系统生态学,将生物多样性和生态系统功能的研究统一起来,是理解生态系统运作机制的关键。自从1973年Robert May的经典研究引发著名的"复杂性-稳定性"论辩之后,人们认识到食物网的稳定性是其结构维持、功能发挥和动态演化的一个重要前提,并开始了对食物网稳定性机制的探索。早期研究主要关注只包含拓扑关系的定性食物网,但后来人们逐渐认识到相互作用强度的重要性,并提出了诸如自限性、弱相互作用、适应性捕食等一系列机制。本文系统梳理了过往研究中模块层面的各类稳定性机制和全网层面对各模块的整合机制,从而清晰地展示了"模块-全网"双层框架的全貌。通过在其基础上的扩展,进而提出了一个基于等级系统的食物网稳定性框架,并从动力学和能量学角度,对各层级内部的稳定性机制以及层级之间的关系进行了探讨,以期为建立普适的食物网稳定性理论提供一些思路。未来的研究方向包括:①将稳定性机制的研究从食物网扩展到更一般的生态网络;②综合考虑生物物理要素、动力学稳定性、系统对能流功率的追求、环境的平稳程度、演化历史等影响因素,从而得到关于食物网结构和动态的更为深刻的认识。 相似文献
20.
Ferenc Jordán 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2009,364(1524):1733-1741
Different species are of different importance in maintaining ecosystem functions in natural communities. Quantitative approaches are needed to identify unusually important or influential, ‘keystone’ species particularly for conservation purposes. Since the importance of some species may largely be the consequence of their rich interaction structure, one possible quantitative approach to identify the most influential species is to study their position in the network of interspecific interactions. In this paper, I discuss the role of network analysis (and centrality indices in particular) in this process and present a new and simple approach to characterizing the interaction structures of each species in a complex network. Understanding the linkage between structure and dynamics is a condition to test the results of topological studies, I briefly overview our current knowledge on this issue. The study of key nodes in networks has become an increasingly general interest in several disciplines: I will discuss some parallels. Finally, I will argue that conservation biology needs to devote more attention to identify and conserve keystone species and relatively less attention to rarity. 相似文献